II Basic topological properties

5. Axioms of countability

Definition 1 A space X satisfies the first axiom of countability(first countable) if for all $x \in X$, there exists a countable collection of open sets $\mathcal{O} = \{O_n\}$ which satisfies the condition that for all open neighborhood O of x, there exists an $O_n \in \mathcal{O}$ s.t. $x \in O_n \subset O$. This \mathcal{O} is called a basis at x.

Example A metric space is 1st countable.

proof. {balls with rational radius} forms a basis at each point. \Box

Definition 2 A space X satisfies the second axiom of countability(second countable) if X has a countable basis.

Note Second countable \Rightarrow First countable.

Example

1. \mathbb{R}^n is second countable: $\{B_r(q) | q \in \mathbb{Q}^n, r \in \mathbb{Q}\}$ is a countable basis of \mathbb{R}^n .

2. A discrete space is first countable. An uncountable discrete space is not second countable.

3. \mathbb{R}_l is \mathbb{R} with half open interval topology, i.e., the topology is generated by $\{(a,b) | a < b\}$. Then \mathbb{R}_l is 1st countable $((r,x], r \in \mathbb{Q})$ is a countable basis at x) but not 2nd countable.

proof. Suppose \mathbb{R}_l is 2nd countable, then there exists a basis of the form $\{(a_n, b_n] | n \in \mathbb{N}\}$ by Lemma 1. Choose *b* with $b \neq b_n$ for all $n \in \mathbb{N}$. Then (a, b] is not a union of the intervals $(a_n, b_n]$ and this is contradiction.

Lemma 1 If X is 2nd countable, each basis for X has a countable subcollection which also forms a basis for X.

(Proof is a homework.)

Proposition 2 A subspace of 1st countable space(2nd countable respectively) is 1st countable(2nd countable respectively).

Proof is clear.

Proposition 3 X, Y: 1st countable \Rightarrow X × Y:1st countable. X, Y: 2nd countable \Rightarrow X × Y:2nd countable. **proof.** $\mathcal{O}_X, \mathcal{O}_Y$: countable basis of X,Y, respectively. $\Rightarrow \mathcal{O}_X \times \mathcal{O}_Y = \{O_X \times O_Y | O_X \in \mathcal{O}_X, O_Y \in \mathcal{O}_Y\}$ is a countable basis for $X \times Y$ Similarly for the 1st countability.

Example In general, not all product preserves the property. Let $X = \prod_{\alpha \in A} I_{\alpha}$, where A is an uncountable index set and $I_{\alpha} = [0, 1]$. Now we claim that X is not 2nd countable:

If $X = \{x : A \to I = [0,1]\}$ is 2nd countable, the standard basis for the product topology has a countable subcollection $\mathcal{U} = p_{\alpha_1}^{-1}(O_{\alpha_1}) \bigcap \cdots \bigcap p_{\alpha_n}^{-1}(O_{\alpha_n})$ which is also a basis by the previous lemma. Choose an index $\alpha \in A$ which does not appear in any basic open set in \mathcal{U} . Such an index exists since A is uncountable. Then for $x \in P_{\alpha}^{-1}(0, 1/2)$, there is no $U \in \mathcal{U}$ s.t. $x \in U \subset$ $P_{\alpha}^{-1}(0, 1/2)$ since $P_{\alpha}(U) = I$.

Homework 1 Is the above example first countable?

Definition 3 A sequence in a space X is a function $x : \mathbb{N} \to X$ usually written as $(x_n)_{n=1}^{\infty}$ where $x_n = x(n)$.

Theorem 4 When X is 1st countable, the following statements hold. (1) When $A \subset X$, $x \in \overline{A} \Leftrightarrow \exists a \text{ sequence } (a_n) \text{ in } A \text{ s.t. } a_n \to x$. (2) $A \subset X$ is closed $\Leftrightarrow \exists a_n \to x \text{ with } a_n \in A \text{ implies } x \in A$. (3) $f: X \to Y$ is continuous $\Leftrightarrow x_n \to x \text{ implies } f(x_n) \to f(x)$.

proof. (1) (\Rightarrow) Since X is 1st countable, $\forall x \in X$, we can construct a decreasing sequence of basic open neighborhoods of x. Indeed if we let $\mathcal{U} = \{U_n\}$ be a countable basis at x, then $\mathcal{V} = \{V_n | V_n = U_1 \cap \cdots \cap U_n, n = 1, 2, \cdots\}$ is clearly a decreasing sequence of open neighborhoods of x. If $x \in A$, let $a_n = x$. If $x \notin A$, then $x \in A'$. Choose a point $a_n \in V_n \cap A$ and then (a_n) is a sequence converging to x.

 $(\Leftarrow) a_n \to x \Rightarrow$ for any neighborhood of x it contains a_n 's for large n. Then either $x \in \underline{A}$ or $x \in A'$.

Hence $x \in \overline{A}$. (We do not need 1st countability of X.) (2) (\Rightarrow) $a_n \to x$ with $a_n \in A \Rightarrow x \in \overline{A} = A$. (We do not need 1st countability of X.) (\Leftarrow) Show $\overline{A} \subset A$: $x \in \overline{A}$ $\Rightarrow \exists (a_n) \text{ in } A \text{ s.t. } a_n \to x \text{ by (1)}$ $\Rightarrow x \in A$. $\begin{array}{l} (3) (\Rightarrow) \ \text{For any open neighborhood U of } f(x), \ f^{-1}(U) \ \text{is an open neighborhood} \\ \text{of } x \\ \Rightarrow x_n \in f^{-1}(U) \ \text{for large n} \\ \Rightarrow f(x_n) \in U \ \text{for large n}. \\ \text{Hence } f(x_n) \to f(x). \ (\text{We do not need 1st countability of } X.) \\ (\Leftarrow) \ \text{Show } f^{-1}(closed set) \ \text{is closed}: \\ x \in f^{-1}(C) \ \text{where } C \ \text{is closed set.} \\ \Rightarrow \exists \ \text{a sequence } (a_n) \ \text{in } f^{-1}(C) \ \text{s.t. } a_n \to x \ \text{by } (1) \\ \Rightarrow f(a_n) \to f(x) \ \text{by the hypothesis and } f(a_n) \in C \\ \Rightarrow f(x) \in C \ \text{by } (2) \\ \Rightarrow x \in f^{-1}(C). \\ \text{Hence } f^{-1}(C) \ \text{is closed.} \end{array}$