I1.2 Compactness

Definition 1 Let X be a topological space and S be a subset of X. A collec-
tion U is a covering of S if S C J, o, U. If each U € U is an open set, U is
called an open covering of S.

Definition 2 A topological space X is compact if every open covering of X
has a finite subcovering, i.e., for each open covering U there exists a finite
number of sets {Uy,Us,...,U,} C U such that X = JU,.

Note that a subset A of X is compact iff an open covering of A in X has a
finite subcovering.

Example 1. X has a indiscrete topology. = X is compact.
2. X is a finite set. = X is compact.

3. A finite union of compact sets is compact.

4. R is not compact.

5. (a,b] is not compact. Consider (0, 1] and its open covering

{1/, 1)ln=1,2,3,...}.

6. (Heine-Borel property) Every closed and bounded interval [a,b] in R is
compact.

Proof Let U be an open covering of I = [a, b].

Let S := {x € I|[a, x] can be covered by finitely many open sets in U}. Then
S # () since a € S. Let ¢ := sup S. Since U is a covering, U € U such that
ce U. If e # b, choose € > 0so that (c—2¢,c¢+2¢) C U. Since [a, c—¢] is covered
by finitely many open sets in U, say Uy, - - - U,,, we have [a, c+€] C (U, U;)UU,
i.e., [a,c + €| is covered by finitely open sets, and hence ¢ + ¢ € S. This is a
contradiction to the fact ¢ = sup S, and we conclude that ¢ = b. But in this
case, by the same argument as above, c =0 € S. 0

Proposition 1 X is compact. < If C is a family of closed subsets of X
with finite intersection property, i.e., C1(\Co()...(\Cn # O for any finite
subcollection {C1,...,Cp} CC, then (oee C # 0.

Proof Every collection of open subsets whose union is X contains a finite
subcollection whose union is X. < Every collection of closed subsets whose
intersection is empty contains a finite subcollection whose intersection is empty.

O



Example {(—oc,n| | n € Z} satisfies FIP but ({(—oo,n] | n € Z} = 0.
= R is not compact.

Proposition 2 A closed subset of a compact space is compact.

Proof Suppose U is an open covering of closed subset A. Then U U {A°} is an
open covering of X and hence d a finite open subcovering ¥V C U of X. Now
V — {A°}. is the desired finite subcovering for A. 0

Lemma 3 Suppose X is Hausdorff. If C' is a compact subset of X and x is a
point disjoint from C', then there exist two disjoint open neighborhoods U and
V' of C and x respectively. In other words, a compact set and a point can be
separated by open sets in a Hausdorff space.

Proof For each y € C, the Hausdorff property implies that there are dis-
joint open neighborhoods U, > y and V,, > z. Since C is compact, C C

Up NUpN---NU,y, =U. Set V=V, \Viu .- NV, -

Proposition 4 A compact subset of a Hausdorff space is closed.

Proof C° is open since, for any point x € C°, there exists an open neighbor-
hood O, disjoint with C'. 0

Proposition 5 Two disjoint compact subsets of a Hausdorff space have dis-
joint open neighborhoods.

Proof Suppose C and D are compact subsets. For each y € D, there exist
disjoint open neighborhoods Uy, V, of C and y respectively. By compactness,
D is covered by finitely many V,’s. Also C is contained in the intersection of
the corresponding finitely many open sets U,’s. 0

Theorem 6 The product of finitely many compact spaces is compact.

Proof It is sufficient to show that the product of two compact spaces is com-
pact. Let X and Y be two compact spaces. Suppose U = {U, | a € J} is
an open covering of X x Y. Fix x € X. Then for each y € Y, there is an
open set U € U which contains (z,y), and a basic open neighborhood of (z, y),
V x W C U. The collection of all such basic open sets covers the compact set
{z} x Y and hence has a finite subcovering {V; x Wy, --- |V, x W, } where
each V; x W; C U; for some U; € U.

