1 A brief introduction to Volume conjecture

2 Linear Fractional Transformation and 2-dimensional hyperbolic geometry

2.1 Linear Fractional Transformation (LFT)

A linear fractional transformation (or Möbius transformation) is of the form

$$
f(z)=\frac{a z+b}{c z+d}: \quad \hat{\mathbb{C}} \longrightarrow \hat{\mathbb{C}}=\mathbb{C} \cup\{\infty\}
$$

where $a, b, c, d \in \mathbb{C}$ satisfying $a d-b c \neq 0$.
Let M^{+}be the set of LFT's and define $\phi: \mathrm{GL}(2, \mathbb{C}) \longrightarrow M^{+}$by

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \longmapsto f: z \mapsto \frac{a z+b}{c z+d}
$$

Since $\operatorname{ker} \phi=\left\{\left.\lambda \mathrm{I}=\left(\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right) \right\rvert\, \lambda \in \mathbb{C}\right\}, \mathrm{M}^{+} \cong \operatorname{PGL}(2, \mathbb{C})=\mathrm{GL}(2, \mathbb{C}) /\{\lambda \mathrm{I}\}$.
Remark f is a projective transformation:
$(\phi, p):\left(\mathrm{GL}(2, \mathbb{C}), \mathbb{C}^{2}\right) \longrightarrow\left(\mathrm{M}^{+}=\mathrm{PGL}(2, \mathbb{C}), \mathbb{C} P^{1}=\hat{\mathbb{C}}\right)$ is an equivariant map, i.e., for $A \in \mathrm{GL}(2, \mathbb{C}), p \circ A=\phi(A) \circ p$, and $\phi(A)=f$ is a projective transformation induced by the linear map A.

Fig. 1

In an affine chart of $\mathbb{C} P^{1}=\hat{\mathbb{C}}$ given by $z_{2}=1$ for $\left(z_{1}, z_{2}\right) \in \mathbb{C}^{2}$, we see that

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{z}{1}=\binom{a z+b}{c z+d} \sim\binom{\frac{a z+b}{c z+d}}{1}
$$

Alternatively, we can use $\operatorname{SL}(2, \mathbb{C})$, i.e., if we define $\phi: \mathrm{SL}(2, \mathbb{C}) \longrightarrow M^{+}$in the same way, then $\operatorname{ker} \phi=\{ \pm \mathrm{I}\}$ and $\mathrm{M}^{+} \cong \operatorname{PSL}(2, \mathbb{C})=\operatorname{SL}(2, \mathbb{C}) /\{ \pm \mathrm{I}\}$

2.2 Geometry

M^{+}is generated by
(1) $z \mapsto z+a$ translation
(2) $z \mapsto \lambda z$ homothety (rotation, when $|\lambda|=1$)
(3) $z \mapsto \frac{1}{z}$ inversion (orientation preserving)

Note that $z^{*}=\frac{1}{\bar{z}}$ is a symmetric point of z with respect to the unit circle $|z|=1$.

FIG. 2

More generally, $J_{s(a, r)}: z \mapsto \frac{r^{2}}{\overline{z-a}}+a$
Exercise. Show that $g \in \mathrm{M}^{+}$maps circles to circles.

2.3 Cross Ratio

Let $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]:=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}{\left(z_{1}-z_{2}\right)\left(z_{3}-z_{4}\right)}$. Then we have

