IV.4 Urysohn Embedding and Metrization theorem

Theorem 1 (Urysohn Embedding Theorem)

 $X: normal \ and \ 2nd \ countable \Rightarrow \exists an \ embedding \ f: X \hookrightarrow I^{\infty} \hookrightarrow H.$

Theorem 2 (Urysohn Metrization Theorem)

 $X:normal\ and\ 2nd\ countable \Rightarrow X\ is\ metrizable.$

Proof Urysohn Metrization Theorem follows from Urysohn Embedding Theorem immediately, and let's show the embedding theorem.

Let $\mathfrak{U} = \{O_i\}$ be a countable basis. $\forall O_i \in \mathfrak{U}$ and $\forall x \in O_i$, $\exists O_j \in \mathfrak{U}$ such that $x \in O_j \subset \overline{O_j} \subset O_i$.

All such pairs (O_i, O_j) form a countable collection $\{P_1, P_2, \cdots\}$.

 $\forall P_n = (O_i, O_j)$, by Urysohn lemma, $\exists f_n : X \to [0, 1]$ such that $f_n(\overline{O}_j) = 0, f_n(O_i^c) = 1$.

Define $f: X \to I^{\infty}$ by $f(x) = (f_1(x), f_2(x), \cdots)$. Then

1. *f* is 1-1:

 $x \neq y$

 $\Rightarrow \exists O_k, O_l$: disjoint basic open neighborhoods of x,y respectively in $\mathfrak{U} \Rightarrow f_m(x) \neq f_m(y)$.

i.e., " $\{f_n\}$ is a family of enough functions separating points of X" in the sense that $x \neq y \Rightarrow \exists f_m$ s.t. $f_m(x) \neq f_m(y)$.

2. f is continuous: obvious.

 $3.f^{-1}: f(X) \to X$ is continuous:

Show $\forall x \in X$ and O_i containing x, $\exists \delta$ s.t. $d(f(x), f(y)) < \delta \Rightarrow y \in O_i$:

Let $P_{n_0} = (O_i, O_j)$ s.t. $x \in O_j \subset \overline{O_j} \subset O_i$.

If $d(f(x), f(y)) < \delta < 1/n_0$

 $\Rightarrow \frac{|f_n(x) - f_n(y)|}{\delta} < \delta, \forall n$

$$\Rightarrow \frac{n}{|f_{n_0}(x) - f_{n_0}(y)|} < \delta \Rightarrow \frac{f_{n_0}(y)}{n_0} < \delta \Rightarrow \frac{f_{n_0}(y)}{n_0} < \delta \Rightarrow f_{n_0}(y) < n_0 \delta < 1.$$
Since $f_{n_0}(y) = 1$ if $y \in O_i^c$, $f_{n_0}(y) < 1 \Rightarrow y \in O_i$

Remark We can change normality to regularity in Urysohn Embedding and Metrization Theorem since "regular+2nd countable \Rightarrow normal". (See Munkres Theorem 32.1.)

Homework 1. Is uncountable product of I = [0, 1] normal? metrizable? 2. Read or prove by yourself Munkres' Theorem 32.1.