- 1 A brief introduction to Volume conjecture
- 2 Linear Fractional Transformation and 2-dimensional hyperbolic geometry

3 Inversive geometry and hyperbolic geometry

- 3.1 Inversion(or reflection) and Möbius transformation
- 3.2 Möbius transformations as conformal maps
- 3.3 Möbius transformation as a cross-ratio preserving maps
- 3.4 Möbius transformation as a sphere preserving map

3.5 Poincare extension

Definition 3.5.1. Define $i: M(\widehat{\mathbb{R}^n}) \to M(\widehat{\mathbb{R}^{n+1}})$ by $\sigma = J_S \mapsto \tilde{\sigma} = J_{\tilde{S}}$ and $i: \phi = \sigma_1 \circ \cdots \circ \sigma_k \mapsto \tilde{\phi} = \tilde{\sigma_1} \circ \cdots \circ \tilde{\sigma_k}$, where \tilde{S} is the sphere in \mathbb{R}^{n+1} for which $\tilde{S} \cap \widehat{\mathbb{R}^n} = S$.

Check if i is uniquely well-defined and 1-1 :

Suppose $\tilde{\phi}_1, \tilde{\phi}_2$ are two extensions of $\phi \in M(\widehat{\mathbb{R}^n}) \Longrightarrow \tilde{\phi}_1 \circ \tilde{\phi}_2^{-1} = id$ on \mathbb{R}^n and preserves $\mathbb{H}^{n+1} \Longrightarrow \tilde{\phi}_1 \circ \tilde{\phi}_2^{-1} = id$ by Proposition 3.5.2.

Theorem 3.5.1.

i) $\phi \in M(\mathbb{H}^{n+1}) := \{ \phi \in M(\widehat{\mathbb{R}^n}) \, | \, \phi \text{ is an automorphism on } \mathbb{H}^{n+1} \} \Longrightarrow \phi |_{\widehat{\mathbb{R}^n}} \in M(\widehat{\mathbb{R}^n})$

ii)
$$i(M(\widehat{\mathbb{R}^n})) = M(\mathbb{H}^{n+1})$$

iii) $\phi \in M(\mathbb{H}^{n+1}) \Leftrightarrow \phi = J_{S_1} \circ \cdots \circ J_{S_k}, S_i \perp \widehat{\mathbb{R}^n}$

Proof.

- i) $\phi \in M(\mathbb{H}^{n+1}) \Longrightarrow \phi |: \widehat{\mathbb{R}^n} = \partial \mathbb{H}^{n+1} \circlearrowleft. \phi |$ preserves cross-ratio since ϕ does. $\Longrightarrow \phi | \in M(\widehat{\mathbb{R}^n})$
- ii) (\subset) : clear. (\supset) : $\forall \phi \in M(\mathbb{H}^{n+1})$, consider $\phi|$. Then $\tilde{\phi}| \circ \phi^{-1} = id$ on $\widehat{\mathbb{R}^n}$ and $\mathbb{H}^{n+1} \circlearrowright \Longrightarrow \tilde{\phi}| \circ \phi^{-1} = id \Longrightarrow \phi = \tilde{\phi}| = i(\phi|)$.
- iii) (\Leftarrow) : clear. (\Longrightarrow) : clear from ii).

Note that $\forall \phi \in M(\mathbb{H}^{n+1}), \phi \in M(\widehat{\mathbb{R}^n})$ as in the proof of i) and $\phi = \widetilde{\phi}$ by the proof of ii). Therefore if $\phi \in M(\widehat{\mathbb{R}^n})$ is a similarity, then $\widetilde{\phi}$ is the unique similarity on \mathbb{H}^{n+1} whose restriction is ϕ .

