II.2 Compactness

Definition 1 Let X be a topological space and S be a subset of X. A collection \mathcal{U} is a covering of S if $S \subset \bigcup_{U \in \mathcal{U}} U$. If each $U \in \mathcal{U}$ is an open set, \mathcal{U} is called an open covering of S.

Definition 2 A topological space X is compact if every open covering of X has a finite subcovering, i.e., for each open covering \mathcal{U} there exists a finite number of sets $\{U_1, U_2, \ldots, U_n\} \subset \mathcal{U}$ such that $X = \bigcup U_i$.

Note that a subset A of X is compact iff an open covering of A in X has a finite subcovering.

Example 1. X has a indiscrete topology. \Rightarrow X is compact.

- 2. X is a finite set. \Rightarrow X is compact.
- 3. A finite union of compact sets is compact.
- 4. \mathbb{R} is not compact.
- 5. (a, b] is not compact. Consider (0, 1] and its open covering

$$\{(1/n, 1] | n = 1, 2, 3, \ldots\}.$$

6. (Heine-Borel property) Every closed and bounded interval [a, b] in \mathbb{R} is compact.

Proof Let \mathcal{U} be an open covering of I = [a, b].

Let $S := \{x \in I | [a, x] \text{ can be covered by finitely many open sets in } \mathcal{U}\}$. Then $S \neq \emptyset$ since $a \in S$. Let $c := \sup S$. Since \mathcal{U} is a covering, $\exists U \in \mathcal{U}$ such that $c \in U$. If $c \neq b$, choose $\epsilon > 0$ so that $(c-2\epsilon, c+2\epsilon) \subset U$. Since $[a, c-\epsilon]$ is covered by finitely many open sets in \mathcal{U} , say U_1, \cdots , U_n , we have $[a, c+\epsilon] \subset (\bigcup_{i=1}^n U_i) \cup U$, i.e., $[a, c+\epsilon]$ is covered by finitely open sets, and hence $c + \epsilon \in S$. This is a contradiction to the fact $c = \sup S$, and we conclude that c = b. But in this case, by the same argument as above, $c = b \in S$.

Proposition 1 X is compact. \Leftrightarrow If C is a family of closed subsets of X with finite intersection property, i.e., $C_1 \cap C_2 \cap \ldots \cap C_n \neq \emptyset$ for any finite subcollection $\{C_1, \ldots, C_n\} \subset C$, then $\bigcap_{C \in C} C \neq \emptyset$.

Proof Every collection of open subsets whose union is X contains a finite subcollection whose union is X. \Leftrightarrow Every collection of closed subsets whose intersection is empty contains a finite subcollection whose intersection is empty.

Example $\{(-\infty, n] \mid n \in \mathbb{Z}\}$ satisfies FIP but $\bigcap\{(-\infty, n] \mid n \in \mathbb{Z}\} = \emptyset$. $\Rightarrow \mathbb{R}$ is not compact.

Proposition 2 A closed subset of a compact space is compact.

Proof Suppose \mathcal{U} is an open covering of closed subset A. Then $\mathcal{U} \cup \{A^c\}$ is an open covering of X and hence \exists a finite open subcovering $\mathcal{V} \subset \mathcal{U}$ of X. Now $\mathcal{V} - \{A^c\}$. is the desired finite subcovering for A.

Lemma 3 Suppose X is Hausdorff. If C is a compact subset of X and x is a point disjoint from C, then there exist two disjoint open neighborhoods U and V of C and x respectively. In other words, a compact set and a point can be separated by open sets in a Hausdorff space.

Proof For each $y \in C$, the Hausdorff property implies that there are disjoint open neighborhoods $U_y \ni y$ and $V_y \ni x$. Since C is compact, $C \subset U_{y_1} \bigcap U_{y_2} \bigcap \ldots \bigcap U_{y_n} = U$. Set $V = V_{y_1} \bigcap V_{y_2} \bigcap \ldots \bigcap V_{y_n}$.

Proposition 4 A compact subset of a Hausdorff space is closed.

Proof C^c is open since, for any point $x \in C^c$, there exists an open neighborhood O_x disjoint with C.

Proposition 5 Two disjoint compact subsets of a Hausdorff space have disjoint open neighborhoods.

Proof Suppose C and D are compact subsets. For each $y \in D$, there exist disjoint open neighborhoods U_y, V_y of C and y respectively. By compactness, D is covered by finitely many V_y 's. Also C is contained in the intersection of the corresponding finitely many open sets U_y 's.

Theorem 6 The product of finitely many compact spaces is compact.

Proof It is sufficient to show that the product of two compact spaces is compact. Let X and Y be two compact spaces. Suppose $\mathcal{U} = \{U_{\alpha} \mid \alpha \in J\}$ is an open covering of $X \times Y$. Fix $x \in X$. Then for each $y \in Y$, there is an open set $U \in \mathcal{U}$ which contains (x, y), and a basic open neighborhood of (x, y), $V \times W \subset \mathcal{U}$. The collection of all such basic open sets covers the compact set $\{x\} \times Y$ and hence has a finite subcovering $\{V_1 \times W_1, \dots, V_n \times W_n\}$ where each $V_i \times W_i \subset U_i$ for some $U_i \in \mathcal{U}$.

