Compact surface from polygon

정리 1 M is a connected closed(=compact and without boundary) surface. Then M is homeomorphic to a finite polygon with edge identified in pairs.

정리증명

 1^{st} : We can number triangles as T_1, T_2, \dots, T_n so that each T_i has an edge e_i in common with at least one of the triangles T_1, \dots, T_{i-1} .

: Choose inductively. Suppose $A = \{T_1, \dots, T_k\}$ are chosen and no triangles of $B = \{T_{k+1}, \dots, T_n\}$ has an edge in common with a triangles in A. Then $T_1 \bigcup \dots \bigcup T_k$ and $T_{k+1} \bigcup \dots \bigcup T_n$ are disjoint closed sets in M. This is contradiction to connectedness of M.

 2^{nd} : We can arranged T_1, \dots, T_n in order with $e_2, \dots, e_n(e_i \text{ is } T_i)$'s edge for all $i = 1, \dots, n$) as 1^{st} step. Then we may assume that $\phi_i(T_i) = T'_i$ are all disjoint in \mathbb{R}^2 for some homeomorphism ϕ_i .

Claim $\coprod_{i=1}^{n} T'_{i} / \sim$ is topologically a disk. '~' is defined by $\phi_{i}(p) \sim \phi_{i-1}(p)$, $\forall p \in e_{i} < T_{i}, i = 2, \cdot, n$. This claim is clearly true by induction. Now,

'~' is side pairing. Since P is compact, P/\sim is also compact. So, $\overline{\psi}$ is a continuous bijective map from compact space to Hausdorff space. Hence $\overline{\psi}$ is homeomorphism.

정리 2 A closed surface M is homeomorphic to S^2 , from which finite number of discs are removed and for which either a "handle" (=torus with a hole) or a "cross-cap" (=Möbius band) is attached along the boundary of the disc, i.e., M is a connected sum of tori and projective planes.

정리증명

Step 1 By theorem 1, there is a polygon with edges identified in pairs homeomorphic to M. We can make sequence of edges like $\cdots abca \cdots$. The rule of naming edges is that edges that have same name are identified and if clockwise edge's name is 'a', counterclockwise edge's name is ' a^{-1} '. Edges like ' aa^{-1} ' can be deleted.

Step 2 All the vertices of the polygon D may be assumed to be identified to a single point in M.

 \therefore Suppose that $A \neq B$ in M.

$$\begin{split} &[A]_D = \{ \text{vertices in D that are identified to A} \} \\ &\Rightarrow & & & \\ \Rightarrow & & & \\ &A]_{D'} = & & \\ & &$$

Step 3 For the type of edges of the form XaYa, we can cancel *a* and introduce dd by cutting and pasting, i.e., make of the form $XY^{-1}dd$.

Step 4 Suppose we have $\cdots a \cdots a^{-1} \cdots$. Then there exists *b* such that $\cdots a \cdots b \cdots a^{-1} \cdots b^{-1} \cdots$. Suppose not. There is no edges of the form $\cdots a \cdots b \cdots a^{-1} \cdots b \cdots$ by step 3.

Therefore we must identify in A with edge in A. Then, we can not identified all the vertices to a single point. This is a contradiction by step 2.

Step 5 We can change $\cdots a \cdots b \cdots a^{-1} \cdots b^{-1} \cdots$ to $\cdots cdc^{-1}d^{-1} \cdots$ by the following sequence of cut and paste.

Note that through step 5, $\cdots aa \cdots$ or $\cdots aba^{-1}b^{-1} \cdots$ is not destroyed.

Conclusion We have only successive edges of the form $\cdots aa \cdots$ or $\cdots bcb^{-1}c^{-1} \cdots$ in the clockwise sequencing.

Note M, N: connected closed surface

1. $M \sharp N$ is well-defined.

: Let $x, y \in M$ with open disc neighborhood U and V respectively. Then it is known that there exists a homeomorphism ϕ such that $\phi(x) = y$, $\phi(U) = V$. So, M # N obtained by deleting U and M # N obtained by deleting V are homeomorphic.

- 2. $M \sharp N = N \sharp M$
- 3. $(M \sharp N) \sharp L = M \sharp (N \sharp N)$

정리 3 *M* is a closed surface and *M'* is a closed surface obtained from *M* by replacing 3 cross-caps with a handle and a cross-cap. Then, $M \cong M'$, i.e., $P^2 \sharp P^2 \sharp P^2 \cong T^2 \sharp P^2$.

정리증명 Recall that $P^2 \sharp P^2 = K$.

Therefore, if we can show $K \sharp P^2 = T^2 \sharp P^2$, we can prove this theorem. $K \sharp P^2 = T^2 \sharp P^2$ is true by following figure.

따름정리 4 If M has a cross-cap, we can replace all the handle by cross-caps, i.e., $M = P^2 \# M^1 \Rightarrow M = P^2 \# \dots \# P^2$. In this case, one handle is replaced by two cross-caps.

따름정리 5 M : closed surface $\Rightarrow M = \begin{cases} T^2 \sharp \dots \sharp T^2 = \sharp^g T^2 & (=\Sigma_g) \\ P^2 \sharp \dots \sharp P^2 = \sharp^k P^2 & (=N_k) \end{cases}$