
1 A brief introduction to Volume conjecture

2 Linear Fractional Transformation and 2-dimensional
hyperbolic geometry

3 Inversive geometry and hyperbolic geometry

3.1 Inversion(or reflection) and Möbius transformation

3.2 Möbius transformations as conformal maps

3.3 Möbius transformation as a cross-ratio preserving maps

3.4 Möbius transformation as a sphere preserving map

3.5 Poincare extension

Definition 3.5.1. Define i : M(R̂n) → M(R̂n+1) by σ = JS 7→ σ̃ = JS̃ and

i : φ = σ1 ◦ · · · ◦ σk 7→ φ̃ = σ̃1 ◦ · · · ◦ σ̃k, where S̃ is the sphere in Rn+1 for which

S̃ ∩ R̂n = S.

Check if i is uniquely well-defined and 1-1 :

Suppose φ̃1, φ̃2 are two extensions of φ ∈M(R̂n) =⇒ φ̃1◦φ̃−12 = id on Rnand

preserves Hn+1 =⇒ φ̃1 ◦ φ̃2
−1

= id by Proposition 3.5.2.

Theorem 3.5.1.

i) φ ∈M(Hn+1) := {φ ∈M(R̂n) |φ is an automorphism on Hn+1} =⇒ φ|R̂n ∈
M(R̂n)

ii) i(M(R̂n)) = M(Hn+1)

iii) φ ∈M(Hn+1) ⇔ φ = JS1
◦ · · · ◦ JSk

, Si ⊥ R̂n

Proof.

i) φ ∈M(Hn+1) =⇒ φ| : R̂n = ∂Hn+1 	. φ| preserves cross-ratio since φ does.

=⇒ φ| ∈M(R̂n)

ii) (⊂) : clear. (⊃) : ∀φ ∈ M(Hn+1), consider φ|. Then φ̃| ◦ φ−1 = id on R̂n
and Hn+1 	 =⇒ φ̃| ◦ φ−1 = id =⇒ φ = φ̃| = i(φ|) .

iii) (⇐=) : clear. (=⇒) : clear from ii).

Note that ∀φ ∈ M(Hn+1), φ| ∈ M(R̂n) as in the proof of i) and φ = φ̃| by

the proof of ii). Therefore if φ ∈ M(R̂n) is a similarity, then φ̃ is the unique
similarity on Hn+1 whose restriction is φ.

Now consider the ball model. Recall η = JR̂n ◦ JS(en+1,
√
2) : Bn+1 → Hn+1,

Sn = ∂Bn+1 → ∂Hn+1 = R̂n. Then

M(Bn+1) = η−1 ◦M(Hn+1) ◦ η.
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Proposition 3.5.1. Let φ ∈M(Bn+1). Then the followings are equivalent.

i) φ(∞) =∞

ii) φ(0) = 0

iii) φ ∈ O(n+ 1)

Proof. i) ⇐⇒ ii) since φ preserves the inversion JS(0,1). If i) holds, then ii) also
holds and φ is a similarity:x 7→ λAx, where A ∈ O(n). Now φ : Bn+1 	 =⇒
|λ| = 1 and hence iii) follows. Now iii)=⇒ii) is clear.

3.6 Hyperbolic metric

3.6.1 Bn case

Let φ ∈M(Bn) and x∗ = σ1(x) = x
|x|2 . Note that

|x∗ − u∗|2 =

n∑
i=1

(
xi
|x|2
− ui
|u|2

)
=

n∑
i=1

|x|2 − 2xiui + |u2|
|x|2|u2|

=

(
|x− u|
|x||u|

)2

.

This yields

[x, x∗, u, u∗] =
|x− u||x∗ − u∗|
|x− x

|x|2 ||u−
u
|u|2 |

=
|x− u|2

(1− |x|2)(1− |u|2)
.

Put u = x+ dx, y = φx and since the Möbius transformation φ preserves cross
ratio, we conclude

2|dy|
1− |y|2

=
2|dx|

1− |x|2
.

In other words, the Poincare matric is invariant under Möbius transformations.

