I.1 Metric Space

Definition 1 A set X is a metric space if there exists a function (called metric)
d: X x X — R such that

1.
2.

3.

d(xz,y) >0 for all x,y € X; d(z,y) =0 if and only if x =y
d(z,y) =d(y,x) for all z,y € X

d(z,y) <d(z,z)+d(z,y) for all z,y,z € X

Examples The followings are metric spaces.

1.
2.

R™ with d(z,y) = ||z — y||

(52,d) : the unit sphere with the spherical distance d along the geodesics.

. A space X with a metric d defined by

dlz,y)=0ifz =y
d(z,y)=1if z £ y.

. A normed vector space V' with a metric d(z,y) = ||z — y||.

Let V' be a (real or complex) vector space.

A norm || || on V is a function || || : V — R satisfying the following
properties :

(1) ||z]| =0 <= =0

(2) |Az]l = [A[lj«]l, VA € F(=R or C)

3) [l +yll < =/l + llyll

Note that if (V,<,>) is a vector space with an inner product, then
|z|| =< z,z >2 defines the induced norm on V :
Use CS-inequality for (3) and CS-inequality follows from the inequality,

0< |tz +y|? =<tx+yte+y>= |z +2<z,y>t+]y|?

Let B be the set of all bounded function of [a,b] C R. Then B is a vector
space.
Define

/[l = sup |f(z)|

z€[a,b]



Then it is easy to show that || f + g|| < ||f]| + [|g]]

(sup [f(z)+g(x)| < sup (|f(x)| + |g(x)|) < sup |f|+ sup |g])
z€[a,b) z€[a,b] z€[a,b) z€[a,b)

8. Let Cla, b] be the set of all continuous functions an [a, b]

b
1= [ 111,
b 3
I ([ 1r7)

defines respectively a norm on the vector space C|a, b].
Note that || ||z is the induced norm from an inner product defined by

< f.g>=[fg

Note 1. A subspace S of a metric space (X, d) inherites a metric d from X
2. A product of two metric spaces, (X1,d;) and (Xs,ds), admits a product
metric d on X = X; x X,.

Homework 1 Prove the followings

1. Let X; and X, be metric spaces with metric d; and ds, respectively.
Then X = X; x X5 is also a metric space with metric d given by,

d(z,y) = \/dl(xlu y1)? + da(xa, yo)?

for all @ = (21,91),y = (22,92)
2. Let X; be a metric space with a metric d;. Define d;(z;, y;) = min{d;(z;,y:), 1}.
Then X = [[;2, X; is a metric space with a metric d given by

- di Tiy Yi
da.y) =y W)
=1

3. Now define d;(z;, y;) = % and prove the same.



Open sets

Definition 2 Let (X, d) be a metric space. Then U is an open subset of X if
for each x € U there exists € > 0 such that

B.(z) ={y € X|d(x,y) <e} CU.
Examples B,(z) = {y € X|d(z,y) < r} is open.
Proposition 1 Let (X,d) be a metric space. Then
1. A union of open subsets is open.
2. A finite intersection of open sets is open.
Proof

1. Let € U, U, where U, is an open subset of X. Then « € U, for some
«. Thus there exists € such that B.(z) C U, and hence B.(x) C |, U,.

2. If suffices to show two sets case. Let Uy, Us be open sets in X and x €
U; N Us. Then there exist €1, €, for such that B, (x) C Uy, Be,(z) C Us,
respectively. Define € = min{es, €2}. Then B (x) C Uy N Us.

Note An infinite intersection of open sets is not necessarily open.
Examples 1 N2 (—1,2)

2. An open set can be viewed simply as a union of open balls.

Continuous functions

Definition 3 Let f be a function form a metric space (X,d,) to a metric
space (Y,d,). Then

1. f is continuous at xy € X if for all € > 0 there exists 6 > 0 such that
d(z, o) < ¢ implies d(f(x), f(xg)) < €.

2. f is continuous on X if f is continuous at every z € X

Examples 1. A constant and the identity functions are continuous.
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2. The composition of two continuous functions are continuous.

Proposition 2 Let X andY be metric spaces. Then f: X — Y is continuous
if and only if f=Y(V) is open for all open set V in'Y

Proof (=) Let x € X. Since f is continuous, for all €, there exist § such that
f(Bs(z)) C Bo(f(z)) C V. Then Bs(x) C f~(V). Thus f~(V) is open.

(<) Since B(f(x)) is open, Bs(f(z)) C f~'(B.(f(z))) for some §. Then
f(Bs(x)) C Be(f(z)). Thus f is continuous. 0



