IV.2 Basic topological properties

4. Connectedness

Definition 1 A topological space X is disconnected if there is nonempty open
sets Aand Bin X st. X =AUB and AN B = ¢.

In this case {A, B} is called a disconnection or a separation of X.

A topological space X is connected if it is not disconnected.

Example Q is disconnected by (—00,+/2) and (1/2, 00).

Proposition 1 R s connected.

proof. Suppose not. Then R =AU B, AN B = ¢ where A and B are open.
Choose a € A, b € B and we may assume that a < b. Let S = AN [a,b] # ¢.
S is bounded and hence S has supremum s € (a,b) since AN [a,b], BN [a, b
are open neighborhoods of a and b respectively.

(1)s¢ A

If s € A, 3 open neighborhood (s —€,s +¢) C AN (a,b) C S, and hence
s # sup(9).

(2) s¢ B :

If s € B,3 open neighborhood (s —¢,s +¢) C BN (a,b) and hence s #
sup(S) since sup(S) < s — €.

Hence we obtain a contradiction. O

Theorem 2 The product of connected spaces is connected.

proof. Let X =[], X; fix a point a € X

Claim D := {z € X| z and a differ in at most finitely many coordinates. }
is a dense subset of X.

(Proof of Claim) We want to show that each basic open set U = p; *(O;,) N
<N pi_nl(Oin), where O;, is open subset of X, , intersects D.

Choose a point b;, € O;, C X;, for k=1,2,...n. Let x = (x;) be a point in X
given by x; = b;, if i = i, and x; = q; if ¢ # 4, for k=1,2,..n. Then clearly
x=(z;) e UND.

Suppose that X = AU B is a disconnection of X. Let’s define an equiva-
lence relation ~ such that x ~ y if both  and y belong to the same open set

Aor B.



Let’s show that t € D =z ~a :

Suppose that z differs from a in only one coordinate say x; # a;. Then x and
a are in $(X) where s is a slice map from X; to X defined by s(z;); = z; if
j =1, and s(z;); = a; if j # i. Since s(X;) is connected, x ~ a. Otherwise
ANs(X;) and BNs(X;) give a disconnection of s(X;). Apply the above argu-
ment repeatedly to each coordinate in which x and a differ.

Hence we conclude that either D C A or D C B exclusively, which is a
contradiction to the fact that D is dense and hence intersects every non-empty
open set. 0

Proposition 3 The followings are equivalent.

(1) X is connected.

(2) The only open and closed sets in X are X and ¢.

(8) If f: X — {0,1} is continuous, then f is not onto, i.e., f is constant.

proof. Clear. 0

Proposition 4 A continuous image of connected space is connected.

proof. f: X — Y be a continuous function and X is connected.
If f(X)= AU B is a disconnection, then f~*(A4)U f~!(B) will be a discon-
nection of X. O

Remark (Intermediate value property)
Let f : X — R be a continuous function where X is connected and f(a) <
p < f(b). Then there exists x € X such that p = f(x).

Proposition 5 X s a topological space.

(1) Let A, C X be a connected subset for all . Then NyAy # ¢ = Ug Ay is
connected.

(2) A: a connected subset of X

AC B C A= B is connected.

In particular, A is connected.

proof. (If f : U,A, — {0,1} is continuous, then f|a, is continuous and
hence it is constant. If a € N, A, then f|4, = f(a) for all a.

Therefore f = f(a).

(2)Let f: B — {0,1} be a continuous function.



= f|a is continuous
= f]4 is constant ¢ since A is connected.
= f = c is the unique extension of f|4 on A and hence on B. O

Example (1) R=(0,1) C (0,1] C [0, 1] all connected.
(2) The union of the graph of y = sin(1/z), (x > 0) (topologist’s sine curve)
and {0} x [—1,1] is the closure of the graph and hence it is connected.

6. Path-connectedness

Definition 2 Let X be a topological space. A continuous map v : I = [0,1] —
X is called a path joining v(0) and ~(1).
A space X is path-connected if each pair of points can be joined by a path.

Proposition 6 Path-connected = connected. (not <)

proof. Let f : X — {0,1}, where X is path-connected, be a continuous
function. If there exists z and y s.t. f(z) = 0 and f(y) = 1, then there is
vl — Xst v0)=z,v(1)=y

= fovy:1 — {0,1} continuous and onto.

= [ is not connected. (A contradiction!)

A counterexample of (<=) : the closure of the topologist’s sine curve 0

Remark (1) Let A, be path connected for all & € I. Then NyesAs # ¢ =
UaerAq is path connected.

(2) The closure of a path connected space is not necessarily path connected.(A
counterexample is the topologist’s sine curve.)

Definition 3 A maximal (path-) connected subspace of a topological space is
called a (path-) component of the space.

[Figure describing component and path-component on real line, topologist’
sine curve, rational number, and Cantor set]

Definition 4 A topological space is said to be totally disconnected if every
component is a point.

Proposition 7 X s a topological space.

(1) Each point in X is contained in exactly one (path-) component of X .
(2) X is a disjoint union of (path-) components.

(8) Each component is closed. (not necessarily for path-component)
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proof. (1) The union of all (path-)connected sets containing = € X is a (path-
Jcomponent.

(2) If they intersect, their union will be connected, so it is a contradiction to
the maximality of (path-)component. Therefore components are disjoint.

(3) If C is a component. Then C is connected and so is C. By maximality of
component, C' O C. Therefore C = C is closed.

(3) does not hold for path component. (A counterexample is the topologist’s
sine curve). 0

Proposition 8 (1) Vx € X has a (path-) connected neighborhood
& VY each (path-)component is open(and hence closed).

(2) X is path-connected

& X 1s connected and Vr € X has a path-connected neighborhood.

proof. (1)(=) Let C' be a component. Then by maximality, U, C C' (U, is a
connected neighborhood of z).

(<) Trivial.

By the same argument this is true for path component, too.

(2)(=) Clear.

(<) By (1), each path-component is open. So they are disjoint and open.
Therefore each path-component is closed since its complement is open being
a disjoint union of open sets. Hence it is both open and closed. Since X is
connected, a path-component becomes X itself. O

Corollary 9 An open set in R™ is connected < it is path-connected.

Definition 5 A space X is locally (path-) connected if for all x in X, each
neighborhood of x contains a (path) connected neighborhood.(i.e., each point
has a basis consisting of connected open sets).

Remark Concepts of connectedness and local connectedness are indepen-
dent, i.e., one does not necessarily imply the other.

Indeed an example of locally connected but not connected space is (0, 1)U(2, 3).
An example of connected but not locally connected is the closure of topologist
sine curve.

Proposition 10 (1) X is locally (path-)connected
& the (path-)components of each open set are open.
(In particular, each (path-) component is open for a locally (path-)connected

space).



(2) X is locally path-connected
= the components and the path-components of X are the same.

Proof is a Homework.