Let $V_x = \bigcap_{i=1}^n V_i$, then $V_x \times Y \subset \bigcup_{i=1}^n (V_i \times W_i) \subset \bigcup_{i=1}^n U_i$ is an open set containing $\{x\} \times Y$. Now $\mathcal{V} = \{V_x | x \in X\}$ is an open covering of X. Since X

is compact, there is a finite subcovering $\{V_{x_1}, \ldots, V_{x_n}\}$ of \mathcal{V} . Also each $V_{x_i} \times Y$ is covered by a finite number of elements in \mathcal{U} . Thus $X \times Y$ is covered by finitely many open sets in \mathcal{U} .

Theorem 7 (Generalized Heine-Borel) Suppose A is a subset of \mathbb{R}^n , then A is compact if and only if A is closed and bounded.

Proof Suppose that A is compact, then A is closed since \mathbb{R}^n is Hausdorff. Construct an open covering \mathcal{B} of A as

$$\mathcal{B} = \{B_n(0) \mid n = 1, 2, \ldots\}.$$

Since A is compact, \mathcal{B} has a finite subcovering and hence A is contained in $B_n(0)$ for some $n \in \mathbb{N}$.

Conversely suppose that A is closed and bounded, then there exists $r \in \mathbb{R}$ such that A is contained in $B_r(0)$. Note that $A \subset B_r(0) \subset [-r, r]^n$. Thus A is a closed subset of the compact space $[-r, r]^n$. Hence A is compact.

Example 1. Closed balls and spheres are compact.

- 2. Cantor set is compact.
- 3. $I \cap \mathbb{Q}$ is not compact.
- 4. $\mathbb{R} \subset \mathbb{R}^2$ is not compact.

Remark Let X be a metric space. If $A \subset X$ is compact, then A is closed and bounded. But not conversely.

Example Consider a metric space X with a metric

$$d(x,y) = \begin{cases} 1 & \text{if } x = y \\ 0 & \text{otherwise} \end{cases}$$

It is clear that the topology induced by d is discrete. Thus, if X is an infinite set, X cannot be compact. However X is bounded.

Theorem 8 Let $f : X \to Y$ be a continuous function from a space X to a space Y. Then the followings hold.

1. If X is compact, f(X) is compact.

2. If X is compact and Y is Hausdorff, f is a closed map.

3. If X is compact, Y is Hausdorff and f is bijective, then f is a homeomorphism.

Proof

1. Let \mathcal{U} be an open covering of f(X), then $\mathcal{V} = \{f^{-1}(U) \mid U \in \mathcal{U}\}$ is an open covering of X and has a finite subcovering $\{f^{-1}(U_1), f^{-1}(U_2), \ldots, f^{-1}(U_n)\}$. Since $X \subset f^{-1}(U_1) \bigcup f^{-1}(U_2) \bigcup \ldots \bigcup f^{-1}(U_n) = f^{-1}(U_1 \bigcup \ldots \bigcup U_n), f(X)$ is covered by a finite subcovering $\{U_1, \ldots, U_n\}$.

2. Suppose A is a closed subset of X. Since X is compact, A is compact and f(A) is compact. Now f(A) is a compact subset of a Hausdorff space Y. Hence f(A) is closed.

3. It is clear from the above result.

(exercise) Let $f : X \to \mathbb{R}$ be a continuous map from a compact space X to the real line \mathbb{R} . Show that f attains its maximum and minimum.

Corollary 9 Let $f : X \to Y$ be a continuous function from a compact space X to a Hausdorff space Y. If f is continuous and injective, f is an imbedding.

Example 1. The function $f : \prod A_i \to [0, 1]$, given by $f((a_i)) = \sum \frac{a_i}{3^i}$, is an imbedding.

2. A wild arc in \mathbb{R}^3 is an imbedding of an unit interval [0, 1] into \mathbb{R}^3 .

Definition 3 X is countably compact if every countable covering has a finite subcovering.

Definition 4 X has the Bolzano Weierstrass Property(BWP) if every infinite subset of X has an accumulation point.

Theorem 10 If X is countably compact, the X has BWP.

Proof It suffices to show that every countably infinite subset has an accumulation point. Suppose that a countably infinite set $A = \{a_1, a_2, \ldots\}$ does not have an accumulation point. Then

- (i) A is closed since $\overline{A} = A \bigcup A' = A$,
- (ii) each a_i is an isolated point of A. Thus, for each a_i , there is an open neighborhood O_i such that $O_i \cap A = \{a_i\}$.

Thus $\{O_i\} \bigcup \{X - A\}$ is an countable open covering of X. By the countable compactness there is a finite subcovering $\{O_{i_1}, \ldots, O_{i_n}\} \bigcup \{X - A\}$. Therefore some O_{i_k} must contain infinitely many a_i 's in A. This is a contradiction.

Theorem 11 If a space X is Hausdorff and has BWP, then X is countably compact.

Proof Let $\mathcal{U} = \{U_1, \ldots\}$ be a countable open covering of X. We may assume that \mathcal{U} is not redundant, i.e., U_{n+1} is not contained in $U_1 \bigcup \ldots \bigcup U_n$ for each n. Suppose that \mathcal{U} does not have a finite subcovering. Then there is a set $A = \{x_n \in X \mid n = 1, 2, \ldots\}$ such that each x_n is in $U_n - (U_1 \bigcup \ldots \bigcup U_{n-1})$. A is an infinite set since $x_i \neq x_j$ if $i \neq j$. By BWP, A has an accumulation point $x \in A$. There is $U_n \in \mathcal{U}$ which contains x. From the Hausdorff condition, U_n should contain infinitely many x_i 's. This is a contradiction.

Remark Compact \Rightarrow Countably compact \Rightarrow BWP