1) $[1,0, \infty, z]=z$.
2) $g(z):=\left[z_{1}, z_{2}, z_{3}, z\right]=\frac{\left(z_{1}-z_{3}\right)\left(z_{2}-z\right)}{\left(z_{1}-z_{2}\right)\left(z_{3}-z\right)}$
$\Rightarrow g\left(z_{1}\right)=1, g\left(z_{2}\right)=0, g\left(z_{3}\right)=\infty$.
3) $\forall g \in \mathrm{M}^{+}$preserves cross ratio:
$\because g(z)-g(w)=\frac{a z+b}{c z+d}-\frac{a w+b}{c w+d}=\frac{(a d-b c)(z-w)}{(c z+d)(c w+d)}$
$\left[g\left(z_{1}\right), g\left(z_{2}\right), g\left(z_{3}\right), g\left(z_{4}\right)\right]=\frac{\frac{(a d-b c)\left(z_{1}-z_{3}\right)}{\left(c z_{1}+d\right)\left(c z_{3}+d\right)} \frac{(a d-b c)\left(z_{2}-z_{4}\right)}{\left(c z_{2}+d\right)\left(c z_{4}+d\right)}}{\frac{(a d-b c)\left(z_{1}-z_{2}\right)}{\left(c z_{1}+d\right)\left(c z_{2}+d\right)} \frac{(a d-b c)\left(z_{3}-z_{4}\right)}{\left(c z_{3}+d\right)\left(c z_{4}+d\right)}}=\left[z_{1}, z_{2}, z_{3}, z_{4}\right]$.
4) For each distinct points z_{1}, z_{2}, z_{3}, and w_{1}, w_{2}, w_{3} respectively, there is a unique $g \in \mathrm{M}^{+}$such that $g\left(z_{i}\right)=w_{i}$:
\because By 2), $\exists g_{1}, g_{2} \in \mathrm{M}^{+}$such that $g_{1}\left(z_{1}\right)=g_{2}\left(w_{1}\right)=1, g_{1}\left(z_{2}\right)=g_{2}\left(w_{2}\right)=0$, and $g_{1}\left(z_{3}\right)=g_{2}\left(w_{3}\right)=\infty$. Then take $g_{2}^{-1} \circ g_{1}$.
5) Other possibilities of defining cross ratio:

This problem essentially reduces to a permutation problem. And under permutation, there are 6 different cross ratios up to sign, namely, $\lambda, 1-\lambda, \frac{\lambda}{\lambda-1}, \frac{1}{\lambda}, \frac{1}{1-\lambda}, \frac{\lambda-1}{\lambda}$, and hence $3\left(\lambda, \lambda^{\prime}=\frac{1}{1-\lambda}, \lambda^{\prime \prime}=\frac{\lambda-1}{\lambda}\right)$ up to sign and their inverses.(Exercise) Later we will use Neumann's convention of cross ratio given by $\left[z_{1}, z_{2}, z_{3}, z_{4}\right]:=$ $\frac{\left(z_{1}-z_{4}\right)\left(z_{2}-z_{3}\right)}{\left(z_{1}-z_{3}\right)\left(z_{2}-z_{4}\right)}=: \lambda$. In this case we have
$[2,1,3,4]=[1,2,4,3]=\frac{1}{\lambda}$
$[3,2,1,4]=[1,4,3,2]=\frac{1}{\lambda^{\prime}}$
$[4,2,3,1]=[1,3,2,4]=\frac{1}{\lambda^{\prime \prime}}$
Hence $[1,2,3,4]=[2,1,4,3]=[3,4,1,2]=[4,3,2,1]$, and we have 6 different permutation values out of $4!=24$ permutations.

Proposition 2.3.1. $\mathrm{M}^{+}=\operatorname{Aut}(\hat{\mathbb{C}})$
Proof. (С) Trivial
(\supset) For $g \in \operatorname{Aut}(\hat{\mathbb{C}})$, we may assume $g(0)=0$ and $g(\infty)=\infty$ by composing a suitable LFT. Then $h(z)=\frac{g(z)}{z}$ is a holomorphic function with $h(0) \neq \infty$ and $h(\infty) \neq \infty$. Since $\hat{\mathbb{C}}$ is compact, $h: \hat{\mathbb{C}} \longrightarrow \mathbb{C}$ is bounded and hence constant by Liouville's theorem.

2.4 Poincaré Upper Half Plane and Disk

We shall first find the automorphism group of the upper half plane $\mathbb{H}^{2}=\{z \in$ $\mathbb{C} \mid \operatorname{Im} z>0\}$ and the unit disk $\mathrm{D}=\{z \in \mathbb{C}| | z \mid<1\}$.

Proposition 2.4.1. $f \in \mathrm{M}^{+}$acts on \mathbb{H}^{2} if and only if $f \in \operatorname{PSL}(2, \mathbb{R})=$ $\mathrm{SL}(2, \mathbb{R}) /\{ \pm \mathrm{I}\}$

Proof. (\Rightarrow) Suppose that f maps $p, q, r \in \mathbb{R}$ to $1,0, \infty$ respectively. Then $f(z)=[1,0, \infty, f(z)]=[p, q, r, z]$ and hence f has a real representative.
(\Leftarrow) Obviously f sends \mathbb{R} to \mathbb{R} and hence a half plane to a half plane. By direct computation, $f(z)-\overline{f(z)}=\frac{z-\bar{z}}{|c z+d|^{2}}$. (We shall use this result later again.) Therefore, f maps \mathbb{H}^{2} to itself.

