
V.3 Quotient Space

Suppose we have a function p : X → Y from a topological space X onto a set
Y . we want to give a topology on Y so that p becomes a continuous map.

Remark If we assign the indiscrete topology on Y , any function p : X → Y
would be continuous. But such a topology is too trivial to be useful and the
most interesting one would be the finest topology.

Definition 1 (1st definition) Given p : X → Y , a function from a topological
space X onto a set Y , the quotient topology of Y induced by p is the finest
topology which makes p continuous, i.e., T (Y ) = {U ⊂ Y | p−1(U) is open }.
Y with T (Y ) is called a quotient space.

Exercise Show that the topology on Y defined in the above definition is indeed
a topology.

Definition 2 Suppose that X and Y are topological spaces. Also suppose p
is a continuous, surjective map from X onto Y . Then p is called a quotient
map provided U is open in Y iff p−1(U) is open in X. In this case topology of
Y is a quotient topology.

Exercise 1. p is a quotient map iff C ⊂ Y is closed ⇔ p−1(C) is closed.
2. A composite of two quotient maps is quotient.

Remark A quotient map is continuous and ’partially’ open. (A continuous
and open map is a quotient map, but not vice versa.)

Example A projection map is a quotient map since it is continuous and
open.

Definition 3 (2nd definition) Suppose X is a topological space and let X∗ be
a partition of X into disjoint subsets whose union is X. Let p : X → X∗ be
the canonical surjective map which sends a point x in X to the element of X∗

containing x. X∗ with quotient topology is called a quotient space.

Example 1. Projection
2. Consider R = (−∞, 0)

⋃
[0,∞). Let R∗ = {0, 1}. Then T (R∗) = {{0}, ∅, X∗}

is a quotient topology.
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Theorem 1 The following diagram is called a commutative diagram of func-
tions if q is a quotient map.

X

q

��

f // Z

Y
h

>>~~~~~~~

Then f is continuous iff h is continuous.

Proof
(⇐) Clear since q is a quotient map.
(⇒) Let U be an open set in Z. Note that h−1(U) is open in Y ⇔ g−1(h−1(U))
is open in X. g−1(h−1(U)) = f−1(U) is open.

Example Consider X = [0, 1] and a partition X∗ = X/{0, 1}. Is X∗ homeo-
morphic to S1?

X
f //

q

��

S1

X∗

∼=
∃h

=={{{{{{{{

Recall the followings :

1. The image of a compact space under a continuous map is compact.

2. Let f : X → Y be a bijective continuous function. If X is compact and
Y is Hausdorff, then f is a homeomorphism.

From the fact that X is compact, X∗ is compact. Further from the fact that
S1 is Hausdorff, any continuous map from X∗ to S1 is a homeomorphism.

Example 1. Suppose R2∗ = D2/R2 −D2.

R2
f //

q

��

S2

R2∗
∃h

=={{{{{{{{

2. [Figure] ��y��+þA, "é¶:�x, Moebius band, torus, Klein bottle
3. [Figure] ¿º >h_� D2 : S2

Remark p : X → Y is a quotient map ; p|A : A → p(A) is a quotient map.
(Consider f : I → S1 with A = [0, 1).)
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Exercise Show that this holds if A is open and p is an open map. (Or if A is
closed and p is a closed map.)

Definition 4 (3rd definition) Let X be a space and ∼ be an equivalence re-
lation on X. Then ∼ gives a partition on X. Let [x] = {y ∈ X|y ∼ x} be the
equivalence class of x. Define

Y := X/ ∼= { [x] | x ∈ X}

with canonical p : X → X/ ∼. Such Y is called a quotient space of X with
respect to ∼.

Remark Given a partition X∗, define x ∼ y iff x and y belong to the same
partition element. Then ∼ is an equivalence relation. Conversely ∼ gives a
partition.

This description is useful when we consider a group action.

Definition 5 Let X be a space; let G be a topological group. An action of
G on X is a continuous map α : G×X → X, denoting α(g× x) by g · x, such
that

(i) e · x = x for all x ∈ X,

(ii) g1 · (gx · x) = (g1 · g2) · x for all x ∈ X and g1, g2 ∈ G.

Define an equivalence relation as x ∼ y iff x and y belong to the same orbit,
namely y = g · x for some g ∈ G. The resulting quotient space is denoted by

X/G := {G · x | x ∈ X} where G · x := {g · x | g ∈ G}

and called the orbit space of the action α.

Example 1. ½̈���0A_�&h��̀¦0A�̧����̀¦�����r���r�v���H group action�̀¦Òqty��
K��Ð��.s�M:y��y��_�0A�̧����Ér orbit�̀¦s�ÀÒ 9s��Qô�Ç orbit[þt_�|9�½+Ë,7£¤0A�̧
���[þt_�|9�½+Ë�Ér orbit space\�¦s�ê�r��. ¢̧ô�Ç0A�̧���[þt�Ðs�ÀÒ#Q��� orbit space��H
·¡¤�FGõ� z���FG�̀¦ e±	��H �â
�̧���õ� homeomorphic�<Ê�̀¦ ·ú� Ãº e����. [Figure] m�Ä©
Ø̧¢�>

2. Define τ : x 7→ x+1 on X = R and let G =< τ >= {τn : x 7→ x+n | n ∈ Z}.
Then the orbit space R/G is homeomorphic to S1. Indeed define f : R → S1

by x 7→ e2πix. Then

R
f //

��

S1 ⊂ C

R/G

66mmmmmmmmmmmmm
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3. On R2 define σ : (x, y) 7→ (x + 1, y) and τ : (x, y) 7→ (x, y + 1). Note that
σ · τ = τ · σ. Let

G :=< σ, τ >∼= Z
⊕

Z = Z2

and
f : (x, y) 7→ (e2πix, e2πiy).

Then

R2
f //

��

S1 × S1

R2/G

99ttttttttt

Similarly Rn/Zn =

n︷ ︸︸ ︷
S1 × . . .× S1 = T n.

Homework Suppose G acts on X. Show that the orbit map p : X → X/G is
open.

Example Let X = [0, 1] and identify all the rationale points. Or equivalently
define an equivalence relation ∼ as

x ∼ y ⇔ x, y ∈ Q
⋂

[0, 1].

Then X∗ = X/ ∼ is not Hausdorff. To show this, consider a quotient map q
such that

q(x) =

{
∗ if x ∈ Q
x otherwise

Then for any open neighborhood U of x in X∗, q−1(U) is an open neighborhood
of x and contains a rationale point. Therefore ∗ ∈ U = p(p−1(U))

Proposition 2 Suppose X is regular and C is a closed subset of X. Then
X/C is Hausdorff.

Proof First suppose x, y /∈ C. Then there are two open neighborhoods Ux and
Uy separating x and y disjoint from C. Thus q(Ux) and q(Uy) give a separation
for q(x) and q(y).
Now suppose q(C) = ∗, x′ = q(x), x /∈ C. Then there are open neighborhoods
Ux and V separating x and C. Thus q(Ux) and q(V ) give disjoint neighbor-
hoods of ∗ and x′.
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Example Identify the interval [0, 1] in R to a single point. Then R/[0, 1]
is Hausdorff and in fact ∼= R. However R/[0, 1) is not Hausdorff because

∗ = q
(
[0, 1)

)
and {1} cannot be separated.

Homework Let X be a normal space and p : X → Y be a quotient map.
Show that Y is normal if p is closed.
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