I.4 Properties of Continuous Functions

Definition 1 Let X and Y be topological spaces. Then $f: X \to Y$ is continuous if $f^{-1}(V)$ is open for all V open in Y.

Proposition 1 Let X and Y be topological spaces and f be a function from X to Y. Then the followings are equivalent.

- 1. f is continuous, i.e., $f^{-1}(open)=open$,
- 2. $\forall x \in X, f \text{ is continuous at } x, \text{ i.e., for } \forall \text{ open neighborhood } V \text{ of } f(x), \exists \text{ open nbd } U_x \text{ of } x \text{ such that } f(U_x) \subset V,$
- 3. $f^{-1}(basic open) = open$,
- 4. $f^{-1}(subbasic open) = open$,
- 5. $f^{-1}(close) = closed$,

6.
$$\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$$
 for all $B \subset Y$,

7. $f(\overline{A}) \subset \overline{f(A)}$ for all $A \subset X$.

Proof $(1 \Rightarrow 2)$ Suppose f is continuous, and let $V \subset Y$ be an open set containing f(x). Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is open. Hence f is continuous at x.

 $(1 \Leftarrow 2)$ Suppose f is continuous at every point $x \in X$, and let $V \subset Y$ be open. For every $x \in f^{-1}(V)$, there exists an open set $U_x \subset X$ such that $x \in U_x \subset f^{-1}(V)$. Hence $f^{-1}(V)$ is open and f is continuous.

It is easy to see that 1 and 2 are equivalent.

 $(1 \Rightarrow 3)$ Trivial.

 $(1 \Leftarrow 3)$ Let B_{α} be a basic open set of Y. Then $f^{-1}(\cup_{\alpha}B_{\alpha}) = \cup_{\alpha}f^{-1}(B_{\alpha}) = \cup_{\alpha}Open = Open$.

 $(3 \Rightarrow 4)$ Trivial.

 $(3 \leftarrow 4)$ Let S_i be a subbasic open set of Y. Then $f^{-1}(\bigcap_{i=1}^k S_i) = \bigcap_{i=1}^k f^{-1}(S_i) = \bigcap_{i=1}^k Open = Open$.

 $(1 \Leftrightarrow 5)$ Let *B* be an open set in *Y*. Then it is clear that $f^{-1}(B^c) = f^{-1}(B)^c$. (5 \Rightarrow 6) Let *B* be a set in *Y*. Clearly $f^{-1}(\overline{B})$ is closed by 5. Since $f^{-1}(B) \subset f^{-1}(\overline{B})$, $\overline{f^{-1}(B)} \subset f^{-1}(\overline{B})$.

 $(5 \leftarrow 6)$ Let *B* be a closed set in *Y*. Then $f^{-1}(B) = f^{-1}(\overline{B}) \supset \overline{f^{-1}(B)}$ by 5. At the same time $f^{-1}(B) \subset \overline{f^{-1}(B)}$. Thus $f^{-1}(B) = \overline{f^{-1}(B)}$ and hence $f^{-1}(B)$ is closed.

 $\begin{array}{l} (6 \Rightarrow 7) \text{ Let } A \subset X \text{ and } B := f(A) \subset Y. \text{ Since } B = f(A), \ A \subset f^{-1}(B). \text{ Thus } \\ \overline{A} \subset \overline{f^{-1}(B)} \subset f^{-1}(\overline{B}). \text{ Consequently } f(\overline{A}) \subset f(f^{-1}(\overline{B})) \subset \overline{B} = \overline{f(A)}. \\ (6 \Leftrightarrow 7) \text{ Let } B \subset Y \text{ and } A := f^{-1}(B) \subset X. \text{ Then } f(A) = f(f^{-1}(B)) \subset B. \\ \text{Thus } f(\overline{A}) \subset \overline{f(A)} \subset \overline{B} \text{ and hence } \overline{A} = \overline{f^{-1}(B)} \subset f^{-1}(\overline{B}). \end{array}$

Proposition 2 Let X, Y, and Z be topological spaces. If $f : X \to Y$ and $g: Y \to Z$ are continuous, then the map $g \circ f : X \to Z$ is continuous.

Proof Let U be open in Z. Then $g^{-1}(U)$ is open in Y, and $f^{-1}(g^{-1}(U))$ is open in X. But $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ and hence $g \circ f$ is continuous. \Box

Homework Determine whether the following statements are equivalent to any of the statements of the proposition 3 or not.

- 1. $f^{-1}(B)^i \supset f^{-1}(B^i)$ for all $B \subset Y$.
- 2. $f(A^i) \supset f(A)^i$ for all $A \subset X$.