I. 1 Metric Space

Definition 1 A set X is a metric space if there exists a function (called metric) $d: X \times X \rightarrow \mathbb{R}$ such that

1. $d(x, y) \geq 0$ for all $x, y \in X ; d(x, y)=0$ if and only if $x=y$
2. $d(x, y)=d(y, x)$ for all $x, y \in X$
3. $d(x, y) \leq d(x, z)+d(z, y)$ for all $x, y, z \in X$

Examples The followings are metric spaces.

1. \mathbb{R}^{n} with $d(x, y)=\|x-y\|$
2. $\left(S^{2}, d\right)$: the unit sphere with the spherical distance d along the geodesics.
3. A space X with a metric d defined by

$$
\begin{aligned}
& d(x, y)=0 \text { if } x=y \\
& d(x, y)=1 \text { if } x \neq y .
\end{aligned}
$$

4. A normed vector space V with a metric $d(x, y)=\|x-y\|$.
5. Let V be a (real or complex) vector space.

A norm $\|\quad\|$ on V is a function $\|\quad\|: V \rightarrow \mathbb{R}$ satisfying the following properties :
(1) $\|x\|=0 \Longleftrightarrow x=0$
(2) $\|\lambda x\|=|\lambda|\|x\|, \quad \forall \lambda \in F(=\mathbb{R}$ or $\mathbb{C})$
(3) $\|x+y\| \leq\|x\|+\|y\|$
6. Note that if $(V,<,>)$ is a vector space with an inner product, then $\|x\|=<x, x>^{\frac{1}{2}}$ defines the induced norm on V :
Use CS-inequality for (3) and CS-inequality follows from the inequality,

$$
0 \leq\|t x+y\|^{2}=<t x+y, t x+y>=\|x\|^{2} t^{2}+2<x, y>t+\|y\|^{2}
$$

7. Let \mathcal{B} be the set of all bounded function of $[a, b] \subset \mathbb{R}$. Then \mathcal{B} is a vector space.
Define

$$
\|f\|=\sup _{x \in[a, b]}|f(x)|
$$

Then it is easy to show that $\|f+g\| \leq\|f\|+\|g\|$

$$
\left(\sup _{x \in[a, b]}|f(x)+g(x)| \leq \sup _{x \in[a, b]}(|f(x)|+|g(x)|) \leq \sup _{x \in[a, b]}|f|+\sup _{x \in[a, b]}|g|\right)
$$

8. Let $\mathcal{C}[a, b]$ be the set of all continuous functions an $[a, b]$

$$
\begin{gathered}
\|f\|_{1}:=\int_{a}^{b}|f|, \\
\|f\|_{2}:=\left(\int_{a}^{b}|f|^{2}\right)^{\frac{1}{2}}
\end{gathered}
$$

defines respectively a norm on the vector space $\mathcal{C}[a, b]$.
Note that $\left\|\|_{2}\right.$ is the induced norm from an inner product defined by $<f, g>=\int f g$

Note 1. A subspace S of a metric space (X, d) inherites a metric d from X 2. A product of two metric spaces, $\left(X_{1}, d_{1}\right)$ and $\left(X_{2}, d_{2}\right)$, admits a product metric d on $X=X_{1} \times X_{2}$.

Homework 1 Prove the followings

1. Let X_{1} and X_{2} be metric spaces with metric d_{1} and d_{2}, respectively. Then $X=X_{1} \times X_{2}$ is also a metric space with metric d given by,

$$
d(x, y)=\sqrt{d_{1}\left(x_{1}, y_{1}\right)^{2}+d_{2}\left(x_{2}, y_{2}\right)^{2}}
$$

for all $x=\left(x_{1}, y_{1}\right), y=\left(x_{2}, y_{2}\right)$
2. Let X_{i} be a metric space with a metric d_{i}. Define $d_{i}^{\prime}\left(x_{i}, y_{i}\right)=\min \left\{d_{i}\left(x_{i}, y_{i}\right), 1\right\}$. Then $X=\prod_{i=1}^{\infty} X_{i}$ is a metric space with a metric d given by

$$
d(x, y)=\sum_{i=1}^{\infty} \frac{d_{i}^{\prime}\left(x_{i}, y_{i}\right)}{2^{i}}
$$

3. Now define $d_{i}^{\prime}\left(x_{i}, y_{i}\right)=\frac{d_{i}\left(x_{i}, y_{i}\right)}{1+d_{i}\left(x_{i}, y_{i}\right)}$ and prove the same.

Open sets

Definition 2 Let (X, d) be a metric space. Then U is an open subset of X if for each $x \in U$ there exists $\epsilon>0$ such that

$$
B_{\epsilon}(x)=\{y \in X \mid d(x, y)<\epsilon\} \subset U
$$

Examples $\quad B_{r}(x)=\{y \in X \mid d(x, y)<r\}$ is open.
Proposition 1 Let (X, d) be a metric space. Then

1. A union of open subsets is open.
2. A finite intersection of open sets is open.

Proof

1. Let $x \in \bigcup_{\alpha} U_{\alpha}$ where U_{α} is an open subset of X. Then $x \in U_{\alpha}$ for some α. Thus there exists ϵ such that $B_{\epsilon}(x) \subset U_{\alpha}$ and hence $B_{\epsilon}(x) \subset \bigcup_{\alpha} U_{\alpha}$.
2. If suffices to show two sets case. Let U_{1}, U_{2} be open sets in X and $x \in$ $U_{1} \cap U_{2}$. Then there exist $\epsilon_{1}, \epsilon_{2}$ for such that $B_{\epsilon_{1}}(x) \subset U_{1}, B_{\epsilon_{2}}(x) \subset U_{2}$, respectively. Define $\epsilon=\min \left\{\epsilon_{2}, \epsilon_{2}\right\}$. Then $B_{\epsilon}(x) \subset U_{1} \cap U_{2}$.

Note An infinite intersection of open sets is not necessarily open.
Examples 1. $\cap_{n=1}^{\infty}\left(-1, \frac{1}{n}\right)$
2. An open set can be viewed simply as a union of open balls.

Continuous functions

Definition 3 Let f be a function form a metric space $\left(X, d_{x}\right)$ to a metric space $\left(Y, d_{y}\right)$. Then

1. f is continuous at $x_{0} \in X$ if for all $\epsilon>0$ there exists $\delta>0$ such that $d\left(x, x_{0}\right)<\delta$ implies $d\left(f(x), f\left(x_{0}\right)\right)<\epsilon$.
2. f is continuous on X if f is continuous at every $x \in X$

Examples 1. A constant and the identity functions are continuous.
2. The composition of two continuous functions are continuous.

Proposition 2 Let X and Y be metric spaces. Then $f: X \rightarrow Y$ is continuous if and only if $f^{-1}(V)$ is open for all open set V in Y

Proof (\Rightarrow) Let $x \in X$. Since f is continuous, for all ϵ, there exist δ such that $f\left(B_{\delta}(x)\right) \subset B_{\epsilon}(f(x)) \subset V$. Then $B_{\delta}(x) \subset f^{-1}(V)$. Thus $f^{-1}(V)$ is open.
(\Leftarrow) Since $B_{\epsilon}(f(x))$ is open, $B_{\delta}(f(x)) \subset f^{-1}\left(B_{\epsilon}(f(x))\right)$ for some δ. Then $f\left(B_{\delta}(x)\right) \subset B_{\epsilon}(f(x))$. Thus f is continuous.

