
Euler Characteristic

Definition 1 Given a triangulation K on a compact surface M , we define the
Euler characteristic of M by

χK(M) := V − E + F

where V is the number of vertices, E is the number of edges, and F is the
number of faces(triangles).

=

V - E + F = 4 - 6 + 4 = 2 V - E + F = 8 - 12 + 6 = 2

Figure 1: Euler Characteristic

Theorem 1 χ(M) does not depend on the choice of the triangulation on M .

Proof(sketch proof)
Step 1 Similarly one can define χ by the same formula for a cell-division of

M , say, using polygons instead of triangles.
Step 2 χ is invariant under the following change in a cell-division:
(a) introducing a new vertex on an edge or deleting.

(b) introducing a new edge connecting vertices or deleting.
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(c)* introducing a new vertex and a new edge inside a face or deleting.

Now note that the step 2 implies that χ is invariant under subdivision of
a cell complex. Subdivision means a procedure through any sequence of (a),
(b), or (c) in any order.

Step 3 Given two triangulations K and K ′, by superposing the two trian-
gulations transversely we obtain a common subdivision as a cell-complex K ′′

on M . The term ‘transversely’ means no two edges meet tangentially.

Then,
χK(M) = χK′′(M) = χK′(M)

Note χ(M) is a topological invariant.

Further by the step 2, one can compute χ(M2) by counting the number of
vertices, edges, and faces in a polygon identification. Consider a triangulation
on the surface as one on its standard polygon identification as in Figure 2. By
the step 2, one can delete all the edges and vertices inside the polygon. The
resulting cell division has only one face. See Figure 2.
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Figure 2: An example of computing Euler characteristic from polygon identi-
fication. Since all vertices are identified to one point in the figure above, there
is one vertex. Clearly, there is only one face. To count the number of edges, we
just count the number of different letters. Therefore, the Euler characteristic
is 1− 4 + 1 = −2.

Given a polygon identification of (#kP 2)#(#gT 2), all vertices are identified
to a single point, and there is only one face. Observe that there are one edge
in a projective plane and two edges in a torus. Therefore, we get the following
equality.

χ((#kP 2)#(#gT 2)) = 1− (k + 2g) + 1 = 2− k − 2g

Theorem 2 χ(M2#N2) = χ(M2) + χ(N2)− 2

Proof Consider a connected sum of two surfaces. Clearly, χ(M2 q N2) =
χ(M2) + χ(N2). Eliminating a disk from each surface is equivalent to elimi-
nating a triangle. Deleting one triangle’s face decreases the Euler characteristic
by 1 from each surface. Pasting two boundaries of triangles of two surfaces
decreases the number of edges and vertices both by 3, giving no change in
Euler characteristic. Hence the total V − E + F is decreased by 2.

Corollary 3

χ(#kP 2) = 2− k or k = 2− χ

χ(#gT 2) = 2− 2g or g = (2− χ)/2
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Theorem 4 Let M and N be closed surfaces ( i.e., compact without boundary
). M is homeomorphic to N if and only if M and N are both orientable or both
non-orientable and have the same Euler characteristic.

Note { orientability, χ } is a complete set of invariants.
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