Classification of Compact Surfaces

0. Introduction

By the term 'surface', we mean a 2-dimensional manifold. Here are some examples of surfaces :

Goal :

1. Classify compact surfaces assuming the existence of triangulation on the surfaces.
2. Show each compact surface can be obtained by identifying the boundary edges of a polygon.
3. Discuss a complete set of topological invariants to distinguish surfaces.

1. Triangulation and Rado's theorem

Definition 1 A triangulation of a compact surface M consists of a finite set of triangles $K=\left\{T_{1}, \ldots, T_{n}\right\}$ and homeomorphisms $\left\{\phi_{i}: T_{i} \rightarrow T_{i}^{\prime} \subset \mathbb{R}^{2}\right\}$, where $T_{i}^{\prime}=\phi_{i}\left(T_{i}\right)$ is a triangle in \mathbb{R}^{2} such that:

1. $\cup_{i} T_{i}=M$
2. For $i \neq j, T_{i} \cap T_{j} \neq \emptyset$ implies $T_{i} \cap T_{j}$ is either a single vertex or a single edge.
3. The transition map on a common edge is a linear homeomorphism, i.e., for $e=T_{i} \cap T_{j}, \phi_{j} \circ \phi_{i}^{-1}: \phi_{i}(e) \subset T_{i}^{\prime} \rightarrow \phi_{j}(e) \subset T_{j}^{\prime}$ is a linear homeomorphism.

A vertex or an edge of T_{i} is pre-image of a vertex or an edge of a triangle in \mathbb{R}^{2} by ϕ_{i}

Theorem 1 (Rado's theorem, 1925) There exists a triangulation on a compact surface.

Claim 1 Each edge is an edge of exactly one or two triangles.
Claim 2 Let v be a vertex of a triangulation, which is not a boundary point of M. Then we can arrange triangles T_{1}, \ldots, T_{n} around v such that T_{i} and $T_{i}+1$ for $i=1, \ldots, n-1$, and T_{n} and T_{1} have an edge in common cyclically.

Proof 1 Suppose there is an edge which is an edge of three or more triangles. Take two among those triangles. There is a coordinate chart ψ defined on a neighborhood U of p on the edge.

The space S of two sheets of triangles is a topological disk. Consider a set $V \subset U \cap S$, which is relatively open in S, containing p, and homeomorphic to \mathbb{R}^{2}. Let $\psi^{\prime}: V \rightarrow \mathbb{R}^{2}$ be the homeomorphism. Then $\psi^{\prime}(V) \subset \mathbb{R}^{2}$ is open. Applying invariance of domain theorem to $\psi \circ \psi^{\prime-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, we get $\psi(V) \subset$ \mathbb{R}^{2} is open.

Take a sequence $\left\{x_{n}\right\} \subset U-S$ converging to p. Continuity of ψ implies that $\left\{\psi\left(x_{n}\right)\right\}$ converges to $\psi(p)$. Since $\psi(V)$ is a open neighborhood of $\psi(p), \psi(V)$ must contain $\psi\left(x_{i}\right)$, for some i, which is contradictory to the injectiveness of ψ.

Proof 2 This follows from the claim 1, and the definition of triangulation.

