1 A brief introduction to Volume conjecture

2 Linear Fractional Transformation and 2-dimensional hyperbolic geometry

2.1 Linear Fractional Transformation (LFT)

A linear fractional transformation (or Möbius transformation) is of the form

$$f(z) = \frac{az+b}{cz+d}: \quad \hat{\mathbb{C}} \longrightarrow \hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$$

where $a, b, c, d \in \mathbb{C}$ satisfying $ad - bc \neq 0$.

Let M^+ be the set of LFT's and define $\phi:\mathrm{GL}(2,\mathbb{C})\longrightarrow M^+$ by

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \longmapsto f : z \mapsto \frac{az+b}{cz+d}$$

Since $\ker \phi = \left\{ \lambda \mathbf{I} = \begin{pmatrix} \lambda & 0 \\ 0 & \lambda \end{pmatrix} \middle| \lambda \in \mathbb{C} \right\}, \, \mathbf{M}^+ \cong \mathrm{PGL}(2, \mathbb{C}) = \mathrm{GL}(2, \mathbb{C}) / \{\lambda \mathbf{I}\}.$

<u>Remark</u> f is a projective transformation:

 $(\phi, p) : (\operatorname{GL}(2, \mathbb{C}), \mathbb{C}^2) \longrightarrow (\operatorname{M}^+ = \operatorname{PGL}(2, \mathbb{C}), \mathbb{C}P^1 = \hat{\mathbb{C}})$ is an equivariant map, i.e., for $A \in \operatorname{GL}(2, \mathbb{C}), p \circ A = \phi(A) \circ p$, and $\phi(A) = f$ is a projective transformation induced by the linear map A.

Fig.1

.

In an affine chart of $\mathbb{C}P^1 = \hat{\mathbb{C}}$ given by $z_2 = 1$ for $(z_1, z_2) \in \mathbb{C}^2$, we see that $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} z \\ 1 \end{pmatrix} = \begin{pmatrix} az+b \\ cz+d \end{pmatrix} \sim \begin{pmatrix} \frac{az+b}{cz+d} \\ 1 \end{pmatrix}$

Alternatively, we can use $SL(2, \mathbb{C})$, i.e., if we define $\phi : SL(2, \mathbb{C}) \longrightarrow M^+$ in the same way, then ker $\phi = \{\pm I\}$ and $M^+ \cong PSL(2, \mathbb{C}) = SL(2, \mathbb{C})/\{\pm I\}$

2.2 Geometry

M⁺ is generated by

 $\textcircled{1} z \mapsto z + a$ translation

2 $z \mapsto \lambda z$ homothety (rotation, when $|\lambda| = 1$)

(3) $z \mapsto \frac{1}{z}$ inversion (orientation preserving)

Note that $z^* = \frac{1}{\overline{z}}$ is a symmetric point of z with respect to the unit circle |z| = 1.

FIG.2

More generally, $J_{s(a,r)}$: $z \mapsto \frac{r^2}{\overline{z-a}} + a$ *Exercise.* Show that $g \in M^+$ maps circles to circles.

2.3 Cross Ratio

Let $[z_1, z_2, z_3, z_4] := \frac{(z_1 - z_3)(z_2 - z_4)}{(z_1 - z_2)(z_3 - z_4)}$. Then we have

1)
$$[1, 0, \infty, z] = z$$
.
2) $g(z) := [z_1, z_2, z_3, z] = \frac{(z_1 - z_3)(z_2 - z)}{(z_1 - z_2)(z_3 - z)}$
 $\Rightarrow g(z_1) = 1, g(z_2) = 0, g(z_3) = \infty$.
3) $\forall g \in M^+$ preserves cross ratio:
 $\because g(z) - g(w) = \frac{az + b}{cz + d} - \frac{aw + b}{cw + d} = \frac{(ad - bc)(z - w)}{(cz + d)(cw + d)}$
 $[g(z_1), g(z_2), g(z_3), g(z_4)] = \frac{\frac{(ad - bc)(z_1 - z_3)}{(cz_1 + d)(cz_3 + d)} \frac{(ad - bc)(z_2 - z_4)}{(cz_1 + d)(cz_3 + d)}}{(cz_1 + d)(cz_2 + d)} = [z_1, z_2, z_3, z_4].$

