
IV.2 Basic topological properties

4. Connectedness

Definition 1 A topological space X is disconnected if there is nonempty open
sets A and B in X s.t. X = A ∪B and A ∩B = φ.
In this case {A, B} is called a disconnection or a separation of X.
A topological space X is connected if it is not disconnected.

Example Q is disconnected by (−∞,
√

2) and (
√

2,∞).

Proposition 1 R is connected.

proof. Suppose not. Then R = A ∪B, A ∩B = φ where A and B are open.
Choose a ∈ A, b ∈ B and we may assume that a < b. Let S = A ∩ [a, b] 6= φ.
S is bounded and hence S has supremum s ∈ (a, b) since A ∩ [a, b], B ∩ [a, b]
are open neighborhoods of a and b respectively.
(1) s /∈ A :
If s ∈ A, ∃ open neighborhood (s − ε, s + ε) ⊂ A ∩ (a, b) ⊂ S, and hence
s 6= sup(S).
(2) s /∈ B :
If s ∈ B, ∃ open neighborhood (s − ε, s + ε) ⊂ B ∩ (a, b) and hence s 6=
sup(S) since sup(S) ≤ s− ε.
Hence we obtain a contradiction.

Theorem 2 The product of connected spaces is connected.

proof. Let X =
∏

i Xi fix a point a ∈ X

Claim D := {x ∈ X| x and a differ in at most finitely many coordinates. }
is a dense subset of X.
(Proof of Claim) We want to show that each basic open set U = p−1

i1
(Oi1)∩

· · · ∩ p−1
in

(Oin), where Oik is open subset of Xik , intersects D.
Choose a point bik ∈ Oik ⊂ Xik for k=1,2,...,n. Let x = (xi) be a point in X
given by xi = bik if i = ik, and xi = ai if i 6= ik for k=1,2,...n. Then clearly
x = (xi) ∈ U ∩D.

Suppose that X = A ∪ B is a disconnection of X. Let’s define an equiva-
lence relation ∼ such that x ∼ y if both x and y belong to the same open set
A or B.
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Let’s show that x ∈ D ⇒ x ∼ a :
Suppose that x differs from a in only one coordinate say xi 6= ai. Then x and
a are in s(X) where s is a slice map from Xi to X defined by s(xi)j = xi if
j = i, and s(xi)j = aj if j 6= i. Since s(Xi) is connected, x ∼ a. Otherwise
A∩ s(Xi) and B ∩ s(Xi) give a disconnection of s(Xi). Apply the above argu-
ment repeatedly to each coordinate in which x and a differ.

Hence we conclude that either D ⊂ A or D ⊂ B exclusively, which is a
contradiction to the fact that D is dense and hence intersects every non-empty
open set.

Proposition 3 The followings are equivalent.
(1) X is connected.
(2) The only open and closed sets in X are X and φ.
(3) If f : X → {0, 1} is continuous, then f is not onto, i.e., f is constant.

proof. Clear.

Proposition 4 A continuous image of connected space is connected.

proof. f : X → Y be a continuous function and X is connected.
If f(X) = A ∪ B is a disconnection, then f−1(A) ∪ f−1(B) will be a discon-
nection of X.

Remark (Intermediate value property)
Let f : X → R be a continuous function where X is connected and f(a) ≤
p ≤ f(b). Then there exists x ∈ X such that p = f(x).

Proposition 5 X is a topological space.
(1) Let Aα ⊂ X be a connected subset for all α. Then ∩αAα 6= φ ⇒ ∪αAα is
connected.
(2) A: a connected subset of X
A ⊂ B ⊂ A ⇒ B is connected.
In particular, A is connected.

proof. (1)If f : ∪αAα → {0, 1} is continuous, then f |Aα is continuous and
hence it is constant. If a ∈ ∩αAα then f |Aα ≡ f(a) for all α.
Therefore f ≡ f(a).
(2)Let f : B → {0, 1} be a continuous function.
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⇒ f |A is continuous
⇒ f |A is constant c since A is connected.
⇒ f ≡ c is the unique extension of f |A on A and hence on B.

Example (1) R ∼= (0, 1) ⊂ (0, 1] ⊂ [0, 1] all connected.
(2) The union of the graph of y = sin(1/x), (x > 0) (topologist’s sine curve)
and {0} × [−1, 1] is the closure of the graph and hence it is connected.

6. Path-connectedness

Definition 2 Let X be a topological space. A continuous map γ : I = [0, 1] →
X is called a path joining γ(0) and γ(1).
A space X is path-connected if each pair of points can be joined by a path.

Proposition 6 Path-connected ⇒ connected. (not ⇐)

proof. Let f : X → {0, 1}, where X is path-connected, be a continuous
function. If there exists x and y s.t. f(x) = 0 and f(y) = 1, then there is
γ : I → X s.t. γ(0) = x, γ(1) = y
⇒ f ◦ γ : I → {0, 1} continuous and onto.
⇒ I is not connected. (A contradiction!)

A counterexample of (⇐) : the closure of the topologist’s sine curve

Remark (1) Let Aα be path connected for all α ∈ I. Then ∩α∈IAα 6= φ ⇒
∪α∈IAα is path connected.
(2) The closure of a path connected space is not necessarily path connected.(A
counterexample is the topologist’s sine curve.)

Definition 3 A maximal (path-) connected subspace of a topological space is
called a (path-) component of the space.

[Figure describing component and path-component on real line, topologist’
sine curve, rational number, and Cantor set]

Definition 4 A topological space is said to be totally disconnected if every
component is a point.

Proposition 7 X is a topological space.
(1) Each point in X is contained in exactly one (path-) component of X.
(2) X is a disjoint union of (path-) components.
(3) Each component is closed. (not necessarily for path-component)
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proof. (1) The union of all (path-)connected sets containing x ∈ X is a (path-
)component.
(2) If they intersect, their union will be connected, so it is a contradiction to
the maximality of (path-)component. Therefore components are disjoint.
(3) If C is a component. Then C is connected and so is C. By maximality of
component, C ⊃ C. Therefore C = C is closed.
(3) does not hold for path component. (A counterexample is the topologist’s
sine curve).

Proposition 8 (1) ∀x ∈ X has a (path-) connected neighborhood
⇔ ∀ each (path-)component is open(and hence closed).
(2) X is path-connected
⇔ X is connected and ∀x ∈ X has a path-connected neighborhood.

proof. (1)(⇒) Let C be a component. Then by maximality, Ux ⊂ C (Ux is a
connected neighborhood of x).
(⇐) Trivial.
By the same argument this is true for path component, too.
(2)(⇒) Clear.
(⇐) By (1), each path-component is open. So they are disjoint and open.
Therefore each path-component is closed since its complement is open being
a disjoint union of open sets. Hence it is both open and closed. Since X is
connected, a path-component becomes X itself.

Corollary 9 An open set in Rn is connected ⇔ it is path-connected.

Definition 5 A space X is locally (path-) connected if for all x in X, each
neighborhood of x contains a (path) connected neighborhood.(i.e., each point
has a basis consisting of connected open sets).

Remark Concepts of connectedness and local connectedness are indepen-
dent, i.e., one does not necessarily imply the other.

Indeed an example of locally connected but not connected space is (0, 1)∪(2, 3).
An example of connected but not locally connected is the closure of topologist
sine curve.

Proposition 10 (1) X is locally (path-)connected
⇔ the (path-)components of each open set are open.
(In particular, each (path-) component is open for a locally (path-)connected
space).
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(2) X is locally path-connected
⇒ the components and the path-components of X are the same.

Proof is a Homework.
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