Compact surface from polygon

정리 $1 M$ is a connected closed(=compact and without boundary) surface. Then M is homeomorphic to a finite polygon with edge identified in pairs.

정리증명

$1^{\text {st }}$: We can number triangles as $T_{1}, T_{2}, \cdots, T_{n}$ so that each T_{i} has an edge e_{i} in common with at least one of the triangles T_{1}, \cdots, T_{i-1}.
\because Choose inductively. Suppose $A=\left\{T_{1}, \cdots, T_{k}\right\}$ are chosen and no triangles of $B=\left\{T_{k+1}, \cdots, T_{n}\right\}$ has an edge in common with a triangles in A. Then $T_{1} \bigcup \cdots \bigcup T_{k}$ and $T_{k+1} \bigcup \cdots \bigcup T_{n}$ are disjoint closed sets in M. This is contradiction to connectedness of M.
$2^{\text {nd }}$: We can arranged T_{1}, \cdots, T_{n} in order with $e_{2}, \cdots, e_{n}\left(e_{i}\right.$ is T_{i} 's edge for all $i=1, \cdots, n)$ as $1^{\text {st }}$ step. Then we may assume that $\phi_{i}\left(T_{i}\right)=T_{i}^{\prime}$ are all disjoint in \mathbb{R}^{2} for some homeomorphism ϕ_{i}.
Claim $\coprod_{i=1}^{n} T_{i}^{\prime} / \sim$ is topologically a disk. ' \sim ' is defined by $\phi_{i}(p) \sim \phi_{i-1}(p)$, $\forall p \in e_{i}<T_{i}, i=2, \cdot, n$. This claim is clearly true by induction. Now,

$$
\begin{gathered}
P=\coprod_{i=1}^{n} T_{i}^{\prime} / \sim \stackrel{\psi=\bigcup_{\phi_{-1}^{-1}}}{\longrightarrow} M \\
P / \sim
\end{gathered}
$$

' \sim ' is side pairing. Since P is compact, P / \sim is also compact. So, $\bar{\psi}$ is a continuous bijective map from compact space to Hausdorff space. Hence $\bar{\psi}$ is homeomorphism.

정리 $2 A$ closed surface M is homeomorphic to S^{2}, from which finite number of discs are removed and for which either a "handle"(=torus with a hole) or a "cross-cap"(=Möbius band) is attached along the boundary of the disc, i.e., M is a connected sum of tori and projective planes.

정리증명

Step 1 By theorem 1, there is a polygon with edges identified in pairs homeomorphic to M. We can make sequence of edges like $\cdots a b c a \cdots$. The rule of naming edges is that edges that have same name are identified and if clockwise edge's name is ' a ', counterclockwise edge's name is ' a^{-1}. Edges like ' $a a^{-1}$, can be deleted.

Step 2 All the vertices of the polygon D may be assumed to be identified to a single point in M.
\because Suppose that $A \neq B$ in M.

$[A]_{D}=\{$ vertices in D that are identified to A$\}$
$\Rightarrow \sharp[A]_{D^{\prime}}=\sharp[A]_{D}-1$ and $\sharp[B]_{D^{\prime}}=\sharp[B]_{D}+1$
Therefore, by induction, we can make $\sharp[A]=0$ in a certain modified polygon D.
Step 3 For the type of edges of the form $X a Y a$, we can cancel a and introduce $d d$ by cutting and pasting, i.e., make of the form $X Y^{-1} d d$.

Step 4 Suppose we have $\cdots a \cdots a^{-1} \cdots$. Then there exists b such that $\cdots a \cdots b \cdots a^{-1} \cdots b^{-1} \cdots$. Suppose not. There is no edges of the form $\cdots a \cdots b \cdots a^{-1} \cdots b \cdots$ by step 3 .

Therefore we must identify in A with edge in A. Then, we can not identified all the vertices to a single point. This is a contradiction by step 2 .

Step 5 We can change $\cdots a \cdots b \cdots a^{-1} \cdots b^{-1} \cdots$ to $\cdots c d c^{-1} d^{-1} \cdots$ by the following sequence of cut and paste.

Note that through step $5, \cdots a a \cdots$ or $\cdots a b a^{-1} b^{-1} \cdots$ is not destroyed.

Conclusion We have only successive edges of the form $\cdots a a \cdots$ or $\cdots b c b^{-1} c^{-1} \cdots$ in the clockwise sequencing.

Note $\quad M, N$: connected closed surface

1. $M \sharp N$ is well-defined.
\because Let $x, y \in M$ with open disc neighborhood U and V respectively. Then it is known that there exists a homeomorphism ϕ such that $\phi(x)=y$, $\phi(U)=V$. So, $M \sharp N$ obtained by deleting U and $M \sharp N$ obtained by deleting V are homeomorphic.
2. $M \sharp N=N \sharp M$
3. $(M \sharp N) \sharp L=M \sharp(N \sharp N)$

정리 $\mathbf{3} M$ is a closed surface and M^{\prime} is a closed surface obtained from M by replacing 3 cross-caps with a handle and a cross-cap. Then, $M \cong M^{\prime}$, i.e., $P^{2} \sharp P^{2} \sharp P^{2} \cong T^{2} \sharp P^{2}$.

정리증명 Recall that $P^{2} \sharp P^{2}=K$.
Therefore, if we can show $K \sharp P^{2}=T^{2} \sharp P^{2}$, we can prove this theorem.
$K \sharp P^{2}=T^{2} \sharp P^{2}$ is true by following figure.

따름 정리 4 If M has a cross-cap, we can replace all the handle by cross-caps, i.e., $M=P^{2} \sharp M^{1} \Rightarrow M=P^{2} \sharp \ldots \sharp P^{2}$. In this case, one handle is replaced by two cross-caps.

따름 정리 $5 M$: closed surface
$\Rightarrow M= \begin{cases}T^{2} \sharp \ldots \sharp T^{2}=\sharp^{g} T^{2} & \left(=\Sigma_{g}\right) \\ P^{2} \sharp \ldots \sharp P^{2}=\sharp^{k} P^{2} & \left(=N_{k}\right)\end{cases}$

