V.2 Local compactness

Definition 1 A topological space X is **locally compact** if for each $x \in X$, there exists an open neighborhood U of x such that \overline{U} is compact(i.e., $\exists a$ relatively compact open neighborhood).

Example \mathbb{R}^n is locally compact since any open ball is relatively compact.

Example \mathbb{Q} is not locally compact.

Definition 2 Suppose X is a locally compact Hausdorff space and ∞ is a point which is not in X. Let $Y = X \bigcup \{\infty\}$ with a topology consisting of the sets of the following 2 types :

- 1. U: open subset of X
- 2. Y C: C is a compact subset of X

That is, $\mathcal{T}(Y) = \mathcal{T}(X) \bigcup \{Y - C \mid C \text{ is compact in } X\}$. Such a topological space $(Y, \mathcal{T}(Y))$ is called an **one point compactification** of X.

Example $X = \mathbb{R}^n, Y = X \bigcup$ North Pole $\cong \mathbb{S}^n$

[Figure]

Lemma 1 $\mathcal{T}(Y)$ in the above definition is indeed a topology.

Proof

1. \emptyset and Y are clearly in $\mathcal{T}(Y)$.

2. The union of the elements of any subcollection of $\mathcal{T}(Y)$ is in $\mathcal{T}(Y)$: Suppose that $\{U_{\alpha}\}$ is a collection of open sets in X and $\{C_{\beta}\}$ is a collection of compact sets in X.

- a. Type I sets : $\bigcup U_{\alpha} \subset \mathcal{T}(X) \subset \mathcal{T}(Y)$
- b. Type II sets : $\bigcup (Y C_{\beta}) = \bigcup C_{\beta}^{c} = (\bigcap C_{\beta})^{c} = Y \bigcap C_{\beta}$. Since $\bigcap C_{\beta}$ is compact, $Y \bigcap C_{\beta} \in \mathcal{T}(Y)$. (Note that since X is a Hausdorff space, any compact set of X is closed.)
- c. Mixed type sets : $U \bigcup (Y C) = (C U)^c \in \mathcal{T}(Y)$ since C U is compact.

3. The intersection of two elements of $\mathcal{T}(Y)$ is in $\mathcal{T}(Y)$: This follows easily using similar arguments as above.

Theorem 2 Suppose X is locally compact Hausdorff and \hat{X} is an one-point compactification of X. Then

- 1. \hat{X} is compact Hausdorff
- 2. The subspace topology for X is equal to the original topology of X, and X is open in \hat{X} .
- 3. $\bar{X} = \hat{X}$ if X is NOT compact.

Proof

- 1. \hat{X} is compact Hausdorff :
 - a. \hat{X} is compact : Let \mathcal{U} be an open covering of \hat{X} , then there exists $U \in \mathcal{U}$ which contains ∞ . Since U is a type II open set, we can find a compact set $C \subset X$ such that $U = \hat{X} - C$. Let $\mathcal{V} \subset \mathcal{U}$ be a finite subcovering for C, then $\mathcal{V} \bigcup \{Y - C\}$ is a finite subcover for \hat{X} . Hence \hat{X} is compact.
 - b. \hat{X} is Hausdorff.

Since X is locally compact, there exists a relatively compact open neighborhood U_x of a given $x \in X$. U_x and $\hat{X} - \bar{U}_x$ are separating open neighborhoods of x and ∞ .

2. It is immediate from the construction.

3. If X is NOT compact, ∞ becomes an accumulation points of X. If X is compact, $\{\infty\}$ is an open set and ∞ is an isolated point.

Proposition 3 Let X be locally compact Hausdorff. Suppose we have an embedding into a compact Hausdorff \hat{Y} ,

$$f: X \to \cong Y \subset \hat{Y} \quad with \quad \hat{Y} - Y = \{y\}.$$

Then there exists a homeomorphism $\bar{f}: \hat{X} \to \cong \hat{Y}$ such that

$$\bar{f}|_X = f \quad and \quad \bar{f}(\infty) = y.$$

That is, one-point compactification is unique upto homeomorphism.

Proof

1. \overline{f} is bijective : It is clear from the fact that f is a homeomorphism between X and Y.

2. \bar{f} is continuous : Let U_y be an open neighborhood of y. It is sufficient to show that $\bar{f}^{-1}(U_y)$ is open. U_y^c is compact in Y. $f^{-1}(U_y^c)$ is compact in X since f is a homeomorphism between X and Y. Thus

$$\bar{f}^{-1}(U_y) = \hat{X} - [f^{-1}(U_y^c)]$$

is open in \hat{X} .

3. Now \overline{f} is a homeomorphism since \hat{X} is compact and \hat{Y} is Hausdorff.

Example 1. $[0,1] = [0,1] \bigcup \{\infty\}$ 2. $\mathbb{R}^2 \bigcup \{\infty\} \cong \mathbb{S}^2$ 3. $\mathbb{R}^n \bigcup \{\infty\} \cong \mathbb{S}^n$ 4. $(0,1) \cong \mathbb{R} \Rightarrow \widehat{(0,1)} \cong \widehat{\mathbb{R}} \cong \mathbb{S}^1$ 5. $\widehat{[0,1]} \cong [0,1]$ 6. [Figure] 십자선 7. $\mathbb{D}^2 \cong \mathbb{R}^2 \Rightarrow \widehat{\mathbb{D}}^2 = \mathbb{S}^2$ 8. [Figure] Annulus = 가운데 빈 원통 = 극점이 빠진 sphere \Rightarrow = pinched sphere.

Proposition 4 If X is Hausdorff, the followings are equivalent :

- 1. X is locally compact.
- 2. For given x in X and any neighborhood U_x of x, there is a relatively compact open neighborhood V_x of x such that $x \in V_x \subset \overline{V_x} \subset U_x$.
- 3. For given a compact set $C \subset X$ and any neighborhood U of C, there is a relatively compact open neighborhood V of C such that $C \subset V \subset \overline{V} \subset U$.
- 4. X has a basis consisting of relatively compact open sets.

Proof We proceed as $1 \Rightarrow 3 \Rightarrow 2 \Rightarrow 4 \Rightarrow 1$.

 $(1 \Rightarrow 3)$ Since \hat{X} is compact Hausdorff, \hat{X} is normal. Hence there is an open set V such that $C \subset V \subset \overline{V} \subset U$. For \overline{V} is a closed subset of a compact space \hat{X}, \overline{V} is compact.

 $(3 \Rightarrow 2)$ Clear.

- $(2 \Rightarrow 4)$ Clear.
- $(4 \Rightarrow 1)$ Clear.

Theorem 5 Suppose X is locally compact Hausdorff. Then X is completely regular.

Proof Let D be a closed subset of X and $x \notin D$. We want to show the existence of a continuous function $f: X \to [0,1]$ such that f(D) = 0 and f(x) = 1. Since the one point compactification \hat{X} is normal, we want to apply Urysohn lemma. Note that D may not be closed in \hat{X} , but $D \bigcup \{\infty\}$ is closed since $\hat{X} - (D \bigcup \{\infty\}) = X - D$ is an open subset of X and hence of \hat{X} . Now apply Urysohn lemma to the disjoint closed sets $D \bigcup \{\infty\}$ and $\{x\}$.

Remark

Homework (1) Open or closed supspace of a locally compact Hausdorff space is locally compact Hausdorff.

(2) X is locally compact Hausdorff iff X is an open subspace of a compact Hausdorff space.

(3) A product of completely regular spaces is completely regular.