## 1 A brief introduction to Volume conjecture

## 2 Linear Fractional Transformation and 2-dimensional hyperbolic geometry

### 2.1 Linear Fractional Transformation (LFT)

### 2.2 Geometry

### 2.3 Cross Ratio

### 2.4 Poincaré Upper Half Plane and Disk

### 2.5 2D Hyperbolic Geometry

Geodesic

FIG. 4

Let $\gamma$ be a $C^{1}$ curve parametrized by $z(t)=x(t)+i y(t)$ connecting two points on the imaginary axis, namely $P=i p$ and $Q=i q$. Then

$$
\begin{aligned}
l(\gamma) & =\int_{a}^{b} d s=\int_{a}^{b} \frac{\left|z^{\prime}(t)\right|}{\operatorname{Im} z} d t=\int_{a}^{b} \frac{\sqrt{x^{\prime}(t)^{2}+y^{\prime}(t)^{2}}}{y(t)} d t \\
& \geq \int_{a}^{b} \frac{y^{\prime}(t)}{y(t)} d t=\log \frac{q}{p}
\end{aligned}
$$

Here, the equality holds if and only if $x^{\prime}(t)=0$ and $y^{\prime}(t) \geq 0$. Therefore,

$$
\begin{aligned}
d(P, Q) & =\inf \{l(\gamma) \mid \gamma \text { is a curve connecting } P \text { and } Q\} \\
& =\log \frac{q}{p}=\log [0, i p, i q, \infty]
\end{aligned}
$$

Note that $z(t)=i e^{t}$ is the geodesic with unit speed. $\left(\left\|z^{\prime}(t)\right\|:=\frac{z^{\prime}(t)}{\operatorname{Im} z}=\frac{e^{t}}{e^{t}}=1\right)$ Since Möbius transformations map circles to circles and preserve angles, any geodesic in $\mathbb{H}^{2}$ is a half circle perpendicular to the real axis.

On D , the distance $s$ between 0 and $x \in \mathbb{R}$ is given by

$$
s=\int_{0}^{x} d s=\int_{0}^{x} \frac{2|d z|}{1-|z|^{2}}=\int_{0}^{x} \frac{2 d x}{1-x^{2}}=\log \frac{1+x}{1-x}=\log [-1,0, x, 1]
$$

and $x=\frac{e^{t}-1}{e^{t}+1}=\tanh \frac{t}{2}$ is the unit speed geodesic. Again, any geodesic is a circle perpendicular to the boundary of D .

## Formula for distance

If we want to calculate the distance between arbitrary points $z$ and $w$, first map them to the imaginary axis, say $i$ and $y i$, by a Möbius transformation $g$. Then

$$
d(z, w)=d(i, y i)=\log y=\log [0, i, y i, \infty]=\log \left[z^{\prime}, z, w, w^{\prime}\right]
$$

where $z^{\prime}=g^{-1}(0)$ and $w^{\prime}=g^{-1}(\infty)$ are intersection points of the real axis and the half circle connecting $z$ and $w$. In general, however, calculating $z^{\prime}$ and $w^{\prime}$ is cumbersome and we suggest to proceed as follows.
. FIG. 5 .

$$
\begin{align*}
-\frac{|z-w|^{2}}{4 \operatorname{Im} z \operatorname{Im} w} & =[z, \bar{z}, w, \bar{w}]=[i,-i, y i,-y i]=[1,-1, y,-y] \\
& =-\frac{(y-1)^{2}}{4 y}=-\frac{1}{4}\left(y+\frac{1}{y}-2\right)=-\frac{1}{2}\left(\frac{e^{d}+e^{-d}}{2}-1\right) \\
& =-\frac{\cosh d-1}{2}=-\sinh ^{2} \frac{d}{2} \tag{2.5.1}
\end{align*}
$$

Thus $\cosh d(z, w)=1+\frac{|z-w|^{2}}{2 \operatorname{Im} z \operatorname{Im} w}$.