Let V, = (i, Vi, then V, x Y C J_, (Vi x W;) € U, U; is an open set
containing {z} x Y. Now V = {V,|z € X} is an open covering of X. Since X



is compact, there is a finite subcovering {V,,,...V,, } of V. Also each V,, x Y
is covered by a finite number of elements in &/. Thus X x Y is covered by
finitely many open sets in U. O

Theorem 7 (Generalized Heine-Borel) Suppose A is a subset of R™, then A
is compact if and only if A is closed and bounded.

Proof Suppose that A is compact, then A is closed since R™ is Hausdorff.
Consturct an open covering B of A as

B=1{B,(0)|n=1,2..}

Since A is compact, B has a finite subcovering and hence A is contained in
B,,(0) for some n € N.

Conversely suppose that A is closed and bounded, then there exists r € R such
that A is contained in B,(0). Note that A C B,(0) C [—r,r]". Thus A is a
closed subset of the compact space [—r, r|". Hence A is compact. O

Example 1. Closed balls and spheres are compact.
2. Cantor set is compact.

3. 1 Q is not compact.

4. R C R? is not compact.

Remark Let X be a metric space. If A C X is compact, then A is closed
and bounded. But not conversely.

Example Consider a metric space X with a metric

1 ifr=y
0 otherwise.

d(z,y) = {

It is clear that the topology induced by d is discrete. Thus, if X is an infinite
set, X cannot be compact. However X is bounded.

Theorem 8 Let f : X — Y be a continuous function from a space X to a
space Y. Then the followings hold.

1. If X is compact, f(X) is compact.

2. If X is compact and Y is Hausdorff, f is a closed map.

3. If X is compact, Y is Hausdorff and f is bijective, then f is a homeomor-
phism.



Proof

1. Let U be an open covering of f(X), then V = {f~%(U) | U € U} is an open
covering of X and has a finite subcovering {f~1(U,), f~H(Us), ..., f~(U,)}-
Since X ¢ f (U UL (U)U-.-Uf(Ua) = 14T U, £(X) is
covered by a finite subcovering {Uy, ..., U,}.

2. Suppose A is a closed subset of X. Since X is compact, A is compact
and f(A) is compact. Now f(A) is a compact subset of a Hausdorff space Y.
Hence f(A) is closed.

3. It is clear from the above result. O
(exercise) Let f: X — R be a continuous map from a compact space X to
the real line R. Show that f attains its maximum and minimum.

Corollary 9 Let f : X — Y be a continuous function from a compact space
X to a Hausdorff space Y. If f is continuous and injective, f is an imbedding.

Example 1. The function f : [ A; — [0,1], given by f((a;)) = >_ 5, is an
imbedding.
2. A wild arc in R? is an imbedding of an unit interval [0, 1] into R3.

Definition 3 X is countably compact if every countable covering has a finite
subcovering.

Definition 4 X has the Bolzano Weierstrass Property(BWP) if every infinite
subset of X has an accumulation point.

Theorem 10 If X is countably compact, the X has BWP.

Proof It suffices to show that every countably infinite subset has an accumu-
lation point. Suppose that a countably infinite set A = {aq, as, ...} does not
have an accumulation point. Then

(i) Ais closed since A = A|JA' = A,

(ii) each a; is an isolated point of A. Thus, for each a;, there is an open
neighborhood O; such that O; (A = {a;}.

Thus {O;} U{X — A} is an countable open covering of X. By the countable
compactness there is a finite subcovering {O;,, ..., 0, } U{X — A}. Therefore
some O;, must contain infinitely many a;’s in A. This is a contradiction.

Theorem 11 If a space X is Hausdorff and has BWP, then X is countably
compact.



Proof Let U = {Uy, ...} be a countable open covering of X. We may assume
that U is not redundant, i.e., U, is not contained in Uy {J...|J U, for each
n. Suppose that U does not have a finite subcovering. Then there is a set
A={z,€ X |n=1,2,...} such that each z,, isin U, — (U;J...JU,-1). A
is an infinite set since x; # z; if ¢ # j. By BWP, A has an accumulation point
x € A. There is U,, € U which contains x. From the Hausdorff condition, U,
should contain infinitely many z;’s. This is a contradiction. 0

Remark Compact = Countably compact = BWP



