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Geodesic

.

FIG.4

.

Let γ be a C1 curve parametrized by z(t) = x(t) + iy(t) connecting two points

on the imaginary axis, namely P = ip and Q = iq. Then

l(γ) =

∫ b

a

ds =

∫ b

a

|z′(t)|
Imz

dt =

∫ b

a

√
x′(t)2 + y′(t)2

y(t)
dt

≥
∫ b

a

y′(t)

y(t)
dt = log

q

p

Here, the equality holds if and only if x′(t) = 0 and y′(t) ≥ 0. Therefore,

d(P,Q) = inf{ l(γ) | γ is a curve connecting P and Q }

= log
q

p
= log[0, ip, iq,∞]

Note that z(t) = iet is the geodesic with unit speed. (∥z′(t)∥ :=
z′(t)

Imz
=

et

et
= 1)

Since Möbius transformations map circles to circles and preserve angles, any

geodesic in H2 is a half circle perpendicular to the real axis.

On D, the distance s between 0 and x ∈ R is given by

s =

∫ x

0

ds =

∫ x

0

2|dz|
1− |z|2

=

∫ x

0

2dx

1− x2
= log

1 + x

1− x
= log[−1, 0, x, 1]
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and x =
et − 1

et + 1
= tanh

t

2
is the unit speed geodesic. Again, any geodesic is a

circle perpendicular to the boundary of D.

Formula for distance

If we want to calculate the distance between arbitrary points z and w, first

map them to the imaginary axis, say i and yi, by a Möbius transformation g.

Then

d(z, w) = d(i, yi) = log y = log[0, i, yi,∞] = log[z′, z, w,w′]

where z′ = g−1(0) and w′ = g−1(∞) are intersection points of the real axis

and the half circle connecting z and w. In general, however, calculating z′ and

w′ is cumbersome and we suggest to proceed as follows.

.

. FIG.5 .

− |z − w|2

4ImzImw
= [z, z̄, w, w̄] = [i,−i, yi,−yi] = [1,−1, y,−y]

= − (y − 1)2

4y
= −1

4

(
y +

1

y
− 2

)
= −1

2

(
ed + e−d

2
− 1

)
= −cosh d− 1

2
= − sinh2

d

2
(2.5.1)

Thus cosh d(z, w) = 1 +
|z − w|2

2ImzImw
.

On the disk model, for z, w ∈ D, d = d(z,w) is given from (??) as follows.

sinh2
d

2
= −[z, z∗, w, w∗] =

|z − w|2

(1− |z|2)(1− |w|2)
(2.5.2)

Here z∗ is the reflection point of z with respect to the unit circle, i.e.,

z∗ = z/|z|2.

We will a ”complete geodesic” (i.e., defined for −∞ < t < ∞) a line and

we can easily check the following properties.

1. For a point p and a tangent vector v at p, there is a unique line l with initial

data (p, v).

2. For given two lines l and l′, there is a Möbius transformation g sending l
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to l′. In fact, for any (p, v) and (p′, v′) with v and v′ unit vectors, there is a

unique Möbius transformation g sending (p, v) to (p′, v′).

3. For two non intersecting lines l and l′, there exists a unique common per-

pendicular.

4. Compare with Euclidean 5th postulate: There are infinitely many parallel

lines to a given line.

Distance and Angle between Lines

.

. FIG.6 .

[z1, z2, w1, w2] = [−1, 1, a,−a] =
(1 + a)2

4a
=

1

4

(
a+

1

a
+ 2

)
=

1

2

(
ed + e−d

2
+ 1

)
=

1

2
(cosh d+ 1) = cosh2

d

2
(2.5.3)

.

FIG.7 .

[z1, z2, w1, w2] = [−1, 1, eiθ,−eiθ] =
(1 + eiθ)2

4eiθ
=

1

2

(
eiθ + e−iθ

2
+ 1

)
=

1

2
(cos θ + 1) = cos2

θ

2
(2.5.4)

Exercise. .

FIG.8 .

Calculate the distance between w and the line connecting z1 and z2. (Hint:

Consider w∗ and show [z1, z2, w1, w2] =
i
2 sinh d+

1
2 .)

Circumference and Area of a Ball

.

FIG.9

.

Let C be a circle centered at the origin of hyperbolic radius ρ. Since the

metric is rotationally symmetric, C looks like an ordinary circle. Let r be

the Euclidean radius of C. Then sinh2
ρ

2
=

r2

1− r2
, cosh2

ρ

2
=

1

1− r2
, and
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sinh ρ = 2 sinh
ρ

2
cosh

ρ

2
=

2r

1− r2
. Consequently, the circumference of C is

given by∫
C

ds =

∫
C

2|dz|
1− r2

=

∫ 2π

0

2rdθ

1− r2
=

4πr

1− r2
= 2π sinh ρ (2.5.5)

For the area of B(0; ρ), note that the volume form on D is given by dvol =(
(

2

1− |z|2
)2
)
dx ∧ dy. Thus

vol(B(0; ρ) =

∫
B(0;ρ)

(
2

1− |z|2

)2

dx ∧ dy =

∫ 2π

0

∫ r

0

4rdrdθ

(1− r2)2

=

∫ 2π

0

[
2

1− r2

]r
0

dθ =
4πr2

1− r2
= π

(
2 sinh

ρ

2

)2
(2.5.6)

Here, 2 sinh
ρ

2
is the ”horospherical distance”.

