V.1 Paracompactness

Definition 1 Let X be a topological space and \mathcal{U} be a collection of subsets of X. \mathcal{U} is **locally finite** if for every $x \in X$ there exists a neighborhood V_x such that $\{U \in \mathcal{U} \mid U \bigcap V_x \neq \emptyset\}$ is a finite set.

Proposition 1 If $\mathcal{U} = \{U_{\alpha} \mid \alpha \in J\}$ is a locally finite collection of open sets, $\{\overline{U_{\alpha}} \mid \alpha \in J\}$ is also locally finite.

Proof Proof follows from that $U_{\alpha} \bigcap V_x = \emptyset \Leftrightarrow \overline{U_{\alpha}} \bigcap V_x = \emptyset$.

Proposition 2 If $\{F_{\alpha} \mid \alpha \in J\}$ is a locally finite collection of closed sets in $X, \bigcup_{\alpha \in J} F_{\alpha}$ is closed in X

Proof We prove that $(\bigcup_{\alpha \in J} F_{\alpha})^c$ is open. Suppose $x \notin \bigcup_{\alpha \in J} F_{\alpha}$ and let V_x be an open neighborhood of x such that $\mathcal{C} = \{F_{\alpha} \mid F_{\alpha} \cap V_x \neq \emptyset\}$ is a finite collection. Then $F = \bigcup\{F_{\alpha} \mid F_{\alpha} \in \mathcal{C}\}$ is closed. Thus $W_x = V_x - F$ is an open neighborhood of x and W_x is contained in $(\bigcup_{\alpha \in J} F_{\alpha})^c$. Hence $(\bigcup_{\alpha \in J} F_{\alpha})^c$ is open.

Proposition 3 If $\mathcal{U} = \{U_{\alpha} \mid \alpha \in J\}$ is locally finite, $\overline{(\bigcup_{\alpha \in J} U_{\alpha})} = \bigcup_{\alpha \in J} \overline{U_{\alpha}}$

Proof Let $\mathcal{F} := \{\overline{U_{\alpha}} \mid U_{\alpha} \in \mathcal{U}\}$ and $F := \bigcup_{\alpha \in J} \overline{U_{\alpha}}$. Since the collection \mathcal{F} is locally finite, F is closed. Thus $\overline{(\bigcup_{\alpha \in J} U_{\alpha})}$ is contained in F. Conversely it is clear that $\overline{(\bigcup_{\alpha \in J} U_{\alpha})} \supset F$

Definition 2 Let \mathcal{U} and \mathcal{V} be collections of subsets of X. \mathcal{V} is a **refinement** of \mathcal{U} if for all $V \in \mathcal{V}$ there exists $U \in \mathcal{U}$ such that $V \subset U$.

Remark When we consider an indexed collection of sets we allow the identical set to be indexed repeatedly. Actually an indexed collection is a family of pairs (U, α) .

Definition 3 X is **paracompact** if every open covering of X has a locally finite open refinement that covers X.

Example 1. compact \Rightarrow paracompact.

2. \mathbb{R}^n is paracompact:

Let $X = \mathbb{R}^n$ and \mathcal{A} be an open covering of X. Let $B_0 = \emptyset$ and B_m be an open ball of radius m centered at the origin for each $m = 1, 2, \cdots$. For B_m choose

$$A_1,\ldots,A_{k_m}\in\mathcal{A}$$

which covers $\overline{B_m}$. Let

$$A'_i = A_i \bigcap (X - \overline{B_{m-2}})$$

and

$$\mathcal{C}_m = \{A'_1, \ldots, A'_{k_m}\}.$$

Now $\mathcal{C} = \bigcup \mathcal{C}_m$ is a refinement of \mathcal{A} and a locally finite open covering of X.

Proposition 4 Suppose that X is a paracompact space. For all open covering $\mathcal{U} = \{U_{\alpha} \mid \alpha \in J\}$ of X, there exists a locally finite precise open refinement $\mathcal{W} = \{W_{\alpha} \mid \alpha \in J\}$ of \mathcal{U} that covers X.("precise" means that \mathcal{U} and \mathcal{W} have the same index set J and $W_{\alpha} \subset U_{\alpha}, \forall \alpha \in J.$)

Proof Since X is paracompact, there exists a locally finite open refinement $\mathcal{V} = \{V_{\beta} \mid \beta \in K\}$ of \mathcal{U} . For each $\beta \in K$, there exists $\alpha \in J$ such that V_{β} is contained in U_{α} . Define

$$\varphi: K \to J \text{ as } \alpha = \varphi(\beta).$$

Also let

$$W_{\alpha} := \bigcup \{ V_{\beta} \mid \alpha = \varphi(\beta) \}.$$

Then $W_{\alpha} \subset U_{\alpha}$ and $\mathcal{W} := \{W_{\alpha} \mid \alpha \in J\}$ is locally finite since \mathcal{V} is locally finite.

Proposition 5 If a topological space X is paracompact Hausdorff, X is normal.

Proof

Step 1 : X is regular. Let A be a closed subset of X and x be any point which is not in A. Since X is a Hausdorff space, $x \in A^c$ and $a \in A$ can be separated by two disjoint open sets U_a and U_x so that $x \notin \overline{U_a}$. Define

$$\mathcal{U} = \{ U_a \mid a \in A \}.$$

Then \mathcal{U} is an open covering of A. Thus

$$\mathcal{U}\bigcup\{A^c\}$$

is an open covering of X. There exists a precise locally finite open refinement $\mathcal{V} \bigcup \{G\}$ of $\mathcal{U} \bigcup \{A^c\}$ that covers X, where

$$\mathcal{V} = \{V_a \mid a \in A\}$$
 and $G \subset A^c$.