On the disk model, for $z, w \in D, \mathrm{~d}=\mathrm{d}(\mathrm{z}, \mathrm{w})$ is given from (??) as follows.

$$
\begin{equation*}
\sinh ^{2} \frac{d}{2}=-\left[z, z^{*}, w, w^{*}\right]=\frac{|z-w|^{2}}{\left(1-|z|^{2}\right)\left(1-|w|^{2}\right)} \tag{2.5.2}
\end{equation*}
$$

Here $z^{*}$ is the reflection point of $z$ with respect to the unit circle, i.e., $z^{*}=z /|z|^{2}$.

We will a "complete geodesic" (i.e., defined for $-\infty<t<\infty$ ) a line and we can easily check the following properties.

1. For a point $p$ and a tangent vector $v$ at $p$, there is a unique line $l$ with initial data $(p, v)$.
2. For given two lines $l$ and $l^{\prime}$, there is a Möbius transformation $g$ sending $l$
to $l^{\prime}$. In fact, for any $(p, v)$ and $\left(p^{\prime}, v^{\prime}\right)$ with $v$ and $v^{\prime}$ unit vectors, there is a unique Möbius transformation $g$ sending $(p, v)$ to ( $p^{\prime}, v^{\prime}$ ).
3. For two non intersecting lines $l$ and $l^{\prime}$, there exists a unique common perpendicular.
4. Compare with Euclidean 5th postulate: There are infinitely many parallel lines to a given line.

## Distance and Angle between Lines

. FIG. 6 .

$$
\begin{align*}
{\left[z_{1}, z_{2}, w_{1}, w_{2}\right] } & =[-1,1, a,-a]=\frac{(1+a)^{2}}{4 a}=\frac{1}{4}\left(a+\frac{1}{a}+2\right) \\
& =\frac{1}{2}\left(\frac{e^{d}+e^{-d}}{2}+1\right)=\frac{1}{2}(\cosh d+1)=\cosh ^{2} \frac{d}{2} \tag{2.5.3}
\end{align*}
$$

FIG. 7 .

$$
\begin{align*}
{\left[z_{1}, z_{2}, w_{1}, w_{2}\right] } & =\left[-1,1, e^{i \theta},-e^{i \theta}\right]=\frac{\left(1+e^{i \theta}\right)^{2}}{4 e^{i \theta}}=\frac{1}{2}\left(\frac{e^{i \theta}+e^{-i \theta}}{2}+1\right) \\
& =\frac{1}{2}(\cos \theta+1)=\cos ^{2} \frac{\theta}{2} \tag{2.5.4}
\end{align*}
$$

Exercise. .
FIG. 8 .
Calculate the distance between $w$ and the line connecting $z_{1}$ and $z_{2}$. (Hint: Consider $w^{*}$ and show $\left[z_{1}, z_{2}, w_{1}, w_{2}\right]=\frac{i}{2} \sinh d+\frac{1}{2}$.)

## Circumference and Area of a Ball

FIG. 9

Let $C$ be a circle centered at the origin of hyperbolic radius $\rho$. Since the metric is rotationally symmetric, $C$ looks like an ordinary circle. Let $r$ be the Euclidean radius of $C$. Then $\sinh ^{2} \frac{\rho}{2}=\frac{r^{2}}{1-r^{2}}, \cosh ^{2} \frac{\rho}{2}=\frac{1}{1-r^{2}}$, and
$\sinh \rho=2 \sinh \frac{\rho}{2} \cosh \frac{\rho}{2}=\frac{2 r}{1-r^{2}}$. Consequently, the circumference of $C$ is given by

$$
\begin{equation*}
\int_{C} d s=\int_{C} \frac{2|d z|}{1-r^{2}}=\int_{0}^{2 \pi} \frac{2 r d \theta}{1-r^{2}}=\frac{4 \pi r}{1-r^{2}}=2 \pi \sinh \rho \tag{2.5.5}
\end{equation*}
$$

For the area of $B(0 ; \rho)$, note that the volume form on D is given by $d v o l=$ $\left(\left(\frac{2}{1-|z|^{2}}\right)^{2}\right) d x \wedge d y$. Thus

$$
\begin{align*}
\operatorname{vol}(B(0 ; \rho) & =\int_{B(0 ; \rho)}\left(\frac{2}{1-|z|^{2}}\right)^{2} d x \wedge d y=\int_{0}^{2 \pi} \int_{0}^{r} \frac{4 r d r d \theta}{\left(1-r^{2}\right)^{2}} \\
& =\int_{0}^{2 \pi}\left[\frac{2}{1-r^{2}}\right]_{0}^{r} d \theta=\frac{4 \pi r^{2}}{1-r^{2}}=\pi\left(2 \sinh \frac{\rho}{2}\right)^{2} \tag{2.5.6}
\end{align*}
$$

Here, $2 \sinh \frac{\rho}{2}$ is the "horospherical distance".

