I. 4 Properties of Continuous Functions

Definition 1 Let X and Y be topological spaces. Then $f: X \rightarrow Y$ is continuous if $f^{-1}(V)$ is open for all V open in Y.

Proposition 1 Let X and Y be topological spaces and f be a function from X to Y. Then the followings are equivalent.

1. f is continuous, i.e., f^{-1} (open) $=$ open,
2. $\forall x \in X, f$ is continuous at x, i.e., for \forall open neighborhood V of $f(x)$, \exists open nbd U_{x} of x such that $f\left(U_{x}\right) \subset V$,
3. f^{-1} (basic open $)=$ open,
4. $f^{-1}($ subbasic open $)=$ open,
5. $f^{-1}($ close $)=$ closed,
6. $\overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$ for all $B \subset Y$,
7. $f(\bar{A}) \subset \overline{f(A)}$ for all $A \subset X$.

Proof $(1 \Rightarrow 2)$ Suppose f is continuous, and let $V \subset Y$ be an open set containing $f(x)$. Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is open. Hence f is continuous at x.
$(1 \Leftarrow 2)$ Suppose f is continuous at every point $x \in X$, and let $V \subset Y$ be open. For every $x \in f^{-1}(V)$, there exists an open set $U_{x} \subset X$ such that $x \in U_{x} \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is open and f is continuous.
It is easy to see that 1 and 2 are equivalent.
$(1 \Rightarrow 3)$ Trivial.
$(1 \Leftarrow 3)$ Let B_{α} be a basic open set of Y. Then $f^{-1}\left(\cup_{\alpha} B_{\alpha}\right)=\cup_{\alpha} f^{-1}\left(B_{\alpha}\right)=$ \cup_{α} Open $=$ Open.
($3 \Rightarrow 4$) Trivial.
$(3 \Leftarrow 4)$ Let S_{i} be a subbasic open set of Y. Then $f^{-1}\left(\cap_{i=1}^{k} S_{i}\right)=\cap_{i=1}^{k} f^{-1}\left(S_{i}\right)=$ $\cap_{i=1}^{k}$ Open $=$ Open.
$(1 \Leftrightarrow 5)$ Let B be an open set in Y. Then it is clear that $f^{-1}\left(B^{c}\right)=f^{-1}(B)^{c}$. $(5 \Rightarrow 6)$ Let B be a set in Y. Clearly $f^{-1}(\bar{B})$ is closed by 5 . Since $f^{-1}(B) \subset$ $f^{-1}(\bar{B}), \overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$.
$(5 \Leftarrow 6)$ Let B be a closed set in Y. Then $f^{-1}(B)=f^{-1}(\bar{B}) \supset \overline{f^{-1}(B)}$ by 5. At the same time $f^{-1}(B) \subset \overline{f^{-1}(B)}$. Thus $f^{-1}(B)=\overline{f^{-1}(B)}$ and hence $f^{-1}(B)$ is closed.
$\underline{(6 \Rightarrow 7)}$ Let $A \subset X$ and $B:=f(A) \subset Y$. Since $B=f(A), A \subset f^{-1}(B)$. Thus $\bar{A} \subset \overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$. Consequently $f(\bar{A}) \subset f\left(f^{-1}(\bar{B})\right) \subset \bar{B}=\overline{f(A)}$. $(6 \Leftarrow 7)$ Let $\underline{B \subset Y}$ and $A:=f^{-1}(B) \subseteq X$. Then $f(A)=f\left(f^{-1}(B)\right) \subset B$. Thus $f(\bar{A}) \subset \overline{f(A)} \subset \bar{B}$ and hence $\bar{A}=\overline{f^{-1}(B)} \subset f^{-1}(\bar{B})$.

Proposition 2 Let X, Y, and Z be topological spaces. If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, then the map $g \circ f: X \rightarrow Z$ is continuous.

Proof Let U be open in Z. Then $g^{-1}(U)$ is open in Y, and $f^{-1}\left(g^{-1}(U)\right)$ is open in X. But $f^{-1}\left(g^{-1}(U)\right)=(g \circ f)^{-1}(U)$ and hence $g \circ f$ is continuous.

Homework Determine whether the following statements are equivalent to any of the statements of the proposition 3 or not.

1. $f^{-1}(B)^{i} \supset f^{-1}\left(B^{i}\right)$ for all $B \subset Y$.
2. $f\left(A^{i}\right) \supset f(A)^{i}$ for all $A \subset X$.