Proposition 2.4.2. $\mathbb{H}^{2} \cong \mathrm{D}$
Proof. $\phi(z)=-i \frac{z+i}{z-i}$ maps D onto \mathbb{H}^{2}, which is called a Cayley transformation. Note that ϕ maps $-i, 0, i$, and 1 to $0, i, \infty$, and 1 respectively.

FIG. 3

Proposition 2.4.3. $\operatorname{Aut}\left(\mathbb{H}^{2}\right)=\operatorname{PSL}(2, \mathbb{R})$
Proof. (\supset) Propsition 2.4.1.
(\subset) Let $g \in \operatorname{Aut}\left(\mathbb{H}^{2}\right)$ and may assume $g(i)=i$ using a suitable homothety and a translation in $\operatorname{PSL}(2, \mathbb{R})$. Then $\tilde{g}=\phi^{-1} \circ g \circ \phi$ maps D to itself and $\tilde{g}(0)=0$. By the Schwarz lemma, $|\tilde{g}(z)| \leq|z|$. Actually, $|\tilde{g}(z)|=|z|$ since \tilde{g}^{-1} satisfies the same condition. Thus \tilde{g} is a rotation, which is an LFT, and so is g.

Corollary 2.4.1. $\operatorname{Aut}(\mathrm{D})=\left\{\left.\frac{a z+b}{\bar{b} z+\bar{a}} \right\rvert\, a, b \in \mathbb{C}\right.$ with $\left.|a|^{2}-|b|^{2}=1\right\}$
$=\left\{\left.e^{i \theta} \frac{z-a}{1-\bar{a} z} \right\rvert\, a \in \mathrm{D}\right\}$.
Proof. Excercise. (Use for instance $|f(z)|=1$ for $|z|=1$, and let $\frac{a}{\bar{a}}=e^{i \theta}$ for the second equality.)

Remark

(1) From the corollary we see that the isotropy subgroup of $\operatorname{Aut}(\mathrm{D})$ at 0 is isomorphic to $\mathrm{SO}(2) \cong S^{1}$.
(2) $\operatorname{PSL}(2, \mathbb{R})$ is a three dimensional Lie group.

Poincaré metric

If $w=f(z)=\frac{a z+b}{c z+d} \in \operatorname{PSL}(2, \mathbb{R})$, then $\operatorname{Im} w=\frac{\operatorname{Im} z}{|c z+d|^{2}}$ and $\frac{d w}{d z}=\frac{1}{(c z+d)^{2}}$.
Hence $\frac{|d w|}{\operatorname{Im} w}=\frac{|d z|}{\operatorname{Im} z}$ is an invariant metric, which is called the Poincaré metric. If we write $z=x+i y$ and $|d z|=\sqrt{d z^{2}+d y^{2}}=d s_{0}$, then the Poincaré metric can be expressed as $d s:=\frac{d s_{0}}{y}$. Hence the length of a curve $\gamma, l(\gamma):=\int_{\gamma} d s=$ $\int_{\gamma} \frac{\left|z^{\prime}(t)\right|}{\operatorname{Im} z} d t$ is invariant under $g \in \operatorname{PSL}(2, \mathbb{R})$.

Remark The invariance of the Poincaré metric can also be derived from the cross ratio $[z, \bar{z}, w, \bar{w}]=\frac{|z-w|^{2}}{-4 \operatorname{Im} z \operatorname{Im} w}$ by considering $w=z+d z$.
Exercise. Show that, on D , the Poincaré metric is given by $\phi^{*} d s=\frac{2|d z|}{1-|z|^{2}}$ both by computing a pull back metric and by using cross ratio.

Isometry Group

Proposition 2.4.4. $\operatorname{PSL}(2, \mathbb{R})=\operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)$
Proof. (\subset) Clear.
(\supset) An isometry is a conformal map, and an orientation preserving conformal map is complex analytic.

If J is an orientation reversing isometry, e.g., a reflection with respect to the imaginary axis, then $J \operatorname{Isom}{ }^{-}\left(\mathbb{H}^{2}\right)=\operatorname{Isom}\left(\mathbb{H}^{2}\right)$, and

$$
\operatorname{Isom}\left(\mathbb{H}^{2}\right)=\operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right) \amalg J \operatorname{Isom}^{+}\left(\mathbb{H}^{2}\right)
$$

Exercise. Show that the sectional curvature of \mathbb{H}^{2} is constant -1 .

Note By virtue of prop 2.4.4, we can view a complex analysis problem as a geometry problem and vice versa.

