II.1 Separation Axioms

경의 1 A topological space X is called a Hausdorff space $(T_2 - space)$ if each two disjoint points have non-intersecting neighborhoods, i.e., for each x, y, there exist O_x, O_y which are open sets with $x \in O_x$ and $y \in O_y$ such that $O_x \cap O_y = \emptyset$.

정의 2 A topological space X is said to be T_1 , if for each pair of distinct point, each has a neighborhood which does not contain the other.

A space X is said to be regular, if for each pair consisting of a point x and a closed set B disjoint from x, there exist disjoint open sets containing x and B, respectively. (T_3)

A space X is said to be normal, if for each pair A, B of disjoint closed sets of X, there exist disjoint open sets containing A and B, respectively. (T_4)

Example A discrete space is Hausdorff.

A metric space is Hausdorff.

A indiscrete space is not Hausdorff.

A space with cofinite topology is not Hausdorff but is T_1 .

명제 1 (1) Each subspace of a Hausdorff space is Hausdorff. (2) $\prod X_{\alpha}$ is Hausdorff if and only if each X_{α} is Hausdorff.

중명 (1) Let X be a Hausdorff space and Y be a subspace of X. Let $a, b \in Y \subset X$ with $a \neq b$. Since X is Hausdorff, there are disjoint open neighborhoods U and V, containing a and b, respectively. By definition of subspace, $Y \cap U$ and $Y \cap V$ are disjoint open neighborhoods in Y containing a and b, respectively.

(2) (\Leftarrow) Let $X = \prod X_{\alpha}$. Let $x = (x_{\alpha}), y = (y_{\alpha})$ with $x_{\alpha} \neq y_{\alpha}$ for some α . Since X_{α} is Hausdorff, there are separating open neighborhoods $O_{x_{\alpha}}$ and $O_{y_{\alpha}}$. Then $p^{-1}(O_{x_{\alpha}})$ and $p^{-1}(O_{y_{\alpha}})$ are separating open neighborhoods in X. (\Rightarrow) Since X_{α} can be embedded as a subspace of $\prod X_{\alpha}$ which is Hausdorff, X_{α} is also Hausdorff by (1).

(exercise) For each $\beta \neq \alpha$, fix a point $a_{\beta} \in X_{\beta}$. Then $s : X_{\alpha} \to \prod X_{\alpha}$ given by

$$s(x_{\alpha})_{\beta} = \begin{cases} a_{\beta} & \beta \neq \alpha \\ x_{\alpha} & \beta = \alpha \end{cases}$$

is an embedding.

명제 2 X is a Hausdorff space if and only if the diagonal $\Delta = \{(x, x) \mid x \in X\}$ is closed in $X \times X$.

증명 X is Hausdorff.

 $\Leftrightarrow \forall (x,y) \in \triangle^c, \exists \text{ Open neighborhoods } U_x, U_y \text{ of } x \text{ and } y \text{ s.t. } U_x \times U_y \subset \triangle^c.$ $\Leftrightarrow \triangle^c$ is open in $X \times X$. $\Leftrightarrow \triangle$ is closed in $X \times X$.

명제 3 Suppose that X is Hausdorff, then the followings hold.

(1) Each point in X is closed

(2) If x is an accumulation point of A in X, then each neighborhood of xcontains infinitely many points of A

증명 (1) Clear by definition.

(2) Suppose U is an open set containing x and only finite number of points of A different from x. Since $B := U \cap A - \{x\}$ is a finite subset of a Hausdorff space, it is closed and hence V := U - B is open. Then V is a neighborhoods of x containing no points of A different from x. Thus x is not an accumulation point, which is a contradiction.

명제 4 Let $f, g: X \longrightarrow Y$ be continuous maps from a topological space X to a Hausdorff space Y. Then (1) $\{x \mid f(x) = g(x)\}$ is closed (2) If $D \subset X$ is dense, i.e., $\overline{D} = X$ and $f|_D = g|_D$, then f = g on X (3) The graph of f is closed in $X \times Y$

중명 (1)Define $\varphi : X \longrightarrow Y \times Y$ by $\varphi : x \longmapsto (f(x), g(x))$, then $\{x \mid f(x) = g(x)\} = \varphi^{-1}(\Delta)$. Since Y is Hausdorff, Thus Δ is closed. Since φ is continuous, $\varphi^{-1}(\Delta)$ is closed. (2) Since $f \mid_{D} = g \mid_{D}, D \subset \{x : f(x) = g(x)\}$. Since $\{x : f(x) = g(x)\}$ is closed, $X = \overline{D} \subset \{x : f(x) = g(x)\} \subset X$. Thus f = g on X. (3) Define $\psi : X \times Y \longrightarrow Y \times Y$ by $\psi : (x, y) \longmapsto (f(x), y)$. Then the graph of $f = \{(x, y) : f(x) = y\}$ is equal to $\psi^{-1}(\Delta)$. Thus the graph of f is closed. \Box

Homework 1 Suppose Y is not Hausdorff in the preceding proposition. Find counter examples to (1) and (2) above.