1 A brief introduction to Volume conjecture

2 Linear Fractional Transformation and 2-dimensional

hyperbolic geometry

2.1 Linear Fractional Transformation (LFT)

A linear fractional transformation (or Mébius transformation) is of the form

aerb.

g C—C=Cufx)

flz) =

where a, b, c,d € C satisfying ad — bc # 0.
Let M* be the set of LFT’s and define ¢ : GL(2,C) — M™ by

a b az+b
A= —
(c d) ! Z}_)cz—i—d

. A0
Since ker ¢ = ¢ A\l =
0 A

Remark f is a projective transformation:
(¢,p) : (GL(2,C),C?) — (M* = PGL(2,C),CP"! = C) is an equivariant map,
ie., for A € GL(2,C),po A = ¢(A)op, and ¢(A) = f is a projective transfor-

mation induced by the linear map A.

Ae c}, M+ = PGL(2,C) = GL(2,C)/{\}.

Fig.1

In an affine chart of CP! = C given by 23 = 1 for (21, 22) € C2, we see that

a b z\ _ az+b N Szzidb

c d 1 cz+d 1
Alternatively, we can use SL(2,C), i.e., if we define ¢ : SL(2,C) — M™ in the
same way, then ker ¢ = {+I} and M = PSL(2,C) = SL(2,C)/{£I}

2.2 Geometry

M is generated by
® z — z + a translation
@ z — Az homothety (rotation, when |A| = 1)

® z — 1 inversion (orientation preserving)



Note that z* =
|z] = 1.

W=

is a symmetric point of z with respect to the unit circle

FIG.2
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More generally, Jy(q,r): 2+ +a

z—a
Ezercise. Show that g € M™ maps circles to circles.

2.3 Cross Ratio

Let [21, 29, 23, 24] := (21— 25)(z = 24). Then we have

(21 — 22)(23 — za)

1) [1,0,00,2] = 2.

(71 — 23)(22 — 2)

(21— 22)(23 — 2)

= g(21) =1, g(22) = 0, g(z3) = o0.

3) Vg € M preserves cross ratio:

N _az+b aw+b _ (ad—bc)(z —w)

7 9(z) = g(w) = cz+d cw+d  (cz+d)(cw+d)

(ad — be)(z1 — 2z3) (ad — be)(z2 — 24)
cz1 +d)(czg + d) (czo + d)(czq + d)
ad — be)(z1 — 2z2) (ad — be)(z3 — 24)

cz1 +d)(czg + d) (czs + d)(czg + d)

4) For each distinct points z1, 29, 23, and wq, wse, w3 respectively, there is a

2) g(z) = [21, 22,23, 2] =

= [Z17227Z3;Z4]'

[g(zl)v9(22)79(23),9(24)] — E
(

unique g € M* such that g(z;) = w;:

- By 2), 31,92 € M7 such that g1(21) = g2(w1) = 1, g1(22) = ga(w2) = 0,
and g1(23) = ga(ws3) = co. Then take g5 ' o g;.

5) Other possibilities of defining cross ratio:

This problem essentially reduces to a permutation problem. And under permu-
A 1 1 A—1

A=A 1=\ A

1
)Jup to sign and their inverses.(Exercise)

tation, there are 6 different cross ratios up to sign, namely, A, 1—X,

M —
and hence 3 (\, \ = 7)\ N = 5

Later we will use Neumann’s convention of cross ratio given by [z1, 22, 23, 24] 1=
(21 — 24)(22 — 23)

(21 — 23)(22 — 21)
[27 1’3’ 4] = [1727 4’ 3] =

3,2,1,4] = [1,4,3,2] =
[4,2,3,1] = [1,3,2,4] =
Hence [1,2,3,4] = [2,1,4,3] = [3,4,1,2] = [4,3,2,1], and we have 6 different

permutation values out of 4! = 24 permutations.

