I.2 Topological Space, basis and subbasis

Definition 1 Topological space X is a set with a specific collection \mathcal{T} of subsets called open sets with the following properties.

1. $\emptyset, X \in \mathcal{T}$.

- 2. A union of open sets is open.
- 3. A finite intersection of open sets is open.

Examples 1. A metric space with the usual open sets.

- 2. Let X be a set. Then $\mathcal{T} = \mathcal{P}(X)$ is called the discrete topology and $\mathcal{T} = \{\emptyset, X\}$ the indiscrete topology.
- 3. $X = \{a, b\}$. Then $\mathcal{T} = \{\emptyset, X, \{a\}\}$ is a topology.
- 4. Let X be an infinite set. Then $\mathcal{T} = \{U \subset X | U^c \text{ is a finite set}\} \cup \{\emptyset\}$ is called cofinite topology.

Definition 2 Let X and Y be topological spaces. Then $f: X \to Y$ is continuous if $f^{-1}(V)$ is open for all V open in Y.

Definition 3 A collection \mathcal{B} of open sets of a topological space X is called a basis if each open set in X can be represented as a union of elements of \mathcal{B} .

Proposition 1 Suppose that a collection \mathcal{B} of subsets of a set X satisfies the following two properties:

- 1. The elements of \mathcal{B} cover X, i.e., $X = \bigcup_{B \in \mathcal{B}} B$.
- 2. If x belongs to two elements B_1 and B_2 of \mathcal{B} , then there exists $B \in \mathcal{B}$ such that $x \in B \subset B_1 \cap B_2$.

Then the collection $\mathcal{T}(\mathcal{B})$ of all unions of elements of \mathcal{B} defines a topology on a set X (called the topology generated by \mathcal{B}).

Proof is easy.

- **Examples** 1. Let $\mathcal{B} = \{(a, b) | a < b, a and b real\}$. Then $(\mathbb{R}, \mathcal{T}(\mathcal{B}))$ is called the usual topology of \mathbb{R} .
 - 2. Let $\mathcal{B} = \{[a, b) | a < b, a \text{ and } b \text{ real}\}$. Then $\mathbb{R}_l = (\mathbb{R}, \mathcal{T}(\mathcal{B}))$ is called the real line with half-open topology.

3. Let $\mathcal{B} = \{[a, b] | a \leq b, a \text{ and } b \text{ real}\}$. Then $(\mathbb{R}, \mathcal{T}(\mathcal{B}))$ becomes a discrete space since $[a, a] = \{a\}$.

Proposition 2 Let \mathcal{B} and \mathcal{B}' be basis for the topology \mathcal{T} and \mathcal{T}' , respectively on X. Then $\mathcal{T} \subset \mathcal{T}'$ if and only if for each $B \in \mathcal{B}$ and $x \in B$, there is a basis element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$. In this case, \mathcal{T}' is said to be finer than \mathcal{T} .

Proof (\Rightarrow) For each *B* in \mathcal{B} , $B \in \mathcal{B} \subset \mathcal{T}(\mathcal{B}) \subset \mathcal{T}(\mathcal{B}')$. Therefore $B \in \mathcal{T}(\mathcal{B}')$. Since $\mathcal{T}(\mathcal{B}')$ is generated by \mathcal{B}' , for each $x \in B$ there is an element $B' \in \mathcal{B}'$ such that $x \in B' \subset B$.

(\Leftarrow) Let U be an element of \mathcal{T} and $x \in U$. Since \mathcal{B} generates \mathcal{T} , there is an element $B \in \mathcal{B}$ such that $x \in B \subset U$. Then there is B' such that $x \in B' \subset B \subset U$ and hence $U \in \mathcal{T}'$.

- **Examples** 1. Let $\mathcal{B} = \{(a, b) | a < b, a \text{ and } b \text{ real}\}$ and $\mathcal{B}' = \{[a, b) | a < b, a \text{ and } b \text{ real}\}$. Then $\mathcal{T}(\mathcal{B}) \subsetneq \mathcal{T}(\mathcal{B}')$
 - 2. Let \mathcal{B} be the collection of all open discs in the plane and \mathcal{B}' is the collection of open squares. Then $\mathcal{T} = \mathcal{T}'$

Homework 3 Let C([0,1]) be the collection of continuous functions on [0,1]. Consider the following topologies.

 \mathcal{T}_1 = the topology induced by L_1 norm, i.e., $||f||_1 = \int_0^1 |f|$ \mathcal{T}_2 = the topology induced by L_2 norm, i.e., $||f||_2 = (\int_0^1 |f|^2)^{1/2}$ \mathcal{T}_∞ = the topology induced by L_∞ norm, i.e., $||f||_\infty = sup|f|$ 이 topology들의 상호포함관계를 설명하라.

Definition 4 Let X be a topological space. A collection S of open sets is called a subbasis if each open set in X can be written as a union of finite intersections of elements of S.

Proposition 3 Let S be a collection of subsets of a set X whose union is X. Then the collection of all unions of finite intersections of sets in S form a topology for X. This topology T(S) will be called the topology generated by S, and T(S) is the smallest topology containing S.

(Proof is easy using Prop 1.)

Examples 1. $S = \{(a, \infty), (-\infty, b)\}$ is a subbasis for the standard topology of \mathbb{R} .

- 2. $S = \{[a, \infty), (-\infty, b)\}$ is a subbasis for \mathbb{R}_l .
- 3. $S = \{\mathbb{R} \{p\} | p \in \mathbb{R}\}\$ is a subbasis for the cofinite topology.