
V.2 Local compactness

Definition 1 A topological space X is locally compact if for each x ∈ X,
there exists an open neighborhood U of x such that U is compact(i.e., ∃a
relatively compact open neighborhood).

Example Rn is locally compact since any open ball is relatively compact.

Example Q is not locally compact.

Definition 2 Suppose X is a locally compact Hausdorff space and ∞ is a
point which is not in X. Let Y = X

⋃
{∞} with a topology consisting of the

sets of the following 2 types :

1. U : open subset of X

2. Y − C : C is a compact subset of X

That is, T (Y ) = T (X)
⋃
{Y − C | C is compact in X}. Such a topological

space (Y, T (Y )) is called an one point compactification of X.

Example X = Rn, Y = X
⋃

North Pole ∼= Sn

[Figure]

Lemma 1 T (Y ) in the above definition is indeed a topology.

Proof
1. ∅ and Y are clearly in T (Y ).
2. The union of the elements of any subcollection of T (Y ) is in T (Y ) : Suppose
that {Uα} is a collection of open sets in X and {Cβ} is a collection of compact
sets in X.

a. Type I sets :
⋃

Uα ⊂ T (X) ⊂ T (Y )

b. Type II sets :
⋃

(Y − Cβ) =
⋃

Cc
β = (

⋂
Cβ)c = Y −

⋂
Cβ. Since

⋂
Cβ

is compact, Y −
⋂

Cβ ∈ T (Y ). (Note that since X is a Hausdorff space,
any compact set of X is closed.)

c. Mixed type sets : U
⋃

(Y − C) = (C − U)c ∈ T (Y ) since C − U is
compact.

3. The intersection of two elements of T (Y ) is in T (Y ) : This follows easily
using similar arguments as above.
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Theorem 2 Suppose X is locally compact Hausdorff and X̂ is an one-point
compactification of X. Then

1. X̂ is compact Hausdorff

2. The subspace topology for X is equal to the original topology of X, and
X is open in X̂.

3. X̄ = X̂ if X is NOT compact.

Proof
1. X̂ is compact Hausdorff :

a. X̂ is compact : Let U be an open covering of X̂, then there exists U ∈ U
which contains ∞. Since U is a type II open set, we can find a compact
set C ⊂ X such that U = X̂ −C. Let V ⊂ U be a finite subcovering for
C, then V

⋃
{Y − C} is a finite subcover for X̂. Hence X̂ is compact.

b. X̂ is Hausdorff.
Since X is locally compact, there exists a relatively compact open neigh-
borhood Ux of a given x ∈ X. Ux and X̂ − Ūx are separating open
neighborhoods of x and ∞.

2. It is immediate from the construction.
3. If X is NOT compact, ∞ becomes an accumulation points of X. If X is
compact, {∞} is an open set and ∞ is an isolated point.

Proposition 3 Let X be locally compact Hausdorff. Suppose we have an em-
bedding into a compact Hausdorff Ŷ ,

f : X →∼= Y ⊂ Ŷ with Ŷ − Y = {y}.

Then there exists a homeomorphism f̄ : X̂ →∼= Ŷ such that

f̄ |X = f and f̄(∞) = y.

That is, one-point compactification is unique upto homeomorphism.

Proof
1. f̄ is bijective : It is clear from the fact that f is a homeomorphism between
X and Y .
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2. f̄ is continuous : Let Uy be an open neighborhood of y. It is sufficient to
show that f̄−1(Uy) is open. U c

y is compact in Y . f−1(U c
y) is compact in X

since f is a homeomorphism between X and Y . Thus

f̄−1(Uy) = X̂ − [f−1(U c
y)]

is open in X̂.
3. Now f̄ is a homeomorphism since X̂ is compact and Ŷ is Hausdorff.

Example 1. [̂0, 1] = [0, 1]
⋃
{∞}

2. R2
⋃
{∞} ∼= S2

3. Rn
⋃
{∞} ∼= Sn

4. (0, 1) ∼= R ⇒ (̂0, 1) ∼= R̂ ∼= S1

5. [̂0, 1) ∼= [0, 1]
6. [Figure] z�������
7. D2 ∼= R2 ⇒ D̂2 = S2

8. [Figure] Annulus = ��î�rX< ��� "é¶:�x = �FG&h�s� ����� sphere ⇒= pinched
sphere.

Proposition 4 If X is Hausdorff, the followings are equivalent :

1. X is locally compact.

2. For given x in X and any neighborhood Ux of x, there is a relatively
compact open neighborhood Vx of x such that x ∈ Vx ⊂ Vx ⊂ Ux.

3. For given a compact set C ⊂ X and any neighborhood U of C, there is a
relatively compact open neighborhood V of C such that C ⊂ V ⊂ V̄ ⊂ U .

4. X has a basis consisting of relatively compact open sets.

Proof We proceed as 1 ⇒ 3 ⇒ 2 ⇒ 4 ⇒ 1.
(1 ⇒ 3) Since X̂ is compact Hausdorff, X̂ is normal. Hence there is an open
set V such that C ⊂ V ⊂ V̄ ⊂ U . For V̄ is a closed subset of a compact space
X̂, V̄ is compact.
(3 ⇒ 2) Clear.
(2 ⇒ 4) Clear.
(4 ⇒ 1) Clear.

Theorem 5 Suppose X is locally compact Hausdorff. Then X is completely
regular.
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Proof Let D be a closed subset of X and x /∈ D. We want to show the
existence of a continuous function f : X → [0, 1] such that f(D) = 0 and
f(x) = 1. Since the one point compactification X̂ is normal, we want to apply
Urysohn lemma. Note that D may not be closed in X̂, but D

⋃
{∞} is closed

since X̂ − (D
⋃
{∞}) = X −D is an open subset of X and hence of X̂. Now

apply Urysohn lemma to the disjoint closed sets D
⋃
{∞} and {x}.

Remark

metric

��
paracompact Hausdorff

��

compact Hausdorff

��

ks

normal

��

/ +3 locally compact Hausdorff
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completely regular

��
regular

��
Hausdorff

��
T1

Homework (1) Open or closed supspace of a locally compact Hausdorff space
is locally compact Hausdorff.
(2) X is locally compact Hausdorff iff X is an open subspace of a compact
Hausdorff space.
(3) A product of completely regular spaces is completely regular.
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