## Determination of a Triangle

FIG. 10

Proposition 2.5.1. For a triangle in D with (hyperbolic) side lengths $a, b, c$ and the opposite (hyperbolic) angles $A, B, C$ (see FIG.10), the follwing rules hold.

$$
\begin{equation*}
\text { The Sine Rule: } \frac{\sin A}{\sinh a}=\frac{\sin B}{\sinh b}=\frac{\sin C}{\sinh c} \tag{2.5.7}
\end{equation*}
$$

The Cosine Rule I: $\cosh c=\cosh a \cosh b-\sinh a \sinh b \cos C$

$$
\begin{equation*}
\text { or } \cos C=\frac{\cosh a \cosh b-\cosh c}{\sinh a \sinh b} \tag{2.5.8}
\end{equation*}
$$

The Cosine Rule II: $\cos C=-\cos A \cos B+\sin A \sin B \cosh c$

$$
\begin{equation*}
\text { or } \cosh c=\frac{\cos A \cos B+\cos C}{\sin A \sin B} \tag{2.5.9}
\end{equation*}
$$

Note that a triangle is completely determined by its three angles unlike in the Euclidean case.

Proof. .
FIG. 11

Once we prove the Cosine Rule I, the rest follows easily. First, move the vertex $C$ to the origin $O$ and let $\hat{a}, \hat{b}, \hat{c}$ be the Euclidean lengths of $\overline{O B}, \overline{O A}, \overline{A B}$ respectively. By 2.5.2 and the cosine rule in the Euclidean plane (which is valid since $\overline{O A}$ and $\overline{O B}$ are straight lines),

$$
\begin{aligned}
\cosh c & =2 \sinh ^{2} \frac{c}{2}+1=\frac{2 \hat{c}^{2}}{\left(1-\hat{a}^{2}\right)\left(1-\hat{b}^{2}\right)}+1=\frac{2\left(\hat{a}^{2}+\hat{b}^{2}-2 \hat{a} \hat{b} \cos C\right)}{\left(1-\hat{a}^{2}\right)\left(1-\hat{b}^{2}\right)}+1 \\
& =\frac{\left(1+\hat{a}^{2}\right)\left(1+\hat{b}^{2}\right)-4 \hat{a} \hat{b} \cos C}{\left(1-\hat{a}^{2}\right)\left(1-\hat{b}^{2}\right)}=\cosh a \cosh b-\sinh a \sinh b \cos C
\end{aligned}
$$

Exercise. Derive the sine rule and the cosine rule II from the cosine rule I. Notice that the square of each of the terms appeared in the Sine Rule has a common expression symmetric with respect to $a, b, c$.

Exercise. .
FIG. 12

Derive the following analogous results in the spherical case.

$$
\text { The sine Rule: } \frac{\sin A}{\sin a}=\frac{\sin B}{\sin b}=\frac{\sin C}{\sin c}
$$

The Cosine Rule I: $\cos C=-\frac{\cos a \cos b-\cos c}{\sin a \sin b}$
The Cosine Rule II: $\cos c=\frac{\cos A \cos B+\cos C}{\sin A \sin B}$
Remark Note that if we replace $a, b, c$ by $i a, i b, i c$ in the above formulae, then we have the hyperbolic sine and cosine Rule.
Special Case for a right triangle: If $C=\frac{\pi}{2}$, then by the hyperbolic cosine rule I, we obtain Pythagoras' theorem as follows.

$$
\cosh c=\cosh a \cosh b
$$

From this it is easy to see that for a fixed point and a line the distance function from the point to a point on a line is a convex function with its minimum attained for a perpendicular drop. Also, by the cosine rule II and the sine rule,
we have

$$
\begin{array}{r}
\cosh c=\cot A \cot B \\
\cosh a=\frac{\cos A}{\sin B} \\
\sin A=\frac{\sinh a}{\sinh c} .
\end{array}
$$

It follows from these that $\cos B=\frac{\tanh a}{\tanh c}$.