4) For each distinct points z_1, z_2, z_3 , and w_1, w_2, w_3 respectively, there is a unique $g \in M^+$ such that $g(z_i) = w_i$:

: By 2), $\exists g_1, g_2 \in M^+$ such that $g_1(z_1) = g_2(w_1) = 1$, $g_1(z_2) = g_2(w_2) = 0$, and $g_1(z_3) = g_2(w_3) = \infty$. Then take $g_2^{-1} \circ g_1$.

5) Other possibilities of defining cross ratio:

This problem essentially reduces to a permutation problem. And under permutation, there are 6 different cross ratios up to sign, namely, λ , $1-\lambda$, $\frac{\lambda}{\lambda-1}$, $\frac{1}{\lambda}$, $\frac{1}{1-\lambda}$, $\frac{\lambda-1}{\lambda}$, and hence 3 $(\lambda, \lambda' = \frac{1}{1-\lambda}, \lambda'' = \frac{\lambda-1}{\lambda})$ up to sign and their inverses.(Exercise) Later we will use Neumann's convention of cross ratio given by $[z_1, z_2, z_3, z_4] := \frac{(z_1 - z_4)(z_2 - z_3)}{(z_1 - z_3)(z_2 - z_4)} =: \lambda$. In this case we have $[2, 1, 3, 4] = [1, 2, 4, 3] = \frac{1}{\lambda}$ $[3, 2, 1, 4] = [1, 3, 2, 4] = \frac{1}{\lambda''}$ Hence [1, 2, 3, 4] = [2, 1, 4, 3] = [3, 4, 1, 2] = [4, 3, 2, 1], and we have 6 different

permutation values out of 4! = 24 permutations.

Proposition 2.3.1. $M^+ = Aut(\hat{\mathbb{C}})$

Proof. (\subset) Trivial

 (\supset) For $g \in \operatorname{Aut}(\hat{\mathbb{C}})$, we may assume g(0) = 0 and $g(\infty) = \infty$ by composing a suitable LFT. Then $h(z) = \frac{g(z)}{z}$ is a holomorphic function with $h(0) \neq \infty$ and $h(\infty) \neq \infty$. Since $\hat{\mathbb{C}}$ is compact, $h : \hat{\mathbb{C}} \longrightarrow \mathbb{C}$ is bounded and hence constant by Liouville's theorem.

2.4 Poincaré Upper Half Plane and Disk

We shall first find the automorphism group of the upper half plane $\mathbb{H}^2 = \{z \in \mathbb{C} \mid |mz > 0\}$ and the unit disk $D = \{z \in \mathbb{C} \mid |z| < 1\}.$

Proposition 2.4.1. $f \in M^+$ acts on \mathbb{H}^2 if and only if $f \in PSL(2, \mathbb{R}) = SL(2, \mathbb{R})/\{\pm I\}$

Proof. (\Rightarrow) Suppose that f maps $p, q, r \in \mathbb{R}$ to $1, 0, \infty$ respectively. Then $f(z) = [1, 0, \infty, f(z)] = [p, q, r, z]$ and hence f has a real representative.

(\Leftarrow) Obviously f sends \mathbb{R} to \mathbb{R} and hence a half plane to a half plane. By direct computation, $f(z) - \overline{f(z)} = \frac{z - \overline{z}}{|cz + d|^2}$. (We shall use this result later again.) Therefore, f maps \mathbb{H}^2 to itself.

