1 A brief introduction to Volume conjecture

2 Linear Fractional Transformation and 2-dimensional hyperbolic geometry

3 Inversive geometry and hyperbolic geometry

3.1 Inversion(or reflection) and Möbius transformation

3.2 Möbius transformations as conformal maps

3.3 Möbius transformation as a cross-ratio preserving maps

3.4 Möbius transformation as a sphere preserving map

3.5 Poincare extension

Definition 3.5.1. Define $i: M\left(\widehat{\mathbb{R}^{n}}\right) \rightarrow M\left(\widehat{\mathbb{R}^{n+1}}\right)$ by $\sigma=J_{S} \mapsto \tilde{\sigma}=J_{\tilde{S}}$ and $i: \phi=\sigma_{1} \circ \cdots \circ \sigma_{k} \mapsto \tilde{\phi}=\tilde{\sigma_{1}} \circ \cdots \circ \tilde{\sigma_{k}}$, where \tilde{S} is the sphere in \mathbb{R}^{n+1} for which $\tilde{S} \cap \widehat{\mathbb{R}^{n}}=S$.

Check if i is uniquely well-defined and 1-1:
Suppose $\tilde{\phi}_{1}, \tilde{\phi}_{2}$ are two extensions of $\phi \in M\left(\widehat{\mathbb{R}^{n}}\right) \Longrightarrow \tilde{\phi}_{1} \circ \tilde{\phi}_{2}^{-1}=i d$ on \mathbb{R}^{n} and preserves $\mathbb{H}^{n+1} \Longrightarrow \tilde{\phi}_{1} \circ \tilde{\phi}_{2}^{-1}=i d$ by Proposition 3.5.2.

Theorem 3.5.1.

i) $\phi \in M\left(\mathbb{H}^{n+1}\right):=\left.\left\{\phi \in M\left(\widehat{\mathbb{R}^{n}}\right) \mid \phi\right.$ is an automorphism on $\left.\mathbb{H}^{n+1}\right\} \Longrightarrow \phi\right|_{\widehat{\mathbb{R}^{n}}} \in$ $M\left(\widehat{\mathbb{R}^{n}}\right)$
ii) $i\left(M\left(\widehat{\mathbb{R}^{n}}\right)\right)=M\left(\mathbb{H}^{n+1}\right)$
iii) $\phi \in M\left(\mathbb{H}^{n+1}\right) \Leftrightarrow \phi=J_{S_{1}} \circ \cdots \circ J_{S_{k}}, S_{i} \perp \widehat{\mathbb{R}^{n}}$

Proof.
i) $\phi \in M\left(\mathbb{H}^{n+1}\right) \Longrightarrow \phi\left|: \widehat{\mathbb{R}^{n}}=\partial \mathbb{H}^{n+1} \circlearrowleft \cdot \phi\right|$ preserves cross-ratio since ϕ does. $\Longrightarrow \phi \mid \in M\left(\widehat{\mathbb{R}^{n}}\right)$
ii) (\subset) : clear. $(\supset): \forall \phi \in M\left(\mathbb{H}^{n+1}\right)$, consider $\phi \mid$. Then $\tilde{\phi} \mid \circ \phi^{-1}=i d$ on $\widehat{\mathbb{R}^{n}}$ and $\mathbb{H}^{n+1} \circlearrowleft \Longrightarrow \tilde{\phi}\left|\circ \phi^{-1}=i d \Longrightarrow \phi=\tilde{\phi}\right|=i(\phi \mid)$.
iii) (\Longleftarrow) : clear. (\Longrightarrow) : clear from ii).

Note that $\forall \phi \in M\left(\mathbb{H}^{n+1}\right), \phi \mid \in M\left(\widehat{\mathbb{R}^{n}}\right)$ as in the proof of i) and $\phi=\tilde{\phi} \mid$ by the proof of ii). Therefore if $\phi \in M\left(\widehat{\mathbb{R}^{n}}\right)$ is a similarity, then $\tilde{\phi}$ is the unique similarity on \mathbb{H}^{n+1} whose restriction is ϕ.

