
II.2 Compactness

Definition 1 Let X be a topological space and S be a subset of X. A collec-
tion U is a covering of S if S ⊂ ⋃

U∈U U . If each U ∈ U is an open set, U is
called an open covering of S.

Definition 2 A topological space X is compact if every open covering of X
has a finite subcovering, i.e., for each open covering U there exists a finite
number of sets {U1, U2, . . . , Un} ⊂ U such that X =

⋃
Ui.

Note that a subset A of X is compact iff an open covering of A in X has a
finite subcovering.

Example 1. X has a indiscrete topology. ⇒ X is compact.
2. X is a finite set. ⇒ X is compact.
3. A finite union of compact sets is compact.
4. R is not compact.
5. (a, b] is not compact. Consider (0, 1] and its open covering

{(1/n, 1]|n = 1, 2, 3, . . .}.

6. (Heine-Borel property) Every closed and bounded interval [a, b] in R is
compact.
Proof Let U be an open covering of I = [a, b].
Let S := {x ∈ I|[a, x] can be covered by finitely many open sets in U}. Then
S 6= ∅ since a ∈ S. Let c := sup S. Since U is a covering, ∃U ∈ U such that
c ∈ U . If c 6= b, choose ε > 0 so that (c−2ε, c+2ε) ⊂ U . Since [a, c−ε] is covered
by finitely many open sets in U , say U1, · · ·Un, we have [a, c+ε] ⊂ (

⋃n
i=1 Ui)∪U ,

i.e., [a, c + ε] is covered by finitely open sets, and hence c + ε ∈ S. This is a
contradiction to the fact c = sup S, and we conclude that c = b. But in this
case, by the same argument as above, c = b ∈ S.

Proposition 1 X is compact. ⇔ If C is a family of closed subsets of X
with finite intersection property, i.e., C1

⋂
C2

⋂
. . .

⋂
Cn 6= ∅ for any finite

subcollection {C1, . . . , Cn} ⊂ C, then
⋂

C∈C C 6= ∅.
Proof Every collection of open subsets whose union is X contains a finite
subcollection whose union is X. ⇔ Every collection of closed subsets whose
intersection is empty contains a finite subcollection whose intersection is empty.
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Example {(−∞, n] | n ∈ Z} satisfies FIP but
⋂{(−∞, n] | n ∈ Z} = ∅.

⇒ R is not compact.

Proposition 2 A closed subset of a compact space is compact.

Proof Suppose U is an open covering of closed subset A. Then U ∪{Ac} is an
open covering of X and hence ∃ a finite open subcovering V ⊂ U of X. Now
V − {Ac}. is the desired finite subcovering for A.

Lemma 3 Suppose X is Hausdorff. If C is a compact subset of X and x is a
point disjoint from C, then there exist two disjoint open neighborhoods U and
V of C and x respectively. In other words, a compact set and a point can be
separated by open sets in a Hausdorff space.

Proof For each y ∈ C, the Hausdorff property implies that there are dis-
joint open neighborhoods Uy 3 y and Vy 3 x. Since C is compact, C ⊂
Uy1

⋂
Uy2

⋂
. . .

⋂
Uyn = U. Set V = Vy1

⋂
Vy2

⋂
. . .

⋂
Vyn .

Proposition 4 A compact subset of a Hausdorff space is closed.

Proof Cc is open since, for any point x ∈ Cc, there exists an open neighbor-
hood Ox disjoint with C.

Proposition 5 Two disjoint compact subsets of a Hausdorff space have dis-
joint open neighborhoods.

Proof Suppose C and D are compact subsets. For each y ∈ D, there exist
disjoint open neighborhoods Uy, Vy of C and y respectively. By compactness,
D is covered by finitely many Vy’s. Also C is contained in the intersection of
the corresponding finitely many open sets Uy’s.

Theorem 6 The product of finitely many compact spaces is compact.

Proof It is sufficient to show that the product of two compact spaces is com-
pact. Let X and Y be two compact spaces. Suppose U = {Uα | α ∈ J} is
an open covering of X × Y . Fix x ∈ X. Then for each y ∈ Y , there is an
open set U ∈ U which contains (x, y), and a basic open neighborhood of (x, y),
V ×W ⊂ U . The collection of all such basic open sets covers the compact set
{x} × Y and hence has a finite subcovering {V1 × W1, · · · , Vn × Wn} where
each Vi ×Wi ⊂ Ui for some Ui ∈ U .
Let Vx =

⋂n
i=1 Vi, then Vx × Y ⊂ ⋃n

i=1(Vi × Wi) ⊂
⋃n

i=1 Ui is an open set
containing {x} × Y . Now V = {Vx|x ∈ X} is an open covering of X. Since X
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is compact, there is a finite subcovering {Vx1 , . . . Vxn} of V . Also each Vxi
× Y

is covered by a finite number of elements in U . Thus X × Y is covered by
finitely many open sets in U .

