II Basic topological properties

5. Axioms of countability

Definition 1 A space X satisfies the first axiom of countability(first
countable) if for all x € X, there exists a countable collection of open sets
O = {O,,} which satisfies the condition that for all open neighborhood O of z,
there exists an O, € O s.t. x € O, C O.

This O is called a basis at x.

Example A metric space is 1st countable.

proof. {balls with rational radius} forms a basis at each point. O

Definition 2 A space X satisfies the second axiom of countability(second
countable) if X has a countable basis.

Note Second countable = First countable.

Example
1. R” is second countable: {B,(¢)| ¢ € Q",r € Q} is a countable basis of R".

2. A discrete space is first countable. An uncountable discrete space is not
second countable.

3. R; is R with half open interval topology, i.e., the topology is generated by
{(a,b]|a < b}. Then R, is 1st countable ((r,z],r € Q is a countable basis at
x) but not 2nd countable.

proof. Suppose R; is 2nd countable, then there exists a basis of the form
{(@n,by]In € N} by Lemma 1. Choose b with b # b,, for all n € N. Then (a, b]
is not a union of the intervals (a,, b,] and this is contradiction. 0

Lemma 1 If X is 2nd countable, each basis for X has a countable subcollection
which also forms a basis for X.

(Proof is a homework.)

Proposition 2 A subspace of 1st countable space(2nd countable respectively)
is 1st countable(2nd countable respectively).

Proof is clear.

Proposition 3 X, Y: 1st countable = X X Y :1st countable.
X, Y: 2nd countable = X X Y :2nd countable.

1



proof. Ox, Oy : countable basis of X,Y, respectively.
= Ox x Oy = {Ox x Oy|Ox € Ox, Oy € Oy} is a countable basis for X x Y
Similarly for the 1st countability. O

Example In general, not all product preserves the property.

Let X = [[.c4 Lo, where A is an uncountable index set and I, = [0,1]. Now
we claim that X is not 2nd countable:

If X ={z:A— I =10,1]} is 2nd countable, the standard basis for the
product topology has a countable subcollection i = p;1(Oa,) (- - (P4 (Oa,.)
which is also a basis by the previous lemma. Choose an index o € A which
does not appear in any basic open set in /. Such an index exists since A is
uncountable. Then for z € P;'(0,1/2), there is no U € U st. z € U C
P;1(0,1/2) since P,(U) = 1.

Homework 1 Is the above example first countable?

Definition 3 A sequence in a space X is a function x : N — X usually written
as (x,)>, where z,, = z(n).

Theorem 4 When X is 1st countable, the following statements hold.
(1) When A C X, x € A & Jasequence (a,)in A s.t. a, — .

(2) AC X is closed < 3Ja,, — = with a, € A implies x € A.

(3) [+ X =Y is continuous < x,, — x implies f(z,) — f(x).

proof. (1) (=) Since X is 1st countable, Vo € X, we can construct a decreasing
sequence of basic open neighborhoods of z. Indeed if we let U = {U,} be a
countable basis at z, then V = {V, |V, =U;N---NU,,n=1,2,---} is clearly
a decreasing sequence of open neighborhoods of z. If x € A, let a,, = x. If
x ¢ A, then x € A’”. Choose a point a, € V,, N A and then (a,) is a sequence
converging to x.

(<) a, — = = for any neighborhood of z it contains a,’s for large n. Then
either z € Aor x € A

Hence 7 € A. (We do not need 1st countability of X.)

(2) (=) a, — x with a, € A= 2 € A= A. (We do not need 1st countability
of X.)

(«=) Show A C A:

reA

= J(ay,) in A s.t. a, — z by (1)

=z €A



(3) (=) For any open neighborhood U of f(z), f~!(U) is an open neighborhood
of x

= 1, € f~1(U) for large n

= f(z,) € U for large n.

Hence f(x,) — f(x). (We do not need 1st countability of X.)

(<) Show f~!(closed set) is closed:

x € f~1(C) where C is closed set.

= 3 a sequence (a,) in f~1(C) s.t. a, — z by (1)

= f(an) — f(z) by the hypothesis and f(a,) € C

= f(z) € Cby (2)

=z e f~1(O).

Hence f~1(C) is closed. O