Determination of a Triangle

.

FIG.10

.

Proposition 2.5.1. For a triangle in D with (hyperbolic) side lengths a, b, c

and the opposite (hyperbolic) angles A,B,C (see FIG.10), the follwing rules

hold.

The Sine Rule:
sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
(2.5.7)

The Cosine Rule I: cosh c = cosh a cosh b− sinh a sinh b cosC

or cosC =
cosh a cosh b− cosh c

sinh a sinh b
(2.5.8)

The Cosine Rule II: cosC = − cosA cosB + sinA sinB cosh c

or cosh c =
cosA cosB + cosC

sinA sinB
(2.5.9)

Note that a triangle is completely determined by its three angles unlike in the

Euclidean case.

Proof. .

FIG.11

.
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Once we prove the Cosine Rule I, the rest follows easily. First, move the

vertex C to the origin O and let â, b̂, ĉ be the Euclidean lengths of OB,OA,AB

respectively. By (2.5.2) and the cosine rule in the Euclidean plane (which is

valid since OA and OB are straight lines),

cosh c = 2 sinh2
c

2
+ 1 =

2ĉ2

(1− â2)(1− b̂2)
+ 1 =

2(â2 + b̂2 − 2âb̂ cosC)

(1− â2)(1− b̂2)
+ 1

=
(1 + â2)(1 + b̂2)− 4âb̂ cosC

(1− â2)(1− b̂2)
= cosh a cosh b− sinh a sinh b cosC

Exercise. Derive the sine rule and the cosine rule II from the cosine rule I.

Notice that the square of each of the terms appeared in the Sine Rule has a

common expression symmetric with respect to a, b, c.

Exercise. .

FIG.12

.

Derive the following analogous results in the spherical case.

The Sine Rule:
sinA

sin a
=

sinB

sin b
=

sinC

sin c

The Cosine Rule I: cosC = −cos a cos b− cos c

sin a sin b

The Cosine Rule II: cos c =
cosA cosB + cosC

sinA sinB

Remark Note that if we replace a, b, c by ia, ib, ic in the above formulae,

then we have the hyperbolic sine and cosine Rule.

Special Case for a right triangle: If C =
π

2
, then by the hyperbolic cosine rule

I, we obtain Pythagoras’ theorem as follows.

cosh c = cosh a cosh b.

From this it is easy to see that for a fixed point and a line the distance function

from the point to a point on a line is a convex function with its minimum

attained for a perpendicular drop. Also, by the cosine rule II and the sine rule,
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we have

cosh c = cotA cotB

cosh a =
cosA

sinB

sinA =
sinh a

sinh c
.

It follows from these that cosB =
tanh a

tanh c
.

Gauss-Bonnet Theorem

Theorem 2.5.1. The hyperbolic area of a tringle with internal angles α, β, γ

is π − α− β − γ.

Proof. We may assume that one vertex is at ∞ since the general case easily

follows from the following observation as in the picture.

.

FIG.13

.

π − (α+ γ + δ)− (π − (δ + π − β)) = π − (α+ β + γ)

.

FIG.14

.

It suffices to show that the area of ∆ is π−α−β. On H2, the volume form

is given by dvol =
dx ∧ dy

y2
. Hence

∫
∆

dx ∧ dy

y2
=

∫ cos β

cos(π−α)

∫ ∞

√
1−x2

1

y2
dydx =

∫ cos β

cos(π−α)

1√
1− x2

dx

= − arccosx

∣∣∣∣cos β
cos(π−α)

= π − α− β

Or applying Stokes’ theorem,∫
∆

dx ∧ dy

y2
=

∫
∆

d

(
dx

y

)
=

∫
∂∆

dx

y
[x = cos θ, y = sin θ]

= −
∫ π−α

β

− sin θ

sin θ
dθ = π − α− β
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Corollary 2.5.1. The area of n-gon with angles α1, ...αn is given by (n−2)π−
(α1 + · · ·αn).

Proposition 2.5.2. Let (θ1, · · · , θn) be an ordered n-tuple with 0 ≤ θj < π.

Then ∃ a convex polygon P with interior angles (θ1, · · · , θn) in its order ⇐⇒
(n− 2)π −

∑
θj > 0.

Proof. ⇒): Follows from Cor 2.5.1

⇐): Given θ, consider the following right triangle.

.

FIG.15

.

Then, sinα =
cos
(
θ
2

)
cosh d

and α = arcsin

(
cos
(
θ
2

)
cosh d

)

Consider

g(t) :=

n∑
i=1

arcsin

(
cos
(
θi
2

)
cosh t

)

We want to find d such that g(d) = π.

g(0) =
∑

arcsin(cos θi
2 ) =

∑
(π2 − θi

2 ) =
1
2 (nπ −

∑
θi) > π. Also, as t → ∞,

g(t) → 0.

∴ ∃d > 0 s.t g(d) = π

For such d we have a desired polygon P .

Note. Therefore ∃P with θ1 = · · · = θn = π
2 iff n ≥ 5
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