Now consider the ball model. Recall $\eta=J_{\widehat{\mathbb{R}^{n}}} \circ J_{S\left(e_{n+1}, \sqrt{2}\right)}: \mathbb{B}^{n+1} \rightarrow \mathbb{H}^{n+1}$, $S^{n}=\partial \mathbb{B}^{n+1} \rightarrow \partial \mathbb{H}^{n+1}=\widehat{\mathbb{R}^{n}}$. Then

$$
M\left(\mathbb{B}^{n+1}\right)=\eta^{-1} \circ M\left(\mathbb{H}^{n+1}\right) \circ \eta
$$

Proposition 3.5.1. Let $\phi \in M\left(\mathbb{B}^{n+1}\right)$. Then the followings are equivalent.
i) $\phi(\infty)=\infty$
ii) $\phi(0)=0$
iii) $\phi \in O(n+1)$

Proof. i) \Longleftrightarrow ii) since ϕ preserves the inversion $J_{S(0,1)}$. If i) holds, then ii) also holds and ϕ is a similarity: $x \mapsto \lambda A x$, where $A \in O(n)$. Now $\phi: \mathbb{B}^{n+1} \circlearrowleft \Longrightarrow$ $|\lambda|=1$ and hence iii) follows. Now iii \Longrightarrow ii) is clear.

3.6 Hyperbolic metric

3.6.1 \mathbb{B}^{n} case

Let $\phi \in \mathcal{M}\left(\mathbb{B}^{n}\right)$ and $x^{*}=\sigma_{1}(x)=\frac{x}{|x|^{2}}$. Note that

$$
\left|x^{*}-u^{*}\right|^{2}=\sum_{i=1}^{n}\left(\frac{x_{i}}{|x|^{2}}-\frac{u_{i}}{|u|^{2}}\right)=\sum_{i=1}^{n} \frac{|x|^{2}-2 x_{i} u_{i}+\left|u^{2}\right|}{|x|^{2}\left|u^{2}\right|}=\left(\frac{|x-u|}{|x||u|}\right)^{2}
$$

This yields

$$
\left[x, x^{*}, u, u^{*}\right]=\frac{|x-u|\left|x^{*}-u^{*}\right|}{\left|x-\frac{x}{|x|^{2}}\right|\left|u-\frac{u}{|u|^{2}}\right|}=\frac{|x-u|^{2}}{\left(1-|x|^{2}\right)\left(1-|u|^{2}\right)}
$$

Put $u=x+d x, y=\phi x$ and since the Möbius transformation ϕ preserves cross ratio, we conclude

$$
\frac{2|d y|}{1-|y|^{2}}=\frac{2|d x|}{1-|x|^{2}}
$$

In other words, the Poincare matric is invariant under Möbius transformations.

3.6.2 \mathbb{H}^{n+1} case

The inversive point is given as $x^{*}=\left(x_{1}, \cdots, x_{n-1},-x_{n}\right)$ for any $x \in \mathbb{H}^{n+1}$. Then

$$
\left[x, x^{*}, u, u^{*}\right]=\frac{|x-u|\left|x^{*}-u^{*}\right|}{\left|x-x^{*}\right|\left|u-u^{*}\right|}=\frac{|x-u|^{2}}{4 x_{n+1} u_{n+1}}
$$

and by letting $u=x+d x$, we see that

$$
\frac{|d x|^{2}}{4 x_{n+1}^{2}}
$$

is an invariant metric and $\frac{|d x|}{x_{n+1}}$ is called the Poincare metric.

3.6.3 Canonical embedding

Fig3.1
Proposition 3.6.1. $M\left(\mathbb{H}^{n+1}\right)=\operatorname{Isom}\left(\mathbb{H}^{n+1}\right)$
Proof.
(\subset) : clear.
(\supset) : It suffices to show that $M\left(\mathbb{B}^{n+1}\right)=\operatorname{Isom}\left(\mathbb{B}^{n+1}\right) . M\left(\mathbb{B}^{n+1}\right) \subset \operatorname{Isom}\left(\mathbb{B}^{n+1}\right)$ and is already "full", i.e., transitive and isotropy group $=O(n+1)$. Indeed $g \in \operatorname{Isom}(M), M$ connected Riemannian, such that $g(x)=x$ and $d g(x)=i d$, then $g=i d$: Note $g=i d$ on a neighborhood of x (since it fixes radial geodesics), and

$$
\begin{aligned}
A & =\{x \in M \mid g(x)=x \text { and } d g(x)=i d\} \\
& \Rightarrow A \text { is open and closed } \\
& \Rightarrow A=M
\end{aligned}
$$

3.7 Isometry types

3.7.1 \mathbb{B}^{n+1} case

$\phi \in M\left(\mathbb{B}^{n+1}\right) \Longrightarrow \phi: \overline{\mathbb{B}^{n+1}} \circlearrowleft \Longrightarrow \phi$ has a fixed point in $\overline{\mathbb{B}^{n+1}}$ by Brouwer fixed point theorem.

