
I.1 Metric Space

Definition 1 A set X is a metric space if there exists a function (called metric)
d : X ×X → R such that

1. d(x, y) ≥ 0 for all x, y ∈ X; d(x, y) = 0 if and only if x = y

2. d(x, y) = d(y, x) for all x, y ∈ X

3. d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X

Examples The followings are metric spaces.

1. Rn with d(x, y) = ‖x− y‖
2. (S2, d) : the unit sphere with the spherical distance d along the geodesics.

3. A space X with a metric d defined by

d(x, y) = 0 if x = y
d(x, y) = 1 if x 6= y.

4. A normed vector space V with a metric d(x, y) = ‖x− y‖.
5. Let V be a (real or complex) vector space.

A norm ‖ ‖ on V is a function ‖ ‖ : V → R satisfying the following
properties :
(1) ‖x‖ = 0 ⇐⇒ x = 0
(2) ‖λx‖ = |λ|‖x‖, ∀λ ∈ F (=R or C)
(3) ‖x + y‖ ≤ ‖x‖+ ‖y‖

6. Note that if (V, <,>) is a vector space with an inner product, then

‖x‖ =< x, x >
1
2 defines the induced norm on V :

Use CS-inequality for (3) and CS-inequality follows from the inequality,

0 ≤ ‖tx + y‖2 =< tx + y, tx + y >= ‖x‖2t2 + 2 < x, y > t + ‖y‖2

7. Let B be the set of all bounded function of [a, b] ⊂ R. Then B is a vector
space.
Define

‖f‖ = sup
x∈[a,b]

|f(x)|
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Then it is easy to show that ‖f + g‖ ≤ ‖f‖+ ‖g‖

( sup
x∈[a,b]

|f(x) + g(x)| ≤ sup
x∈[a,b]

(|f(x)|+ |g(x)|) ≤ sup
x∈[a,b]

|f |+ sup
x∈[a,b]

|g|)

8. Let C[a, b] be the set of all continuous functions an [a, b]

‖f‖1 :=

∫ b

a

|f |,

‖f‖2 :=

(∫ b

a

|f |2
) 1

2

defines respectively a norm on the vector space C[a, b].
Note that ‖ ‖2 is the induced norm from an inner product defined by
< f, g >=

∫
fg

Note 1. A subspace S of a metric space (X, d) inherites a metric d from X
2. A product of two metric spaces, (X1, d1) and (X2, d2), admits a product
metric d on X = X1 ×X2.

Homework 1 Prove the followings

1. Let X1 and X2 be metric spaces with metric d1 and d2, respectively.
Then X = X1 ×X2 is also a metric space with metric d given by,

d(x, y) =
√

d1(x1, y1)2 + d2(x2, y2)2

for all x = (x1, y1), y = (x2, y2)

2. Let Xi be a metric space with a metric di. Define d
′
i(xi, yi) = min{di(xi, yi), 1}.

Then X =
∏∞

i=1 Xi is a metric space with a metric d given by

d(x, y) =
∞∑
i=1

d
′
i(xi, yi)

2i

3. Now define d
′
i(xi, yi) = di(xi,yi)

1+di(xi,yi)
and prove the same.
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Open sets

Definition 2 Let (X, d) be a metric space. Then U is an open subset of X if
for each x ∈ U there exists ε > 0 such that

Bε(x) = {y ∈ X|d(x, y) < ε} ⊂ U .

Examples Br(x) = {y ∈ X|d(x, y) < r} is open.

Proposition 1 Let (X,d) be a metric space. Then

1. A union of open subsets is open.

2. A finite intersection of open sets is open.

Proof

1. Let x ∈ ⋃
α Uα where Uα is an open subset of X. Then x ∈ Uα for some

α. Thus there exists ε such that Bε(x) ⊂ Uα and hence Bε(x) ⊂ ⋃
α Uα.

2. If suffices to show two sets case. Let U1, U2 be open sets in X and x ∈
U1 ∩ U2. Then there exist ε1, ε2 for such that Bε1(x) ⊂ U1, Bε2(x) ⊂ U2,
respectively. Define ε = min{ε2, ε2}. Then Bε(x) ⊂ U1 ∩ U2.

Note An infinite intersection of open sets is not necessarily open.

Examples 1. ∩∞n=1(−1, 1
n
)

2. An open set can be viewed simply as a union of open balls.

Continuous functions

Definition 3 Let f be a function form a metric space (X, dx) to a metric
space (Y, dy). Then

1. f is continuous at x0 ∈ X if for all ε > 0 there exists δ > 0 such that
d(x, x0) < δ implies d(f(x), f(x0)) < ε.

2. f is continuous on X if f is continuous at every x ∈ X

Examples 1. A constant and the identity functions are continuous.
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2. The composition of two continuous functions are continuous.

Proposition 2 Let X and Y be metric spaces. Then f : X → Y is continuous
if and only if f−1(V ) is open for all open set V in Y

Proof (⇒) Let x ∈ X. Since f is continuous, for all ε, there exist δ such that
f(Bδ(x)) ⊂ Bε(f(x)) ⊂ V . Then Bδ(x) ⊂ f−1(V ). Thus f−1(V ) is open.
(⇐) Since Bε(f(x)) is open, Bδ(f(x)) ⊂ f−1(Bε(f(x))) for some δ. Then
f(Bδ(x)) ⊂ Bε(f(x)). Thus f is continuous.
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