## Gauss-Bonnet Theorem

Theorem 2.5.1. The hyperbolic area of a tringle with internal angles $\alpha, \beta, \gamma$ is $\pi-\alpha-\beta-\gamma$.

Proof. We may assume that one vertex is at $\infty$ since the general case easily follows from the following observation as in the picture.

FIG. 13

$$
\pi-(\alpha+\gamma+\delta)-(\pi-(\delta+\pi-\beta))=\pi-(\alpha+\beta+\gamma)
$$

FIG. 14

It suffices to show that the area of $\Delta$ is $\pi-\alpha-\beta$. On $\mathbb{H}^{2}$, the volume form is given by $d v o l=\frac{d x \wedge d y}{y^{2}}$. Hence

$$
\begin{aligned}
\int_{\Delta} \frac{d x \wedge d y}{y^{2}} & =\int_{\cos (\pi-\alpha)}^{\cos \beta} \int_{\sqrt{1-x^{2}}}^{\infty} \frac{1}{y^{2}} d y d x=\int_{\cos (\pi-\alpha)}^{\cos \beta} \frac{1}{\sqrt{1-x^{2}}} d x \\
& =-\left.\arccos x\right|_{\cos (\pi-\alpha)} ^{\cos \beta}=\pi-\alpha-\beta
\end{aligned}
$$

Or applying Stokes' theorem,

$$
\begin{aligned}
\int_{\Delta} \frac{d x \wedge d y}{y^{2}} & =\int_{\Delta} d\left(\frac{d x}{y}\right)=\int_{\partial \Delta} \frac{d x}{y} \quad[x=\cos \theta, y=\sin \theta] \\
& =-\int_{\beta}^{\pi-\alpha} \frac{-\sin \theta}{\sin \theta} d \theta=\pi-\alpha-\beta
\end{aligned}
$$

Corollary 2.5.1. The area of n-gon with angles $\alpha_{1}, \ldots \alpha_{n}$ is given by $(n-2) \pi-$ $\left(\alpha_{1}+\cdots \alpha_{n}\right)$.

Proposition 2.5.2. Let $\left(\theta_{1}, \cdots, \theta_{n}\right)$ be an ordered $n$-tuple with $0 \leq \theta_{j}<\pi$.
Then $\exists$ a convex polygon $P$ with interior angles $\left(\theta_{1}, \cdots, \theta_{n}\right)$ in its order $\Longleftrightarrow$ $(n-2) \pi-\sum \theta_{j}>0$.

Proof. $\Rightarrow$ ): Follows from Cor 2.5.1
$\Leftarrow)$ : Given $\theta$, consider the following right triangle.

FIG. 15
Then, $\sin \alpha=\frac{\cos \left(\frac{\theta}{2}\right)}{\cosh d}$ and $\alpha=\arcsin \left(\frac{\cos \left(\frac{\theta}{2}\right)}{\cosh d}\right)$
Consider

$$
g(t):=\sum_{i=1}^{n} \arcsin \left(\frac{\cos \left(\frac{\theta_{i}}{2}\right)}{\cosh t}\right)
$$

We want to find $d$ such that $g(d)=\pi$.
$g(0)=\sum \arcsin \left(\cos \frac{\theta_{i}}{2}\right)=\sum\left(\frac{\pi}{2}-\frac{\theta_{i}}{2}\right)=\frac{1}{2}\left(n \pi-\sum \theta_{i}\right)>\pi$. Also, as $t \rightarrow \infty$, $g(t) \rightarrow 0$.
$\therefore \exists d>0$ s.t $g(d)=\pi$
For such $d$ we have a desired polygon $P$.
Note. Therefore $\exists P$ with $\theta_{1}=\cdots=\theta_{n}=\frac{\pi}{2}$ iff $n \geq 5$