Theorem 7 (Generalized Heine-Borel) Suppose A is a subset of Rn, then A
is compact if and only if A is closed and bounded.

Proof Suppose that A is compact, then A is closed since Rn is Hausdorff.
Consturct an open covering B of A as

B = {Bn(0) | n = 1, 2, . . .}.

Since A is compact, B has a finite subcovering and hence A is contained in
Bn(0) for some n ∈ N.
Conversely suppose that A is closed and bounded, then there exists r ∈ R such
that A is contained in Br(0). Note that A ⊂ Br(0) ⊂ [−r, r]n. Thus A is a
closed subset of the compact space [−r, r]n. Hence A is compact.

Example 1. Closed balls and spheres are compact.
2. Cantor set is compact.
3. I

⋂
Q is not compact.

4. R ⊂ R2 is not compact.

Remark Let X be a metric space. If A ⊂ X is compact, then A is closed
and bounded. But not conversely.

Example Consider a metric space X with a metric

d(x, y) =

{
1 if x = y
0 otherwise.

It is clear that the topology induced by d is discrete. Thus, if X is an infinite
set, X cannot be compact. However X is bounded.

Theorem 8 Let f : X → Y be a continuous function from a space X to a
space Y . Then the followings hold.
1. If X is compact, f(X) is compact.
2. If X is compact and Y is Hausdorff, f is a closed map.
3. If X is compact, Y is Hausdorff and f is bijective, then f is a homeomor-
phism.
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Proof
1. Let U be an open covering of f(X), then V = {f−1(U) | U ∈ U} is an open
covering of X and has a finite subcovering {f−1(U1), f

−1(U2), . . . , f
−1(Un)}.

Since X ⊂ f−1(U1)
⋃

f−1(U2)
⋃

. . .
⋃

f−1(Un) = f−1(U1

⋃
. . .

⋃
Un), f(X) is

covered by a finite subcovering {U1, . . . , Un}.
2. Suppose A is a closed subset of X. Since X is compact, A is compact
and f(A) is compact. Now f(A) is a compact subset of a Hausdorff space Y .
Hence f(A) is closed.
3. It is clear from the above result.
(exercise) Let f : X → R be a continuous map from a compact space X to
the real line R. Show that f attains its maximum and minimum.

Corollary 9 Let f : X → Y be a continuous function from a compact space
X to a Hausdorff space Y . If f is continuous and injective, f is an imbedding.

Example 1. The function f :
∏

Ai → [0, 1], given by f((ai)) =
∑

ai

3i , is an
imbedding.
2. A wild arc in R3 is an imbedding of an unit interval [0, 1] into R3.

Definition 3 X is countably compact if every countable covering has a finite
subcovering.

Definition 4 X has the Bolzano Weierstrass Property(BWP) if every infinite
subset of X has an accumulation point.

Theorem 10 If X is countably compact, the X has BWP.

Proof It suffices to show that every countably infinite subset has an accumu-
lation point. Suppose that a countably infinite set A = {a1, a2, . . .} does not
have an accumulation point. Then

(i) A is closed since Ā = A
⋃

A′ = A,

(ii) each ai is an isolated point of A. Thus, for each ai, there is an open
neighborhood Oi such that Oi

⋂
A = {ai}.

Thus {Oi}
⋃{X − A} is an countable open covering of X. By the countable

compactness there is a finite subcovering {Oi1 , . . . , Oin}
⋃{X −A}. Therefore

some Oik must contain infinitely many ai’s in A. This is a contradiction.

Theorem 11 If a space X is Hausdorff and has BWP, then X is countably
compact.
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Proof Let U = {U1, . . .} be a countable open covering of X. We may assume
that U is not redundant, i.e., Un+1 is not contained in U1

⋃
. . .

⋃
Un for each

n. Suppose that U does not have a finite subcovering. Then there is a set
A = {xn ∈ X | n = 1, 2, . . .} such that each xn is in Un− (U1

⋃
. . .

⋃
Un−1). A

is an infinite set since xi 6= xj if i 6= j. By BWP, A has an accumulation point
x ∈ A. There is Un ∈ U which contains x. From the Hausdorff condition, Un

should contain infinitely many xi’s. This is a contradiction.

Remark Compact ⇒ Countably compact ⇒ BWP
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