=: \. In this case we have

‘H >:"—‘ >|=



Proposition 2.3.1. M* = Aut(C)

Proof. (C) Trivial

(D) For g € Aut(C), we may assume g(0) = 0 and g(oc) = co by composing a
suitable LFT. Then h(z) — g(j)

is a holomorphic function with h(0) # oo and
h(c0) # oo. Since C is compact, h : € — C is bounded and hence constant

by Liouville’s theorem. O

2.4 Poincaré Upper Half Plane and Disk

We shall first find the automorphism group of the upper half plane H? = {2 €
C|Imz > 0} and the unit disk D = {z € C||z| < 1}.

Proposition 2.4.1. f € M* acts on H? if and only if f € PSL(2,R) =
SL(2,R)/{+T}

Proof. (=) Suppose that f maps p,q,r € R to 1,0,00 respectively. Then
f(z) =1[1,0,00, f(2)] = [p,q,7, 2] and hence f has a real representative.

(<) Obviously f sends R to R and hence a half plane to a half plane. By direct
computation, f(z) — f(z) = ﬁ (We shall use this result later again.)

Therefore, f maps H? to itself. O

Proposition 2.4.2. H2 =D

i
- maps D onto H?, which is called a Cayley transforma-
i

Proof. ¢(z) = —iZ +
- —
tion. Note that ¢ maps —i,0,,andl to 0,1, 00, andl respectively. O

FIG.3

Proposition 2.4.3. Aut(H?) = PSL(2,R)

Proof. (D) Propsition 2.4.1.

(C) Let g € Aut(H?) and may assume g(i) = i using a suitable homothety and

a translation in PSL(2,R). Then § = ¢t ogo¢ maps D to itself and §(0) = 0.
|

1

By the Schwarz lemma, |g(2)] < |z]. Actually, |g(z)| = || since g~ satisfies

the same condition. Thus g is a rotation, which is an LFT, and so is g. O



az+b

Corollary 2.4.1. Aut(D) = {b s
z+a

= {eig 12__aaz a &€ D}.

Proof. Excercise. (Use for instance |f(z)| = 1 for |z| = 1, and let

’a,b € C with |a|®> — |b]? = 1}

= ¢" for

SIS

the second equality.) O

Remark
@ From the corollary we see that the isotropy subgroup of Aut(D) at O is
isomorphic to SO(2) = St.
@ PSL(2,R) is a three dimensional Lie group.

Poincaré metric

az+b Imz dw 1
Ifw= = PSL(2,R), then I =———and — = —.
w=Jf) cztdC (2,R), then Tmw lez + d|? e (cz + d)?
|dw| |dz| . . : I o .
Hence —— = —— is an invariant metric, which is called the Poincaré metric.

Imw  Imz
If we write z = x + iy and |dz| = \/dz? + dy? = dso, then the Poincaré metric

can be expressed as ds := %% Hence the length of a curve 7, I(v) := f,y ds =
Yy

/
t
/ Mdt is invariant under g € PSL(2,R).
5 Imz

Remark The invariance of the Poincaré metric can also be derived from the

2
zZ—w
cross ratio [z, Z, w, W] = Q by considering w = z + dz.
—4ImzImw
. . , L . 2|dz|
Ezercise. Show that, on D, the Poincaré metric is given by ¢*ds = 17”2
— |z

both by computing a pull back metric and by using cross ratio.

Isometry Group
Proposition 2.4.4. PSL(2,R) = Isom™ (H?)

Proof. (C) Clear.
(D) An isometry is a conformal map, and an orientation preserving conformal

map is complex analytic. O
If J is an orientation reversing isometry, e.g., a reflection with respect to

the imaginary axis, then JIsom™ (H?) = Isom(H?), and

Isom (H?) = Isom™ (H?) [ ] JIsom™ (H?).

Ezercise. Show that the sectional curvature of H? is constant —1.



Note By virtue of prop 2.4.4, we can view a complex analysis problem as a

geometry problem and vice versa.
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