Compact surface from polygon

정리 1 M is a connected closed(=compact and without boundary) surface. Then M is homeomorphic to a finite polygon with edge identified in pairs.

정리증명

 $1^{st}Step$: We can number triangles as T_1, T_2, \dots, T_n so that each T_i has an edge e_i in common with at least one of the triangles T_1, \dots, T_{i-1} .

: Choose inductively. Suppose $A = \{T_1, \dots, T_k\}$ are chosen and no triangles of $B = \{T_{k+1}, \dots, T_n\}$ has an edge in common with a triangles in A. Then $T_1 \bigcup \dots \bigcup T_k$ and $T_{k+1} \bigcup \dots \bigcup T_n$ are disjoint closed sets in M. This is contradiction to connectedness of M.

 $2^{nd}Step$: We can arranged T_1, \dots, T_n and $e_2, \dots, e_n(e_i \text{ is } T_i)$'s edge for all $i = 1, \dots, n$ in the order as in the 1^{st} Step. Then we may assume that $\phi_i(T_i) = T'_i$ are all disjoint in \mathbb{R}^2 for some homeomorphism ϕ_i .

Claim $P = \coprod_{i=1}^{n} T'_i / \sim$ is topologically a disk, where \sim is defined by $\phi_i(p) \sim \phi_{i-1}(p), \forall p \in e_i < T_i, i = 2, \cdot, n$. This claim is clearly true by induction.

Now $P = \coprod_{i=1}^{n} T'_{i} / \sim \bigvee_{V \to \psi}^{\psi = \bigcup \phi_{i}^{-1}} M.$ P / \sim

Here another '~' defined on P is a side pairing. Since P is compact, P/\sim is also compact. Therefore $\overline{\psi}$ is a continuous bijective map from compact space to Hausdorff space. Hence $\overline{\psi}$ is a homeomorphism.

정리 2 A closed surface M is homeomorphic to a surface obtained from S^2 from which finite number of discs are removed and for which either a "handle" (=torus with a hole) or a "cross-cap" (=Möbius band) is attached along the boundary of the disc, i.e., M is a connected sum of tori and projective planes.

정리증명

Step 1 By theorem 1, there is a polygon with edges identified in pairs homeomorphic to M. We can make sequence of edges like $\cdots abca \cdots$. The rule of naming edges is that edges that have same name are identified and that if clockwise edge's name is 'a', counterclockwise edge's name is ' a^{-1} '. Edges like ' aa^{-1} ' can be deleted.

Step 2 All the vertices of the polygon D may be assumed to be identified to a single point in M.

 \therefore Suppose that $A \neq B$ in M.

[A]_D = {vertices in D that are identified to A} ⇒ ♯[A]_{D'} = ♯[A]_D - 1 and ♯[B]_{D'} = ♯[B]_D + 1 Therefore, by induction, we can make ♯[A] = 0 in a certain modified polygon D. (A가 한개 남았을 때는 Step1으로 돌아간다.)

Step 3 For the type of edges of the form XaYa, we can cancel a and introduce dd by cutting and pasting, i.e., make of the form $XY^{-1}dd$.

그림

Step 4 Suppose we have $\cdots a \cdots a^{-1} \cdots$. Then there exists b such that $\cdots a \cdots b \cdots a^{-1} \cdots b^{-1} \cdots$. There is no edges of the form $\cdots a \cdots b \cdots a^{-1} \cdots b \cdots$ by step 3. Suppose not.

그림

Therefore we must identify edges in A with edges in A. Then we can not identify all the vertices to a single point. This is a contradiction to step 2.

Step 5 We can change $\cdots a \cdots b \cdots a^{-1} \cdots b^{-1} \cdots$ to $\cdots cdc^{-1}d^{-1} \cdots$ by the following sequence of cut and paste.

그림

Note that through step 5, $\cdots aa \cdots$ or $\cdots aba^{-1}b^{-1} \cdots$ is not destroyed.

그림

Conclusion We have only successive edges of the form $\cdots aa \cdots$ or $\cdots bcb^{-1}c^{-1} \cdots$ in the clockwise sequencing.

Note M, N: connected closed surface

1. $M \sharp N$ is well-defined.

: Let $x, y \in M$ with small open disc neighborhood U and V respectively. Then it can be shown that there exists a homeomorphism ϕ on M such that $\phi(x) = y$ with $\phi(U) = V$. Then $M \sharp N$ obtained by deleting U and $M \sharp N$ obtained by deleting V are homeomorphic. (why?)

사실 위 homeomorphism ∅ 가 존재한다는 것을 증명하기 위해서는 다 음 사실들이 필요하다.

- (1) (Schönflies Thm): Let C be a simple closed curve in \mathbb{R}^2 . Then \exists a homeomorphism $h : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ such that h carries C onto the unit circle. (Ref: Moise, "Geometric topology in dim 2 and 3")
- (2) (Annulus Thm): Let A be an annulus region in \mathbb{R}^2 bounded by two simple closed curve. Then A is homeomorphic to the standard annulus:

$$\{x = (x_1, x_2) \in \mathbb{R}^2 \mid 1 \le ||x|| \le 2\}.$$

OHW.

- (1) Prove Annulus Thm from Schönflies Thm.
- (2) Improve Annulus Thm so that the homeomorphism can be chosen as an ambient homeomorphism on \mathbb{R}^2 .
- (3) Improve Schönflies Thm so that the homeomorphism h can be chosen identity outside a big disk.

OHW. connected sum은 유일하게 결정된다. 이 사실을 보다 엄밀하게 논증하려면 위에서 언급한 것 이외에 어떤 것들을 보여야 하나? (1) connected sum은 gluing homeomorphism의 isotopy class 에만 depend한다.

(2) gluing homeomorphism의 orientation에 무관하다.

- 2. $M \sharp N = N \sharp M$
- 3. $(M \sharp N) \sharp L = M \sharp (N \sharp L)$

정리 3 *M* is a closed surface and *M'* is a closed surface obtained from *M* by replacing 3 cross-caps with a handle and a cross-cap. Then, $M \cong M'$, i.e., $P^2 \sharp P^2 \sharp P^2 \cong T^2 \sharp P^2$.

정리증명 Recall that $P^2 \sharp P^2 = K$. Therefore, if we can show $K \sharp P^2 = T^2 \sharp P^2$, we can prove this theorem. $K \sharp P^2 = T^2 \sharp P^2$ is true by following figure.

그림

따름정리 4 If M has a cross-cap, we can replace all the handle by cross-caps, i.e., $M = P^2 \sharp M^1 \Rightarrow M = P^2 \sharp \dots \sharp P^2$. In this case, one handle is replaced by two cross-caps.

따름정리 5
$$M$$
 : closed surface

$$\Rightarrow M = \begin{cases} T^2 \sharp \dots \sharp T^2 = \sharp^g T^2 & (=\Sigma_g) \\ P^2 \sharp \dots \sharp P^2 = \sharp^k P^2 & (=N_k) \end{cases}$$