Further examples

1. Projective space

(a) Define an equivalence relation \sim on $\mathbb{R}^{n+1} \setminus \{0\}$ by

$$x = (x_1, \dots, x_{n+1}) \sim y = (y_1, \dots, y_{n+1})$$

if and only if $x = \lambda y$ for some $\lambda \in \mathbb{R} \setminus \{0\}$.

Now let $\mathbb{R}P^n := \mathbb{R}^{n+1} / \sim$. Denote equivalence class of x by $[x] = [x_1, x_2, \dots, x_{n+1}]$. This is a manifold, in fact C^{∞} -manifold.

Consider $U_1 = \{ [x] = [x_1, \dots, x_{n+1}] : x_1 \neq 0 \}$ and define $\phi_1 : U_1 \to \mathbb{R}^n$ by

$$[x_1,\ldots,x_{n+1}]\mapsto \left(\frac{x_2}{x_1},\ldots,\frac{x_{n+1}}{x_1}\right).$$

We claim that ϕ_1 is a homeomorphism: Let $V_1 = \{x = (x_1, \ldots, x_{n+1}) : x_1 \neq 0\} \subset \mathbb{R}^{n+1} \setminus \{0\}$, and define $\psi_1 : V_1 \to \mathbb{R}^n$ by

$$(x_1,\ldots,x_{n+1})\mapsto \left(\frac{x_2}{x_1},\cdots,\frac{x_{n+1}}{x_1}\right)$$

Since U_1 is a quotient space of V_1 and ϕ_1 is induced by ψ_1 , ϕ_1 is a continuous map. Let $q: V_1 \to U_1$ be a quotient map and let $\sigma_1 : \mathbb{R}^n \to V_1$ be given by $(y_1, \ldots, y_n) \mapsto (1, y_1, \ldots, y_n)$. then $\phi_1 \circ (q \circ \sigma_1) = id_{\mathbb{R}^n}$ and $(q \circ \sigma_1) \circ \phi_1 = id_{\mathcal{U}_1}$. Hence ϕ_1 is a homeomorphism.

HW Show that $\mathbb{R}P^n$ is a C^{∞} -manifold.

(b)

$$i$$

 $S^n \hookrightarrow \mathbb{R}^{n+1} \setminus \{0\}$
 $\downarrow q \qquad \downarrow q$
 $S^n / \sim \xrightarrow{} \mathbb{R} \mathbb{P}^n$
 \overline{i}

 \sim : antipodal identification, where antipodal map $A: S^n \to S^n$ is defined by $x \mapsto -x$. Equivalence relation on S^n is given by $x \sim -x = Ax$.

Then there exists a well-defined bijective continuous map \overline{i} , because i is an embedding and q is a quotient map. Since S^n is compact and $\mathbb{R}\mathbf{P}^n$ is Hausdorff, \overline{i} is a homeomorphism.

(dim 1) $\mathbb{R}\mathbf{P}^1 = S^1 / \mathbf{\sim} = S^1$ The quotient map may be given by $z \mapsto z^2$.

 $(\dim 2)$

 $\mathbb{R}\mathbf{P}^2$ with one point deleted is homeomorphic to open Möbius band.

2. Product manifold

 M^m, N^n : manifolds $\Rightarrow M \times N$ is an (m+n)-manifold.

 $\because \forall (p,q) \in M \times N, p \in M$ has a coordinate neighborhood (U,ϕ) homeomorphic to an open subset of \mathbb{R}^m and $q \in N$ has a coordinate neighborhood (V,ψ) homeomorphic to an open subset of \mathbb{R}^n . It follows that (p,q) has a coordinate neighborhood $(U \times V, \phi \times \psi)$ homeomorphic to an open subset of $\mathbb{R}^m \times \mathbb{R}^n = \mathbb{R}^{m+n}$.

Example 1 $\mathbb{R}^2 = \mathbb{R}^1 \times \mathbb{R}^1$, $T^2 = S^1 \times S^1$, $T^3 = S^1 \times S^1 \times S^1$, ...

3. Other constructions

Connected sum, boundary identification, ...

Example 2 S^3 can be obtained by identifying the boundaries of two solid tori as follows:

$$\begin{split} D^2 \times D^2 &= D^4 \\ \Rightarrow \partial (D^2 \times D^2) &= \partial (D^4) = S^3 \\ \Rightarrow (\partial D^2 \times D^2) \bigcup (D^2 \times \partial D^2) = (S^1 \times D^2) \bigcup (D^2 \times S^1) = S^3 \end{split}$$

The picture shows the decomposition of S^3 as a union of two solid tori.

HW Can you decompose S^3 as a union of two handle bodies of genus 2?

4. Lie group

정의 1 A topological space X is a **topological group** if

- 1. X is a group.
- 2. $\mu: X \times X \to X$ given by $(x, y) \mapsto xy^{-1}$ is continuous.

Example 3 Topological group

- 1. Any group G with discrete topology.
- 2. \mathbb{R}^n : additive group. $\therefore (x, y) \mapsto x - y$ is continuous.
- 3. $S^1 \subset \mathbb{C}$ is a multiplicative group. $\therefore S^1 \times S^1 \to S^1$ by $(z, w) \mapsto \frac{z}{w}$ is continuous.
- 4. General linear group $Gl(n, \mathbb{R}) = \{A \in M_n(\mathbb{R}) : det A \neq 0\} \subset \mathbb{R}^{n^2}$: The map given by $(A, B) \mapsto AB^{-1}$ is continuous.

경의 2 A *Lie group* is a topological group X which is a smooth n-manifold such that μ is C^{∞}

Above examples are all *Lie groups*.

5. Manifold with boundary

경의 3 A Hausdorff space M is an n-manifold with boundary if $\forall p \in M, \exists$ a coordinate chart (U, ϕ) of p which is homeomorphic to either \mathbb{R}^n or \mathbb{H}^n , where $\mathbb{H}^n = \{x = (x_1, \ldots, x_n) \in \mathbb{R}^n : x_n \ge 0\}$, with $\phi(p) = 0$. $\partial M = \{x \in M : x \text{ has a coordinate neighborhood homeomorphic to <math>\mathbb{H}^n\}$ is called a boundary of M.

The notion of boundary point is well-defined by the following theorem.

정리 1 (Invariance of domain) Let $U \subset \mathbb{R}^n$ be an open set and $h: U \to \mathbb{R}^n$ be 1-1 and continuous map. The h(U) is open in \mathbb{R}^n .

Invariance of domain implies that the image of an interior point by 1-1 and continuous map is also an interior point and the image of a boundary point is also a boundary point.

If M is an n-manifold, then ∂M is an (n-1)-manifold.