Let V be the union of all the elements in \mathcal{V} . Now A is contained in V and thus in \overline{V} . Recall that $\overline{V} = \bigcup \{ \overline{V_a} \mid a \in A \}$ since \mathcal{V} is locally finite. Since each $\overline{V_a}$ is in $\overline{U_a}$,

$$A \subset V \subset \overline{V} \subset \bigcup \overline{U_a}.$$

So \overline{V} is disjoint from x, namely we can separate x and A using V and \overline{V}^c .

Step 2 : X is normal. Suppose A and B are two disjoint closed sets in X. Since X is regular, a point a of A and B can be separated by two open sets. Paracompactness of X enables us to construct a locally finite open covering of A which is disjoint from B. Repeat exactly the same procedure in Step 1 to obtain two disjoint open neighborhoods of A and B.

Proposition 6 (Shrinking lemma) Suppose X is paracompact Hausdorff; Then for any collection $\mathcal{U} = \{U_{\alpha} \mid \alpha \in J\}$ of open subsets of X which covers X, there exists a locally finite precise open refinement $\mathcal{V} = \{V_{\alpha} \mid \alpha \in J\}$ which covers X such that $V_{\alpha} \subset \overline{V_{\alpha}} \subset U_{\alpha}$ for each $\alpha \in J$.

Proof

For each x there exists U_{α} containing x and an open neighborhood O_x of x such that

$$x \in O_x \subset \overline{O_x} \subset U_\alpha.$$

Let

$$\varphi: X \to J \text{ as } \alpha = \varphi(x).$$

Using Proposition 4, we can construct a precise locally finite open refinement $\mathcal{W} = \{W_x \mid x \in X\}$ of $\{O_x \mid x \in X\}$ which covers X. Let

$$V_{\alpha} = \bigcup \{ W_x \mid \varphi(x) = \alpha \}$$

for each $\alpha \in J$. Note that

$$W_x \subset O_x \subset \overline{O_x} \subset U_\alpha.$$

Thus $V_{\alpha} \subset U_{\alpha}$. Now $\mathcal{V} = \{V_{\alpha} \mid \alpha \in J\}$ is a locally finite precise open refinement of \mathcal{U} which covers X and

$$\overline{V_{\alpha}} = \bigcup_{\alpha = \varphi(x)} \overline{W_x} \subset \bigcup_{\alpha = \varphi(x)} \overline{O_x} \subset U_{\alpha}.$$

Definition 4 Let $\mathcal{U} = \{U_{\alpha} \mid \alpha \in J\}$ be an open covering of X. An indexed family of continuous functions

$$\phi_{\alpha}: X \to [0,1]$$

is said to be a **partition of unity** on X subordinate to $\{U_{\alpha}\}$ if

- 1. $support\phi_{\alpha}$ is contained in U_{α} .
- 2. $\{support\phi_{\alpha} \mid \alpha \in J\}$ is locally finite.
- 3. $\Sigma_{\alpha}\phi_{\alpha}(x) = 1$ for each x.

Remark support f is the closure of $\{x \in X \mid f(x) \neq 0\}$

Theorem 7 (Existence of partition of unity) If X is a paracompact Hausdorff space, any open covering $\mathcal{U} = \{U_{\alpha} \mid \alpha \in J\}$ has a partition of unity $\{f_{\alpha}\}$ subordinate to \mathcal{U} .

Proof Shrink \mathcal{U} to get a precise locally finite open refinement $\mathcal{V} = \{V_{\alpha}\}$ that covers X. Shrink \mathcal{V} once more to get $\mathcal{W} = \{W_{\alpha}\}$ using the shrinking lemma. Thus

$$\overline{W_{\alpha}} \subset V_{\alpha} \subset \overline{V_{\alpha}} \subset U_{\alpha}$$
 for each $\alpha \in J$.

By Urysohn's lemma, there exists $g_{\alpha} : X \to [0, 1]$ such that $g_{\alpha}(\overline{W_{\alpha}}) = \{1\}$ and $g_{\alpha}(V_{\alpha}^{c}) = \{0\}$. If $W_{\alpha} = \emptyset$, $g_{\alpha} \equiv 0$. Since support $g_{\alpha} \subset \overline{V_{\alpha}} \subset U_{\alpha}$, $\{support \ g_{\alpha} \mid \alpha \in J\}$ is locally finite. Thus $\Sigma_{\alpha}g_{\alpha}$ is a well-defined continuous function such that $\Sigma_{\alpha}g_{\alpha} \geq 1$ since $\mathcal{W} = \{W_{\alpha}\}$ is a covering and $g_{\alpha}(\overline{W_{\alpha}}) = 1$. Define

$$f_{\alpha} := \frac{g_{\alpha}}{\Sigma g_{\alpha}}$$

then

support
$$f_{\alpha} = support \ g_{\alpha}$$
 and $\Sigma f_{\alpha} \equiv 1$.

Remark 1. A product of paracompact spaces need not to be paracompact. (\mathbb{R}^J) Also a subspace of paracompact space need not to be paracompact, but a closed subspace is paracompact obviously.

2. See Munkres for $\[\]$ Stone's theorem $\[\]$ and $\[\]$ Smirnov metrization theorem $\[\]$.

Homework Show that the product of paracompact space and a compact space is paracompact.