3.6.2 Hn+1 case

The inversive point is given as x∗ = (x1, · · · , xn−1,−xn) for any x ∈ Hn+1.
Then

[x, x∗, u, u∗] =
|x− u||x∗ − u∗|
|x− x∗||u− u∗|

=
|x− u|2

4xn+1un+1
,

and by letting u = x+ dx, we see that

|dx|2

4x2n+1

is an invariant metric and |dx|
xn+1

is called the Poincare metric.
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3.6.3 Canonical embedding

Fig3.1

Proposition 3.6.1. M(Hn+1) = Isom(Hn+1)

Proof.

(⊂) : clear.

(⊃) : It suffices to show thatM(Bn+1) = Isom(Bn+1). M(Bn+1) ⊂ Isom(Bn+1)
and is already ”full”, i.e., transitive and isotropy group = O(n + 1). Indeed
g ∈ Isom(M), M connected Riemannian, such that g(x) = x and dg(x) = id,
then g = id: Note g = id on a neighborhood of x(since it fixes radial geodesics),
and

A = {x ∈M | g(x) = x and dg(x) = id}
⇒ A is open and closed

⇒ A = M.

3.7 Isometry types

3.7.1 Bn+1 case

φ ∈M(Bn+1) =⇒ φ : Bn+1 	 =⇒ φ has a fixed point in Bn+1 by Brouwer fixed
point theorem.

Claim. φ has more than two fixed points on Sn = ∂Bn+1 =⇒ φ has a fixed
point in Bn+1.

Proof. Work on Hn+1 and suppose #|Fix| ≥ 3 on R̂n = ∂Hn+1. We may as-
sume φ(∞) =∞, φ(0) = 0, φ(e1) = e1.

=⇒ φ(x) = Ax, A ∈ O(n+ 1)
=⇒ φ(x) fixes xn+1 axis since it is perpendicular to Rn, i.e., fixes points in

Hn+1

Therefore we have the following trichotomy for a conjugacy class of φ :

(1) φ fixes a point in Bn+1 : elliptic

(2) φ fixes exactly one point on ∂Bn+1 = Sn : parabolic

(3) φ fixes exactly two points on ∂Bn+1 = Sn : loxodormic or hyperbolic
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3.7.2 H2 and H3 case

g(z) =
az + b

cz + d
, A :=

[
a b
c d

]
Fixed point : z = g(z) =⇒ cz2 + (d − a)z − b = 0 =⇒ D = (d − a)2 + 4bc =
(a+ d)2 − 4(ad− bc) = tr2(A)− 4 det(A). Then we define

tr(g) :=
(trA)2

det(A)
,

which is an invariant of a projective transformation. Note that we have the
following trichotomy for G = PSL2(R)

(1) g is elliptic ⇐⇒ D < 0 ⇐⇒ tr2 < 4

(2) g is parabolic ⇐⇒ D = 0 ⇐⇒ tr2 = 4

(3) g is hyperbolic ⇐⇒ D > 0 ⇐⇒ tr2 > 4

Proposition 3.7.1. Let G = PSL2(C) or PSL2(R). Then ∀f, g ∈ G we have
f ∼ g(i.e., f is conjugate to g) ⇐⇒ tr2(f)=tr2(g)

Proof.

=⇒) : Clear.

⇐=) :

(1) tr2(g) = 4 =⇒ there exists a unique fixed point, say ∞.

=⇒ g(z) = az + b and a = 1 (∃ another fixed point otherwise)

=⇒ g ∼ f : z 7→ z + 1 (∵ f = h−1 ◦ g ◦ h with h(z) = bz)

(2) tr2(g) 6= 4 =⇒ there are two fixed points, say 0,∞
=⇒ g ∼ f(z) = az (a 6= 1 a 6= 0) =⇒ tr2 = a+ 1

a + 2

(i) |a| = 1 =⇒ g is elliptic

(ii) |a| 6= 1 =⇒ g is loxodromic (hyperbolic if a is real)

Notice that, tr2 determines a, 1a and g(z) = az ∼ f(z) = 1
az via h(z) = −1/z,

and this proves the proposition.

In the above proof, we notice

(2)i) =⇒ tr2g = a+
1

a
+ 2 = a+ a+ 2 = 2 cos θ + 2 ∈ [0, 4).

Conversely, if tr2g ∈ [0, 4), then by the above dichotomy g ∼ f(z) = az with
a = eiθ, i.e., elliptic. Hence we have the following map,

tr2 : (G \ {id})/ ∼ −→ C

such that tr2(elliptic)= [0, 4), tr2(parabolic)= 4, and loxodromic otherwise.
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