Claim. ϕ has more than two fixed points on $S^{n}=\partial \mathbb{B}^{n+1} \Longrightarrow \phi$ has a fixed point in \mathbb{B}^{n+1}.

Proof. Work on \mathbb{H}^{n+1} and suppose $\#|F i x| \geq 3$ on $\widehat{\mathbb{R}^{n}}=\partial \mathbb{H}^{n+1}$. We may assume $\phi(\infty)=\infty, \phi(0)=0, \phi\left(e_{1}\right)=e_{1}$.

$$
\Longrightarrow \phi(x)=A x, A \in O(n+1)
$$

$\Longrightarrow \phi(x)$ fixes x_{n+1} axis since it is perpendicular to \mathbb{R}^{n}, i.e., fixes points in \mathbb{H}^{n+1}

Therefore we have the following trichotomy for a conjugacy class of ϕ :
(1) ϕ fixes a point in \mathbb{B}^{n+1} : elliptic
(2) ϕ fixes exactly one point on $\partial \mathbb{B}^{n+1}=S^{n}$: parabolic
(3) ϕ fixes exactly two points on $\partial \mathbb{B}^{n+1}=S^{n}$: loxodormic or hyperbolic

3.7.2 \mathbb{H}^{2} and \mathbb{H}^{3} case

$$
g(z)=\frac{a z+b}{c z+d}, \quad A:=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Fixed point : $z=g(z) \Longrightarrow c z^{2}+(d-a) z-b=0 \Longrightarrow D=(d-a)^{2}+4 b c=$ $(a+d)^{2}-4(a d-b c)=\operatorname{tr}^{2}(A)-4 \operatorname{det}(A)$. Then we define

$$
\operatorname{tr}(g):=\frac{(\operatorname{tr} A)^{2}}{\operatorname{det}(A)}
$$

which is an invariant of a projective transformation. Note that we have the following trichotomy for $G=P S L_{2}(\mathbb{R})$
(1) g is elliptic $\Longleftrightarrow D<0 \Longleftrightarrow \operatorname{tr}^{2}<4$
(2) g is parabolic $\Longleftrightarrow D=0 \Longleftrightarrow \operatorname{tr}^{2}=4$
(3) g is hyperbolic $\Longleftrightarrow D>0 \Longleftrightarrow \operatorname{tr}^{2}>4$

Proposition 3.7.1. Let $G=P S L_{2}(\mathbb{C})$ or $P S L_{2}(\mathbb{R})$. Then $\forall f, g \in G$ we have $f \sim g(i . e ., f$ is conjugate to $g) \Longleftrightarrow \operatorname{tr}^{2}(f)=\operatorname{tr}^{2}(g)$
Proof.
$\Longrightarrow)$: Clear.
$\Longleftarrow):$
(1) $\operatorname{tr}^{2}(g)=4 \Longrightarrow$ there exists a unique fixed point, say ∞.
$\Longrightarrow g(z)=a z+b$ and $a=1(\exists$ another fixed point otherwise)
$\Longrightarrow g \sim f: z \mapsto z+1\left(\because f=h^{-1} \circ g \circ h\right.$ with $\left.h(z)=b z\right)$
(2) $\operatorname{tr}^{2}(g) \neq 4 \Longrightarrow$ there are two fixed points, say $0, \infty$
$\Longrightarrow g \sim f(z)=a z(a \neq 1 a \neq 0) \Longrightarrow \operatorname{tr}^{2}=a+\frac{1}{a}+2$
(i) $|a|=1 \Longrightarrow g$ is elliptic
(ii) $|a| \neq 1 \Longrightarrow g$ is loxodromic (hyperbolic if a is real)

Notice that, tr^{2} determines $a, \frac{1}{a}$ and $g(z)=a z \sim f(z)=\frac{1}{a} z$ via $h(z)=-1 / z$, and this proves the proposition.

In the above proof, we notice

$$
(2) i) \Longrightarrow \operatorname{tr}^{2} g=a+\frac{1}{a}+2=a+\bar{a}+2=2 \cos \theta+2 \in[0,4) .
$$

Conversely, if $\operatorname{tr}^{2} g \in[0,4)$, then by the above dichotomy $g \sim f(z)=a z$ with $a=e^{i \theta}$, i.e., elliptic. Hence we have the following map,

$$
\operatorname{tr}^{2}:(G \backslash\{i d\}) / \sim \longrightarrow \mathbb{C}
$$

such that $\operatorname{tr}^{2}($ elliptic $)=[0,4), \operatorname{tr}^{2}($ parabolic $)=4$, and loxodromic otherwise.

