IV.5 Tietze extension theorem

Theorem 1 (*Tietze Extension Theorem*) Let X be a normal space and A be a closed subset in X. If $f : A \to [a, b]$ is a continuous function, then f has a continuous extension $\overline{f} : X \to [a, b]$, i.e., \overline{f} is continuous and $\overline{f}|_A = f$.

Proof. We may assume that [a, b] = [-1, 1]. Step 1. Let $a : A \rightarrow [-c, c]$ be a continuous function

Let $g: A \to [-c, c]$ be a continuous function. Then $C = g^{-1}([-c, -c/3])$ and $D = g^{-1}([c/3, c])$ are closed in A, and hence closed in X. By Urysohn Lemma, $\exists \hat{g}: X \to [-c/3, c/3]$ such that $\hat{g}(C) = -c/3$ and $\hat{g}(D) = c/3$. Note that $\|\hat{g}\| \leq c/3$ and $\|g - \hat{g}\|_A \leq 2c/3$.

Step 2.

Start with $f: A \to [-1, 1]$. (c=1 in Step 1.) Let $\overline{f_1} := \hat{f}$. Then $||f - \overline{f_1}||_A \le 2/3$ and $||\overline{f_1}|| \le 1/3$. $f - \overline{f_1} = f - \hat{f}: A \to [-2/3, 2/3]$. Now apply Step 1 to this function $f - \overline{f_1}$ with c = 2/3: Let $\overline{f_2} := (f - \overline{f_1})^{\hat{}}$. Then $||f - \overline{f_1} - \overline{f_2}||_A \le (2/3)^2$ and $||\overline{f_2}|| \le 1/3 \cdot 2/3 = 2/9$. In this way, we can obtain a sequence $(\overline{f_n})$ with the property that $(1)||\underline{f} - \overline{f_1} - \overline{f_2} \cdots - \overline{f_n}||_A \le (2/3)^n$ $(2)||\overline{f_n}|| \le 1/3 \cdot (2/3)^{n-1}$.

Step 3.

Let $s_n = \overline{f_1} + \overline{f_2} \cdots + \overline{f_n}$. Then (s_n) is a Cauchy sequence in $\mathcal{C}(X, \mathbb{R})$ since $\|s_n - s_m\| = \|\overline{f_{n+1}} + \cdots + \overline{f_m}\| \le \|\overline{f_{n+1}}\| + \cdots + \|\overline{f_m}\|$ $\le (1/3)((2/3)^n + \cdots + (2/3)^{m-1}) < (1/3)(2/3)^n(1+2/3+(2/3)^2+\cdots) = (2/3)^n$ By the completeness of $\mathcal{C}(X, \mathbb{R})$, $s_n \to \overline{f}$ uniformly and $\overline{f} \in \mathcal{C}(X, \mathbb{R})$. Now we claim that \overline{f} is a desired extension of f: Step $2(1) \Rightarrow \|f - s_n\|_A \le (2/3)^n \Rightarrow s_n \to f$ uniformly on $A \Rightarrow \overline{f} = f$ on A. Note that $\|s_n\| \le \|\overline{f_1}\| + \|\overline{f_2}\| \cdots + \|\overline{f_n}\| \le 1/3 \cdot (1+2/3+(2/3)^2+\cdots) \le 1/3 \cdot 3 = 1$ for all n, and hence $\|\overline{f}\| \le 1$.

Remark sin(1/x) on (0,1] can not be extended to [0,1].

Remark The followings are equivalent.

(i) X is normal

(ii) \forall disjoint and closed $A, B \subset X, \exists f : X \to [0, 1]$ s.t. f(X) = 0, f(B) = 1.

(iii) $\forall A^{closed} \subset X \text{ and } f : A \to [0,1], \exists \overline{f} : X \to [0,1], \text{ an extension of } f.$

Proof. "(i) \Rightarrow (iii)" is the Tietze extension theorem. (iii) \Rightarrow (ii): Define $g: A \bigcup B \rightarrow [0,1]$ by g(A) = 0 and g(B) = 1. Then g is continuous on a closed set $A \bigcup B$ and has an extension $f: X \rightarrow [0,1]$. (ii) \Rightarrow (i): $f^{-1}([0,\epsilon))$ and $f^{-1}((1-\epsilon,1])$ are disjoint open neighborhoods of A and B respectively.

Remark In Tietze extension theorem. [a, b] can be replaced by (a, b) or \mathbb{R} .

Proof. Let A be a closed subset of a normal space X, and let $f : A \to (a, b) \subset [a, b]$. Here we may assume [a, b] = [-1, 1]. Then by Tietze extension theorem, f has an extension $\overline{f} : X \to [-1, 1]$ and let $C_1 = \overline{f}^{-1}(-1)$ and $C_2 = \overline{f}^{-1}(1)$. Then C_1, C_2 , and A are disjoint subsets of X and hence there exist separating open neighborhoods V_1, V_2 and W respectively. Choose open sets $U_i(i=1,2)$ such that $C_i \subset \overline{U_i} \subset V_i$, and bump functions φ_i such that $\varphi_i(\overline{U_i}) = 0$ and $\varphi_i(V_i^c) = 1$. Then $\varphi_1\varphi_2\overline{f}$ is an extension of f with the range in (-1,1).

Theorem 2 Let X be a normal space and let A be a closed subset of X. Then a continuous function $f : A \to I^n = [0, 1]^n$ has an extension defined on X.

Proof. By Tietze extension theorem $f_i = p_i \circ f : A \to I$ has an extension $\overline{f_i}$ defined on X. Now $\overline{f} = (\overline{f_1}, \cdots, \overline{f_n})$ is an extension of f on X.