I.5 Subspace and Product space

Definition 1 Let X be a topological space and A be a subset in X. Then $\mathcal{T} = \{U \cap A | U \text{ is open in } X\}$ is called the subspace topology.

Proposition 1 Let \mathcal{B} be a basis for a space X. Then $\{B \cap A | B \in \mathcal{B}\}$ is a basis for a subspace A.

Proof First of all, $\cup \{B \cap A\} = A$. Given B_1 and B_2 , basis elements for X, and given $a \in A$. Since B_1 and B_2 are bases, there are another basic open set B_3 such that $a \in B_3 \subset B_1 \cap B_2$. Thus $a \in (B_3 \cap A) \subset (B_1 \cap A) \cap (B_2 \cap A)$. Thus $\{B \cap A\}$ satisfies basis axioms.

Example 1. A basis for $[0,1] \subset \mathbb{R}$.

2. A basis of \mathbb{Q} is $\mathbb{Q} \cap (a, b)$.

Proposition 2 Let Y be a subspace of X. If U is open in Y and Y is open in X, then A is open in X.

Proof Since U is open in $Y, U = Y \cap V$ for some V open in X. Since Y and V are open in X, so is $Y \cap V$.

Proposition 3 Let Y be a subspace of X. If C is closed in Y and Y is closed in X, then C is closed in X.

Proposition 4 1. Let $f: X \to Y$ be continuous and $A \subset X$, $f(A) \subset Z \subset Y$. Then $f|_A: A \to Z$ is also continuous.

2. Let $X = \bigcup_{\alpha} X_{\alpha}$ and X_{α} is open in X for all α . Then $f : X \to Y$ be continuous if and only if $f|_{X_{\alpha}} : X_{\alpha} \to Y$ is also continuous for all α .

Proof

- 1. Let V be an open set in Z, i.e, $V = U \cap Z$ for some U open in Y. Then $f|_A^{-1}(V) = f^{-1}(V) \cap A = f^{-1}(U) \cap A$. Since f is continuous, $f^{-1}(U)$ is open in X, and hence $f^{-1}(U) \cap A$ is open in A.
- 2. (\Rightarrow) trivial by 1.

(\Leftarrow) It suffice to show that $f^{-1}(V)$ is open for V open in Y. Observe that $f|_{X_{\alpha}}^{-1}(V)$ is open in X_{α} , and hence in X since X_{α} is open in X. Thus $f^{-1}(V) = \bigcup_{\alpha} f|_{X_{\alpha}}^{-1}(V)$ is open in X.

Definition 2 Let A be an index set and X_{α} be a topological space for $\alpha \in A$. The product of this indexed sets is defined by

$$\prod_{\alpha \in A} X_{\alpha} = \{ x : A \to \coprod_{\alpha} X_{\alpha} | \ x(\alpha) \in X_{\alpha} \}.$$

Example Let $A = \mathbb{N}$ and $X_{\alpha} = \mathbb{R}$. Then $x : \mathbb{N} \to \mathbb{R}$ is a sequence $x = (x_n)$, $n = 1, 2, \dots$

Definition 3 The projection map is defined by

$$p_{\alpha}: \prod_{\beta \in A} X_{\beta} \to X_{\alpha}$$

which assign each element of the product space to its α th coordinate: $x \mapsto x(\alpha)$.

Definition 4 (product topology) Let $X = \prod_{\alpha} X_{\alpha}$ and let U_{α} be an open set in X_{α} . Then $S = \{p_{\alpha}^{-1}(U_{\alpha}) | \alpha \in A \text{ and } U_{\alpha} \text{ open in } X_{\alpha}\}$ is a subbasis and the topology $\mathcal{T}(S)$ generated by S is called the product topology of X.

Note $p_{\alpha} : \prod_{\beta \in A} X_{\beta} \to X_{\alpha}$ is continuous with respect to the product topology and it is the coarsest topology with this property.

Proposition 5 $f: Y \to \prod X_{\alpha}$ is continuous if and only if $p_{\alpha} \circ f$ is continuous for each $\alpha \in A$.

Proof (\Rightarrow) The composition of two continuous functions is also continuous. (\Leftarrow) It suffices to show that the inverse image of subbasic open set is open. Let U_{α} be open in X_{α} . Observe that $f^{-1}(p_{\alpha}^{-1}(U_{\alpha})) = (p_{\alpha} \circ f)^{-1}(U_{\alpha})$, which is open in Y.

Homework 1 Prove the followings.

- 1. If $A \subset X$ and $B \subset Y$, then $A \times B \subset X \times Y$. Show that the subspace topology of $A \times B$ in $X \times Y$ is the same as the product topology.
- 2. If $f: X \to Y$ and $g: Z \to W$ are continuous, then $f \times g: X \times Z \to Y \times W$ is continuous.