III.1 Compact metric space

경의 1 A sequence in a space X is a function $x : \mathbb{N} \to X$ usually written as $(x_n)_{n=1}^{\infty}$ where $x_n = x(n)$.

경의 2 $x_0 \in X$ is a limit point of (x_n) if $\forall U$: open neighborhood of x_0 , $\exists N \in \mathbb{N}$ such that $n \geq N \Rightarrow x_n \in U$

경의 3 x_0 is a cluster point of (x_n) if $\forall U$: open neighborhood of x_0 and $\forall N \in \mathbb{N}, \exists n > N$ such that $x_n \in U$.

경의 4 If $\mu : \mathbb{N} \to \mathbb{N}$ is a monotone increasing function (i.e., $n > m \Rightarrow \mu(n) > \mu(m)$), then $x \circ \mu : \mathbb{N} \to X$ is called a subsequence of (x_n)

Note Let X be a metric space. Then x_0 is a cluster point of (x_n) iff x_0 is a limit point of a subsequence.

(exercise)

Sequential compactness

경의 5 A metric space is sequentially compact if every sequence has a convergent subsequence.(i.e., every sequence has a cluster point)

정리 1 If X is a metric space, X is sequentially compact \Leftrightarrow X has BWP.

증명

 (\Rightarrow) Let $A = \{x_1, x_2, \ldots\}$ be a countably infinite set in X. Then the sequence (x_n) has a cluster point x by sequential compactness and x is clearly an accumulation point of A.

(\Leftarrow) Let (x_n) be a sequence. (i) If $\{x_n\}$ is an infinite set, then by BWP there exists an accumulation point x of $\{x_n\}$, and x is a cluster point of (x_n) . (ii) If $\{x_n\}$ is a finite set, then infinitely many x_i 's are identical points and such points constitute a convergent subsequence.

Second countable metric space

정의 6 A space X is separable if it has a countable dense subset.

정리 2 A metric space X is separable \Leftrightarrow X is second countable.

증명

(\Leftarrow) Let $\{O_n | n = 1, 2, ...\}$ be a countable basis of X. Choose a point x_n from each O_n . Then $\{x_n\}$ is a countable dense subset of X. (\Rightarrow) Let S be a countable dense subset. Then $\{B_r(s) | s \in S, r \in \mathbb{Q}\}$ becomes a countable basis.

Example

1. $\overline{\mathbb{Q}} = \mathbb{R}, \mathbb{Q}$: countable $\Rightarrow \mathbb{R}$: separable.

Totally bounded metric space

경의 7 A subset A of a metric space X is called an ϵ -net if the following three conditions hold.

(i) A is a finite set.

(ii) $X = \bigcup_{a \in A} B_{\epsilon}(a).$

(iii) $d(a, b) \ge \epsilon, \forall a, b \in A$ with $a \ne b$.

경의 8 A metric space X is said to be totally bounded if it has an ϵ -net for $\forall \epsilon > 0$.

remark X : totally bounded $\stackrel{\notin}{\Rightarrow}$ X : bounded

명제 3 A metric space X is totally bounded \Rightarrow X is separable.

증명

Let A_n be a $\frac{1}{n}$ -net. Then $A = \bigcup_{n=1}^{\infty} A_n$ is a countable dense subset of X.

명제 4 If a metric space X has BWP, then it is totally bounded.

증명

Choose a point $a_1 \in X$. If $B_{\epsilon}(a_1)$ covers X, $\{a_1\}$ is a ϵ -net. If it does not, choose $a_2 \in X - B_{\epsilon}(a_1)$, and consider $\{B_{\epsilon}(a_1), B_{\epsilon}(a_2)\}$. If this covers X, then this is an ϵ -net. If it does not, choose $a_3 \in X - (B_{\epsilon}(a_1) \cup B_{\epsilon}(a_2))$, and consider $\{B_{\epsilon}(a_1), B_{\epsilon}(a_2), B_{\epsilon}(a_3)\}, \ldots$, and so on.

(Claim) This process stops in a finite step to give an ϵ -net.

Suppose not. Then we obtain an infinite set $A = \{a_1, a_2, a_3, a_4, \ldots\}$ with the property that $d(a_i, a_j) \ge \epsilon$ if $i \ne j$ by construction. Also, by BWP, A has an

accumulation point $a \in X$. Now $B_{\epsilon/2}(a)$ contains infinitely many a_i 's and this is a contradiction to the fact that $d(a_i, a_j) \ge \epsilon$ for $i \ne j$.

Homework

1. Is there a separable metric space which is not totally bounded?

2. Is there a totally bounded metric space which does not satisfy BWP?

정리 5 If X is a metric space, then X is countably compact \Leftrightarrow X is compact.

증명

 (\Leftarrow) Clear

(\Rightarrow) Countably Compact \Rightarrow BWP \Rightarrow Totally bounded \Rightarrow Separable \Rightarrow 2nd countable. Let $\mathcal{O} = \{O_n\}$ be a countable basis and \mathcal{U} be an open covering of X. Then $U \in \mathcal{U}$ is a union of basic open sets in \mathcal{O} . Since \mathcal{O} is a countable basis of X, \mathcal{U} has a countable subcovering and hence has a finite subcovering by contable compactness.

remark (Summary for a metric space)

정리 6 (Lebesgue covering lemma)In a compact metric space X, every open covering \mathcal{U} has a Lebesgue number. i.e., $\exists \epsilon > 0$ depending only on \mathcal{U} such that $\forall x \in X, \exists U \in \mathcal{U}$ with $B_{\epsilon}(x) \subset U$

증명

 $B_a \subset X$ is called a big ball if it is not contained in any $U \in \mathcal{U}$. Let $A = \{a \in \mathbb{R} | O_a(x) \text{ is a big ball for some } x \in X \}$ and we'll show that infA > 0. Suppose infA = 0, then $\forall n, \exists a$ big ball $B_a(x_n)$ such that 0 < a < 1/n. Since X is sequentially compact, (x_n) has a cluster point x. Hence (x_n) has a subsequence converging to x. Now that \mathcal{U} is an open covering, $\exists U \in \mathcal{U}$ such that $x \in U$ and $B_{\delta}(x) \subset U$ for some $\delta > 0$. Choose sufficiently large n so that $x_n \in B_{\delta/2}(x)$ and $\frac{1}{n} < \frac{\delta}{2}$. Then $B_a(x_n) \subset B_{\delta}(x) \subset U$. We reach a contradiction. 따름정리 7 Let $f : X \to Y$ be a continuous function between metric spaces. If X is compact, then f is uniformly continuous.

증명

Note that $\mathcal{U} = \{f^{-1}(B_{\epsilon}(y)) | y \in Y\}$ is an open covering of X. Apply the Lebesgue covering lemma.