
II Basic topological properties

5. Axioms of countability

Definition 1 A space X satisfies the first axiom of countability(first
countable) if for all x ∈ X, there exists a countable collection of open sets
O = {On} which satisfies the condition that for all open neighborhood O of x,
there exists an On ∈ O s.t. x ∈ On ⊂ O.
This O is called a basis at x.

Example A metric space is 1st countable.

proof. {balls with rational radius} forms a basis at each point.

Definition 2 A space X satisfies the second axiom of countability(second
countable) if X has a countable basis.

Note Second countable ⇒ First countable.

Example

1. Rn is second countable: {Br(q)| q ∈ Qn, r ∈ Q} is a countable basis of Rn.

2. A discrete space is first countable. An uncountable discrete space is not
second countable.

3. Rl is R with half open interval topology, i.e., the topology is generated by
{(a, b]| a < b}. Then Rl is 1st countable ((r, x], r ∈ Q is a countable basis at
x) but not 2nd countable.
proof. Suppose Rl is 2nd countable, then there exists a basis of the form
{(an, bn]|n ∈ N} by Lemma 1. Choose b with b 6= bn for all n ∈ N. Then (a, b]
is not a union of the intervals (an, bn] and this is contradiction.

Lemma 1 If X is 2nd countable, each basis for X has a countable subcollection
which also forms a basis for X.

(Proof is a homework.)

Proposition 2 A subspace of 1st countable space(2nd countable respectively)
is 1st countable(2nd countable respectively).

Proof is clear.

Proposition 3 X, Y: 1st countable ⇒ X × Y :1st countable.
X, Y: 2nd countable ⇒ X × Y :2nd countable.
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proof. OX ,OY : countable basis of X,Y, respectively.
⇒ OX ×OY = {OX ×OY |OX ∈ OX , OY ∈ OY } is a countable basis for X×Y
Similarly for the 1st countability.

Example In general, not all product preserves the property.
Let X =

∏
α∈A Iα, where A is an uncountable index set and Iα = [0, 1]. Now

we claim that X is not 2nd countable:
If X = {x : A → I = [0, 1]} is 2nd countable, the standard basis for the
product topology has a countable subcollection U = p−1

α1
(Oα1)

⋂
· · ·

⋂
p−1

αn
(Oαn)

which is also a basis by the previous lemma. Choose an index α ∈ A which
does not appear in any basic open set in U . Such an index exists since A is
uncountable. Then for x ∈ P−1

α (0, 1/2), there is no U ∈ U s.t. x ∈ U ⊂
P−1

α (0, 1/2) since Pα(U) = I.

Homework 1 Is the above example first countable?

Definition 3 A sequence in a space X is a function x : N → X usually written
as (xn)∞n=1 where xn = x(n).

Theorem 4 When X is 1st countable, the following statements hold.
(1) When A ⊂ X, x ∈ A ⇔ ∃ a sequence (an) in A s.t. an → x.
(2) A ⊂ X is closed ⇔ ∃an → x with an ∈ A implies x ∈ A.
(3) f : X → Y is continuous ⇔ xn → x implies f(xn) → f(x).

proof. (1) (⇒) Since X is 1st countable, ∀x ∈ X, we can construct a decreasing
sequence of basic open neighborhoods of x. Indeed if we let U = {Un} be a
countable basis at x, then V = {Vn|Vn = U1 ∩ · · · ∩ Un, n = 1, 2, · · · } is clearly
a decreasing sequence of open neighborhoods of x. If x ∈ A, let an = x. If
x /∈ A, then x ∈ A′. Choose a point an ∈ Vn ∩ A and then (an) is a sequence
converging to x.
(⇐) an → x ⇒ for any neighborhood of x it contains an’s for large n. Then
either x ∈ A or x ∈ A′.
Hence x ∈ A. (We do not need 1st countability of X.)
(2) (⇒) an → x with an ∈ A ⇒ x ∈ A = A. (We do not need 1st countability
of X.)
(⇐) Show A ⊂ A:
x ∈ A
⇒ ∃ (an) in A s.t. an → x by (1)
⇒ x ∈ A.

2



(3) (⇒) For any open neighborhood U of f(x), f−1(U) is an open neighborhood
of x
⇒ xn ∈ f−1(U) for large n
⇒ f(xn) ∈ U for large n.
Hence f(xn) → f(x). (We do not need 1st countability of X.)
(⇐) Show f−1(closed set) is closed:
x ∈ f−1(C) where C is closed set.
⇒ ∃ a sequence (an) in f−1(C) s.t. an → x by (1)
⇒ f(an) → f(x) by the hypothesis and f(an) ∈ C
⇒ f(x) ∈ C by (2)
⇒ x ∈ f−1(C).
Hence f−1(C) is closed.
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