IV.3 Hilbert cube and Hilbert space

Hilbert cube: $I^{\infty} = \prod_{n=1}^{\infty} I_n$, where $I_n = [0, 1]$. Hilbert space: $H = \{x \in \mathbb{R}^{\infty} | \sum x_i^2 < \infty\}$, where $||x||^2 = \sum x_i^2$.

명제 1 $(H, \|\cdot\|)$ is a complete metric space.

증명 $\|\cdot\|$ is a norm, i.e., $\|x+y\| \le \|x\| + \|y\|$:

Since we know this inequality in \mathbb{R}^n , we have

$$\sqrt{(x_1+y_1)^2+\cdots+(x_n+y_n)^2} \le \sqrt{x_1^2+\cdots+x_n^2} + \sqrt{y_1^2+\cdots+y_n^2}.$$

Now the right hand side is clearly $\leq ||x|| + ||y||$ for any n, and so is the left hand side, and the desired inequality follows.

Show that H is complete:

Let (x_n) be a Cauchy sequence, i.e., $\forall \epsilon > 0$, $\exists N$ such that $m, k \geq N \Rightarrow \|x_m - x_k\| < \epsilon$. Let $x_n(i)$ denote $x_n's$ i^{th} coordinate. Then $\{x_n(i)\}_{n=1,2,\cdots}$ is a Cauchy sequence in \mathbb{R} , and $x(i) := \lim_{n \to \infty} x_n(i)$ exists by the completeness of \mathbb{R} . In the inequality $\sum_{i=1}^n (x_m(i) - x_k(i))^2 \leq \|x_m - x_k\|^2 < \epsilon$, if we let $k \to \infty$, then we obtain $\sum_{i=1}^n (x_m(i) - x_i(i))^2 \leq \epsilon^2$, and hence $\|x_m - x_k\|^2 = \sum_{i=1}^\infty (x_m(i) - x_i(i))^2 \leq \epsilon^2$. Now $x \in H$ since $\|x\| = \|x - x_m + x_m\| \leq \|x - x_m\| + \|x_m\| < \infty$.

Remark $(H, \|\cdot\|) \neq H \subset \mathbb{R}^{\infty}$.

증명

There is no basic open set w.r.t. the product topology contained in $\|\cdot\|$ -ball about the origin.

명제 2 I^{∞} is metrizable with $d(x,y)=\sup\{\frac{d_n(x_n,y_n)}{n}\}$, where $d_n(x_n,y_n)$ is the standard metric on $I_n=I, n=1,2,\cdots$.

증명

(Step 1) Show d is a metric:

 $\dot{d(x,z)} = \sup_{n} \frac{d_n(x_n, z_n)}{n} \le \sup_{n} \left(\frac{d_n(x_n, y_n)}{n} + \frac{d_n(y_n, z_n)}{n} \right) \le \sup_{n} \frac{d_n(x_n, y_n)}{n} + \sup_{n} \frac{d_n(y_n, z_n)}{n} = d(x, y) + d(y, z).$

(Step 2) d-topology = product topology:

 $(\supset): \mathfrak{U} = \{U = p_{i_1}^{-1}(O_{i_1}) \cap \cdots \cap p_{i_k}^{-1}(O_{i_k})\}$ is a basis for the product topology and U is a typical basic open set. Let $B_{\epsilon}(x)$ be the ball in I^{∞} with radius ϵ and centered at x.

 $\forall x \in U, \exists \delta > 0 \text{ s.t. } V = p_{i_1}^{-1}(x_{i_1} - \delta, x_{i_1} + \delta) \cap \cdots \cap p_{i_k}^{-1}(x_{i_k} - \delta, x_{i_k} + \delta) \subset U.$ Choose $\epsilon = \frac{\delta}{i_k}$. Then $x \in B_{\epsilon}(x) \subset V \subset U$: $y \in B_{\epsilon}(x) \Rightarrow \frac{d_n(x_n, y_n)}{n} < \epsilon, \forall n \Rightarrow y \in V.$ Therefore d-topology \supset product top.

 (\subset) : Conversely for given $B_{\epsilon}(x)$, $\exists n_0$ s.t. $n > n_0$ implies $n_{\epsilon} > 1$. Then $x \in$ $p_1^{-1}(x_1-\epsilon, x_1+\epsilon) \cap p_1^{-1}(x_2-2\epsilon, x_2+2\epsilon) \cap \cdots \cap p_{n_o}^{-1}(x_{n_0}-n_0\epsilon, x_{n_0}+n_0\epsilon) \subset B_{\epsilon}(x).$ Therefore product topology \supset d-topology.

Remark 1. We can replace d by d_p in the above proposition, where $d_p(x,y) :=$ $sup\frac{d_n(x_n,y_n)}{n^p}, \ p>0.$

2. By the same proof, we can show that $\prod_{n=1}^{\infty} X_n$ is metrizable if each X_n is metrizable with $diam(X_n) < M, \ \forall n$.

명제 3 I^{∞} can be embedded into H.

Show $f: I^{\infty} \to \prod_{n=1}^{\infty} [0, 1/n] \subset H$ given by $f(x) = (x_1, x_2/2, \cdots)$ is an embedding:

- 1. f is obviously bijective.
- 2. $f^{-1}: y \mapsto (y_1, 2y_2, \cdots)$ is continuous since $p_n: (H, \|\cdot\|) \to \mathbb{R}$ is continuous.
- 3. f is continuous, i.e., show that $\forall \epsilon > 0, \exists \delta > 0$ such that $d_p(x,y) =$ $\sup_{n} \frac{|x_n - y_n|}{n^p} < \delta \Rightarrow ||f(x) - f(y)|| = \sqrt{\sum_{n=1}^{\infty} \frac{(x_n - y_n)^2}{n^2}} < \epsilon$: Now let p = 1/4. Then

$$\frac{(x_n - y_n)^2}{\sqrt{n}} < \delta^2 \Rightarrow \sum_{n=1}^{\infty} \frac{(x_n - y_n)^2}{n^2} < \delta^2 \sum_{n=1}^{\infty} \frac{1}{n^{3/2}}$$

Let $\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} =: \alpha$ and choose $\delta = \epsilon / \sqrt{\alpha}$.