IV.Normal Space

1. Normal space

Definition 1 A topological space X is $\operatorname{normal}(T_4)$ if it is Haussdorff and for any two disjoint closed sets of X, there are separating open neighborhoods, i.e., for any disjoint closed subsets C_1 and C_2 of X, there exist open sets O_1 and O_2 s.t. $C_1 \subset O_1$ and $C_2 \subset O_2$ and $O_1 \cap O_2 = \phi$.

Recall X is regular if there are separating open neighborhoods for a point and a disjoint closed set.

Example A compact Hausdorff space is normal.

proof. A closed subset of compact space is compact. We can separate two disjoint compact subsets of a Hausdorff space. \Box

Example A metric space X is normal.

proof. For given disjoint closed subsets C_1 and C_2 in X, let $O_1 := \{x \in X | d(x, C_1) < d(x, C_2)\}$ and $O_2 := \{x \in X | d(x, C_1) > d(x, C_2)\}$. Then clearly $O_1 \cap O_2 = \phi$ and $C_1 \subset O_1, C_2 \subset O_2$. Now let's show that O_1 and O_2 are open. Since $g(x) = d(x, C_1) - d(x, C_2)$ is a continuous function and $O_1 = g^{-1}(-\infty, 0)$ and $O_2 = g^{-1}(0, \infty)$. Hence a metric space is normal.

Proposition 1 X is normal. $\Leftrightarrow \forall \ closed \ A \subset X \ and \ open \ U \supset A, \ there \ exists \ open \ V \ s.t. \ A \subset V \subset \overline{V} \subset U.$

proof. $(\Rightarrow)U^c$ is closed. U^c and A are two disjoint closed sets. $\Rightarrow \exists$ disjoint open sets V and W s.t. $A \subset V$ and $U^c \subset W$. $A \subset V \subset W^c$ and W^c is closed $\Rightarrow \overline{V} \subset W^c$ $\Rightarrow \overline{V} \cap W = \phi$. Since $U^c \subset W$, $\overline{V} \cap U^c = \phi$ and then $\overline{V} \subset U$. (\Leftarrow) Let C and D be two disjoint closed sets. Then $U := D^c$ is an open set containing C. Hence there exists open V s.t. $A \subset V \subset \overline{V} \subset U$. Also $V \cap \overline{V}^c = \phi$. Then V and \overline{V}^c are two seperating open neighborhoods of C and D.

Note that similar statement also holds for a regular space.

Homework. Prove the followings.

- (a) A subspace of a regular space is regular.
- (b) A product of regular spaces is regular.

Remark A product of normal spaces need not be normal: It is not difficult to show that \mathbb{R}_l is normal (and hence regular). But $\mathbb{R}_l \times \mathbb{R}_l$ (=Sorgenfrey plane) is not normal. (See Munkres p198.) But notice that $\mathbb{R}_l \times \mathbb{R}_l$ is regular. (regular + 2nd countable \Rightarrow normal. See p200.)

Remark If J is uncountable, the product space \mathbb{R}^J is not normal. (A difficult exercise: p206)

This example serves three purposes. Firstly, it shows that a regular space \mathbb{R}^J need not be normal. Secondly, it shows that a subspace of a normal space need not be normal, for $\mathbb{R}^J \cong (0,1)^J \subset [0,1]^J$. We can easily see that $[0,1]^J$ is normal since it is compact by Tychonoff theorem and Hausdorff. (It is easy to show that a closed subset of normal space is normal.) Lastly, it shows that a product of normal space need not be normal.