Now consider the ball model. Recall $\eta = J_{\widehat{\mathbb{R}^n}} \circ J_{S(e_{n+1},\sqrt{2})} : \mathbb{B}^{n+1} \to \mathbb{H}^{n+1}$, $S^n = \partial \mathbb{B}^{n+1} \to \partial \mathbb{H}^{n+1} = \widehat{\mathbb{R}^n}$. Then

$$M(\mathbb{B}^{n+1}) = \eta^{-1} \circ M(\mathbb{H}^{n+1}) \circ \eta.$$

Proposition 3.5.1. Let $\phi \in M(\mathbb{B}^{n+1})$. Then the followings are equivalent.

i) $\phi(\infty) = \infty$

ii)
$$\phi(0) = 0$$

iii) $\phi \in O(n+1)$

Proof. i) \iff ii) since ϕ preserves the inversion $J_{S(0,1)}$. If i) holds, then ii) also holds and ϕ is a similarity: $x \mapsto \lambda Ax$, where $A \in O(n)$. Now $\phi : \mathbb{B}^{n+1} \oslash \Longrightarrow |\lambda| = 1$ and hence iii) follows. Now iii) \Longrightarrow ii) is clear.

3.6 Hyperbolic metric

3.6.1 \mathbb{B}^n case

Let $\phi \in \mathcal{M}(\mathbb{B}^n)$ and $x^* = \sigma_1(x) = \frac{x}{|x|^2}$. Note that

$$|x^* - u^*|^2 = \sum_{i=1}^n \left(\frac{x_i}{|x|^2} - \frac{u_i}{|u|^2}\right) = \sum_{i=1}^n \frac{|x|^2 - 2x_iu_i + |u^2|}{|x|^2|u^2|} = \left(\frac{|x - u|}{|x||u|}\right)^2.$$

This yields

$$[x, x^*, u, u^*] = \frac{|x - u||x^* - u^*|}{|x - \frac{x}{|x|^2}||u - \frac{u}{|u|^2}|} = \frac{|x - u|^2}{(1 - |x|^2)(1 - |u|^2)}.$$

Put u = x + dx, $y = \phi x$ and since the Möbius transformation ϕ preserves cross ratio, we conclude

$$\frac{2|dy|}{1-|y|^2} = \frac{2|dx|}{1-|x|^2}.$$

In other words, the Poincare matric is invariant under Möbius transformations.

3.6.2 \mathbb{H}^{n+1} case

The inversive point is given as $x^* = (x_1, \dots, x_{n-1}, -x_n)$ for any $x \in \mathbb{H}^{n+1}$. Then

$$[x, x^*, u, u^*] = \frac{|x - u||x^* - u^*|}{|x - x^*||u - u^*|} = \frac{|x - u|^2}{4x_{n+1}u_{n+1}}$$

and by letting u = x + dx, we see that

$$\frac{|dx|^2}{4x_{n+1}^2}$$

is an invariant metric and $\frac{|dx|}{x_{n+1}}$ is called the Poincare metric.

3.6.3 Canonical embedding

Fig3.1

Proposition 3.6.1. $M(\mathbb{H}^{n+1}) = Isom(\mathbb{H}^{n+1})$

Proof.

 (\subset) : clear.

 (\supset) : It suffices to show that $M(\mathbb{B}^{n+1}) = Isom(\mathbb{B}^{n+1})$. $M(\mathbb{B}^{n+1}) \subset Isom(\mathbb{B}^{n+1})$ and is already "full", *i.e.*, transitive and isotropy group = O(n + 1). Indeed $g \in Isom(M)$, M connected Riemannian, such that g(x) = x and dg(x) = id, then g = id: Note g = id on a neighborhood of x(since it fixes radial geodesics), and

$$A = \{x \in M \mid g(x) = x \text{ and } dg(x) = id\}$$

$$\Rightarrow A \text{ is open and closed}$$

$$\Rightarrow A = M.$$

3.7 Isometry types

3.7.1 \mathbb{B}^{n+1} case

 $\phi \in M(\mathbb{B}^{n+1}) \Longrightarrow \phi : \overline{\mathbb{B}^{n+1}} \odot \Longrightarrow \phi$ has a fixed point in $\overline{\mathbb{B}^{n+1}}$ by Brouwer fixed point theorem.

