Compact Surfaces with Boundary

Let M be a compact surface with boundary, then a closed surface M^* is obtained from M by *capping off* the boundaries of M, i.e. gluing each boundary component of M with a boundary of a disk.

In general, given Y and $A \subset X$, let $f : A \to Y$ be an imbedding of A. Then,

$$X\bigcup_f Y := X\bigcup Y/\sim$$

where the relation is to identify $a \sim y = f(a)$.

Let $\phi: \coprod_i S^1_i \to \partial M$ be a homeomorphism, then

$$M^* = M \bigcup_{\phi} \left(\prod D_i \right)$$

Theorem 1 Let M, N be compact surfaces with boundary. Then $M \cong N$ if and only if $M^* \cong N^*$ and the number of boundary components are same.

Proof

 (\Rightarrow) The theorem of the invariance of domain implies that an interior point is mapped to an interior point by the homeomorphism between M and N. Also it maps a boundary point to a boundary point. It follows that the number of boundary components are the same.

 (\Leftarrow) (1) Let x and y be different points in M, a compact surface. Then

$$M - B^{\circ}_{\epsilon}(x) \cong M - B^{\circ}_{\epsilon}(y)$$

(2) Let $p_i \in M^*$, i = 1, 2, ..., b where b is the number of the boundary components of M. From (1),

$$M \cong M^* - \coprod_{i=1}^b B_\epsilon(p_i)$$

Corollary 2 The topological type of compact surface with boundary is determined by the orientability, the Euler Characteristic, and the number of boudary components.

Note $\chi(M) = \chi(M^*) - b$

Figure 1: An example of compact surface with boundary. $\chi = -2$ and b = 2, and hence $\chi^* = 0$, and non-orientable. Therefore it is a Klein bottle minus two discs.

Exercises Determine the topological type of the following surface.

with one-point-compactification