Proposition 2.4.2. $\mathbb{H}^2 \cong D$

Proof. $\phi(z) = -i\frac{z+i}{z-i}$ maps D onto \mathbb{H}^2 , which is called a Cayley transformation. Note that ϕ maps -i, 0, i, and 1 to $0, i, \infty, and 1$ respectively.

FIG.3

.

Proposition 2.4.3. $Aut(\mathbb{H}^2) = PSL(2, \mathbb{R})$

Proof. (\supset) Propsition 2.4.1.

(⊂) Let $g \in \operatorname{Aut}(\mathbb{H}^2)$ and may assume g(i) = i using a suitable homothety and a translation in PSL(2, ℝ). Then $\tilde{g} = \phi^{-1} \circ g \circ \phi$ maps D to itself and $\tilde{g}(0) = 0$. By the Schwarz lemma, $|\tilde{g}(z)| \leq |z|$. Actually, $|\tilde{g}(z)| = |z|$ since \tilde{g}^{-1} satisfies the same condition. Thus \tilde{g} is a rotation, which is an LFT, and so is g. **Corollary 2.4.1.** Aut(D) = $\left\{ \frac{az+b}{\overline{b}z+\overline{a}} \middle| a, b \in \mathbb{C} \text{ with } |a|^2 - |b|^2 = 1 \right\}$ = $\left\{ e^{i\theta} \frac{z-a}{1-\overline{a}z} \middle| a \in D \right\}.$

Proof. Excercise. (Use for instance |f(z)| = 1 for |z| = 1, and let $\frac{a}{\bar{a}} = e^{i\theta}$ for the second equality.)

Remark

① From the corollary we see that the isotropy subgroup of Aut(D) at 0 is isomorphic to $SO(2) \cong S^1$.

② PSL(2, ℝ) is a three dimensional Lie group.

Poincaré metric

If $w = f(z) = \frac{az+b}{cz+d} \in \operatorname{PSL}(2,\mathbb{R})$, then $\operatorname{Im} w = \frac{\operatorname{Im} z}{|cz+d|^2}$ and $\frac{dw}{dz} = \frac{1}{(cz+d)^2}$. Hence $\frac{|dw|}{\operatorname{Im} w} = \frac{|dz|}{\operatorname{Im} z}$ is an invariant metric, which is called the Poincaré metric. If we write z = x + iy and $|dz| = \sqrt{dz^2 + dy^2} = ds_0$, then the Poincaré metric can be expressed as $ds := \frac{ds_0}{y}$. Hence the length of a curve γ , $l(\gamma) := \int_{\gamma} ds = \int_{\gamma} \frac{|z'(t)|}{\operatorname{Im} z} dt$ is invariant under $g \in \operatorname{PSL}(2,\mathbb{R})$.

<u>Remark</u> The invariance of the Poincaré metric can also be derived from the cross ratio $[z, \bar{z}, w, \bar{w}] = \frac{|z - w|^2}{-4 \text{Im} z \text{Im} w}$ by considering w = z + dz.

Exercise. Show that, on D, the Poincaré metric is given by $\phi^* ds = \frac{2|dz|}{1-|z|^2}$ both by computing a pull back metric and by using cross ratio.

Isometry Group

Proposition 2.4.4. $PSL(2,\mathbb{R}) = Isom^+(\mathbb{H}^2)$

Proof. (\subset) Clear.

 (\supset) An isometry is a conformal map, and an orientation preserving conformal map is complex analytic.

If J is an orientation reversing isometry, e.g., a reflection with respect to the imaginary axis, then JIsom⁻(\mathbb{H}^2) = Isom(\mathbb{H}^2), and

 $\operatorname{Isom}(\mathbb{H}^2) = \operatorname{Isom}^+(\mathbb{H}^2) \coprod J \operatorname{Isom}^+(\mathbb{H}^2).$

Exercise. Show that the sectional curvature of \mathbb{H}^2 is constant -1.

<u>Note</u> By virtue of prop 2.4.4, we can view a complex analysis problem as a geometry problem and vice versa.