Claim. ϕ has more than two fixed points on $S^n = \partial \mathbb{B}^{n+1} \Longrightarrow \phi$ has a fixed point in \mathbb{B}^{n+1} .

Proof. Work on \mathbb{H}^{n+1} and suppose $\#|Fix| \geq 3$ on $\widehat{\mathbb{R}^n} = \partial \mathbb{H}^{n+1}$. We may assume $\phi(\infty) = \infty$, $\phi(0) = 0$, $\phi(e_1) = e_1$.

 $\implies \phi(x) = Ax, \, A \in O(n+1)$

 $\implies \phi(x)$ fixes x_{n+1} axis since it is perpendicular to \mathbb{R}^n , *i.e.*, fixes points in \mathbb{H}^{n+1}

Therefore we have the following trichotomy for a conjugacy class of ϕ :

(1) ϕ fixes a point in \mathbb{B}^{n+1} : elliptic

- (2) ϕ fixes exactly one point on $\partial \mathbb{B}^{n+1} = S^n$: parabolic
- (3) ϕ fixes exactly two points on $\partial \mathbb{B}^{n+1} = S^n$: loxodormic or hyperbolic

3.7.2 \mathbb{H}^2 and \mathbb{H}^3 case

$$g(z) = \frac{az+b}{cz+d}, \quad A := \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

Fixed point : $z = g(z) \Longrightarrow cz^2 + (d-a)z - b = 0 \Longrightarrow D = (d-a)^2 + 4bc = (a+d)^2 - 4(ad-bc) = tr^2(A) - 4 \det(A)$. Then we define

$$\operatorname{tr}(g) := \frac{(\operatorname{tr} A)^2}{\det(A)},$$

which is an invariant of a projective transformation. Note that we have the following trichotomy for $G = PSL_2(\mathbb{R})$

- (1) g is elliptic $\iff D < 0 \iff tr^2 < 4$
- (2) g is parabolic $\iff D = 0 \iff tr^2 = 4$
- (3) q is hyperbolic $\iff D > 0 \iff tr^2 > 4$

Proposition 3.7.1. Let $G = PSL_2(\mathbb{C})$ or $PSL_2(\mathbb{R})$. Then $\forall f, g \in G$ we have $f \sim g(i.e., f \text{ is conjugate to } g) \iff \operatorname{tr}^2(f) = \operatorname{tr}^2(g)$

Proof.

 \implies) : Clear.

(1) tr²(g) = 4 ⇒ there exists a unique fixed point, say ∞.
⇒ g(z) = az + b and a = 1 (∃ another fixed point otherwise)
⇒ g ~ f : z ↦ z + 1 (∵ f = h⁻¹ ∘ g ∘ h with h(z) = bz)
(2) tr²(g) ≠ 4 ⇒ there are two fixed points, say 0, ∞

$$\implies g \sim f(z) = az \ (a \neq 1 \ a \neq 0) \implies tr^2 = a + \frac{1}{a} + 2$$

- (i) $|a| = 1 \Longrightarrow g$ is elliptic
- (ii) $|a| \neq 1 \Longrightarrow g$ is loxodromic (hyperbolic if a is real)

Notice that, tr^2 determines $a, \frac{1}{a}$ and $g(z) = az \sim f(z) = \frac{1}{a}z$ via h(z) = -1/z, and this proves the proposition.

In the above proof, we notice

$$(2)i) \Longrightarrow \operatorname{tr}^2 g = a + \frac{1}{a} + 2 = a + \overline{a} + 2 = 2\cos\theta + 2 \in [0, 4).$$

Conversely, if $\operatorname{tr}^2 g \in [0, 4)$, then by the above dichotomy $g \sim f(z) = az$ with $a = e^{i\theta}$, *i.e.*, elliptic. Hence we have the following map,

 $\mathrm{tr}^2:(G\setminus\{id\})/\sim \quad \longrightarrow \quad \mathbb{C}$

such that $tr^2(elliptic) = [0, 4), tr^2(parabolic) = 4$, and loxodromic otherwise.