I.1 Metric Space

Definition 1 A set X is a metric space if there exists a function (called metric) $d: X \times X \to \mathbb{R}$ such that

- 1. $d(x,y) \ge 0$ for all $x, y \in X$; d(x,y) = 0 if and only if x = y
- 2. d(x, y) = d(y, x) for all $x, y \in X$
- 3. $d(x,y) \leq d(x,z) + d(z,y)$ for all $x, y, z \in X$

Examples The followings are metric spaces.

- 1. \mathbb{R}^n with d(x, y) = ||x y||
- 2. (S^2, d) : the unit sphere with the spherical distance d along the geodesics.
- 3. A space X with a metric d defined by

$$d(x, y) = 0 \text{ if } x = y$$

$$d(x, y) = 1 \text{ if } x \neq y.$$

- 4. A normed vector space V with a metric d(x, y) = ||x y||.
- 5. Let V be a (real or complex) vector space. A norm $\| \|$ on V is a function $\| \| : V \to \mathbb{R}$ satisfying the following properties : (1) $\|x\| = 0 \iff x = 0$ (2) $\|\lambda x\| = |\lambda| \|x\|, \quad \forall \lambda \in F(=\mathbb{R} \text{ or } \mathbb{C})$ (3) $\|x + y\| \le \|x\| + \|y\|$
- 6. Note that if (V, <, >) is a vector space with an inner product, then $||x|| = \langle x, x \rangle^{\frac{1}{2}}$ defines the induced norm on V: Use CS-inequality for (3) and CS-inequality follows from the inequality,

$$0 \le \|tx+y\|^2 = < tx+y, tx+y > = \|x\|^2 t^2 + 2 < x, y > t + \|y\|^2$$

7. Let \mathcal{B} be the set of all bounded function of $[a, b] \subset \mathbb{R}$. Then \mathcal{B} is a vector space.

Define

$$\|f\| = \sup_{x \in [a,b]} |f(x)|$$

Then it is easy to show that $||f + g|| \le ||f|| + ||g||$

$$(\sup_{x \in [a,b]} |f(x) + g(x)| \le \sup_{x \in [a,b]} (|f(x)| + |g(x)|) \le \sup_{x \in [a,b]} |f| + \sup_{x \in [a,b]} |g|)$$

8. Let $\mathcal{C}[a, b]$ be the set of all continuous functions an [a, b]

$$\|f\|_{1} := \int_{a}^{b} |f|,$$
$$\|f\|_{2} := \left(\int_{a}^{b} |f|^{2}\right)^{\frac{1}{2}}$$

defines respectively a norm on the vector space C[a, b]. Note that $\| \|_2$ is the induced norm from an inner product defined by $\langle f, g \rangle = \int fg$

Note 1. A subspace S of a metric space (X, d) inherites a metric d from X 2. A product of two metric spaces, (X_1, d_1) and (X_2, d_2) , admits a product metric d on $X = X_1 \times X_2$.

Homework 1 Prove the followings

1. Let X_1 and X_2 be metric spaces with metric d_1 and d_2 , respectively. Then $X = X_1 \times X_2$ is also a metric space with metric d given by,

$$d(x,y) = \sqrt{d_1(x_1,y_1)^2 + d_2(x_2,y_2)^2}$$

for all $x = (x_1, y_1), y = (x_2, y_2)$

2. Let X_i be a metric space with a metric d_i . Define $d'_i(x_i, y_i) = min\{d_i(x_i, y_i), 1\}$. Then $X = \prod_{i=1}^{\infty} X_i$ is a metric space with a metric d given by

$$d(x,y) = \sum_{i=1}^{\infty} \frac{d'_i(x_i, y_i)}{2^i}$$

3. Now define $d'_i(x_i, y_i) = \frac{d_i(x_i, y_i)}{1 + d_i(x_i, y_i)}$ and prove the same.

Open sets

Definition 2 Let (X, d) be a metric space. Then U is an open subset of X if for each $x \in U$ there exists $\epsilon > 0$ such that

$$B_{\epsilon}(x) = \{ y \in X | d(x, y) < \epsilon \} \subset U.$$

Examples $B_r(x) = \{y \in X | d(x, y) < r\}$ is open.

Proposition 1 Let (X,d) be a metric space. Then

- 1. A union of open subsets is open.
- 2. A finite intersection of open sets is open.

Proof

- 1. Let $x \in \bigcup_{\alpha} U_{\alpha}$ where U_{α} is an open subset of X. Then $x \in U_{\alpha}$ for some α . Thus there exists ϵ such that $B_{\epsilon}(x) \subset U_{\alpha}$ and hence $B_{\epsilon}(x) \subset \bigcup_{\alpha} U_{\alpha}$.
- 2. If suffices to show two sets case. Let U_1 , U_2 be open sets in X and $x \in U_1 \cap U_2$. Then there exist ϵ_1 , ϵ_2 for such that $B_{\epsilon_1}(x) \subset U_1$, $B_{\epsilon_2}(x) \subset U_2$, respectively. Define $\epsilon = \min\{\epsilon_2, \epsilon_2\}$. Then $B_{\epsilon}(x) \subset U_1 \cap U_2$.

Note An infinite intersection of open sets is not necessarily open.

Examples 1. $\bigcap_{n=1}^{\infty} (-1, \frac{1}{n})$

2. An open set can be viewed simply as a union of open balls.

Continuous functions

Definition 3 Let f be a function form a metric space (X, d_x) to a metric space (Y, d_y) . Then

- 1. f is continuous at $x_0 \in X$ if for all $\epsilon > 0$ there exists $\delta > 0$ such that $d(x, x_0) < \delta$ implies $d(f(x), f(x_0)) < \epsilon$.
- 2. f is continuous on X if f is continuous at every $x \in X$

Examples 1. A constant and the identity functions are continuous.

2. The composition of two continuous functions are continuous.

Proposition 2 Let X and Y be metric spaces. Then $f : X \to Y$ is continuous if and only if $f^{-1}(V)$ is open for all open set V in Y

Proof (\Rightarrow) Let $x \in X$. Since f is continuous, for all ϵ , there exist δ such that $f(B_{\delta}(x)) \subset B_{\epsilon}(f(x)) \subset V$. Then $B_{\delta}(x) \subset f^{-1}(V)$. Thus $f^{-1}(V)$ is open. (\Leftarrow) Since $B_{\epsilon}(f(x))$ is open, $B_{\delta}(f(x)) \subset f^{-1}(B_{\epsilon}(f(x)))$ for some δ . Then $f(B_{\delta}(x)) \subset B_{\epsilon}(f(x))$. Thus f is continuous.