
Basic topological property

1. M : n-manifold.
⇒ M is Hausdorff, locally compact, locally connected, 1st countable.

2. M is connected ⇔ M is path-connected
¤� ÃZ� At first, path-connected space is connected clearly. Conversely, since M
is locally homeomorphic to Euclidean space, every point in M has a path-
connected neighborhood. Recall that X is path-connected if and only if X is
connected and every point in X has a path-connected neighborhood. (Proof:
Each path-component of X is open because each point in path-component has
a path-connected neighborhood inside its component by maximality. A path-
component is also closed since the compliment is open. By connectedness,
open and closed set is only X itself.)

Ça�h� 1 Let M be a compact n-manifold.
1) Let U be an open cover of M . Then there exists a partition of unity
subordinate to U .
2) There exists φ : M ↪→ RN , an embedding into a Euclidean space.

¤� ÃZ� 1) We can choose a finite coordinate refinement of U because M is com-
pact. In fact, we can choose {V1, V2, . . . , Vk}, an open covering of M such that
Vj ⊂ Vj ⊂ Uj for a coordinate chart {Uj, φj}, where {U1, . . . , Uk} is an open
refinement of U . M is a normal space since it is compact Hausdorff.
Using Urysohn lemma, we can construct gj : M → [0, 1] by

gj(x) =

{
1, x ∈ Vj

0, x ∈ U c
j

.

Define

fj(x) :=
gj(x)∑k
j=1 gj(x)

.

Then we can easily check {fj} is a partition of unity.

2) For each i = 1, . . . , k, define ψi : M → Rn+1 by ψi(x) = (gi(x)φi(x), gi(x)).
then ψi is well-defined on M . Let ψ : M → Rn+1 × · · · × Rn+1 = Rk(n+1) =
RN be given by ψ = (ψ1, . . . , ψk). We claim ψ is one-to-one. Suppose that
ψ(x) = ψ(y), then ψi(x) = ψi(y) and gi(x) = gi(y) for every i = 1, . . . , k.
And if x ∈ Vj then gj(y) = gj(x) = 1 and hence y ∈ Uj. Now φj(x) = φj(y)
implies x = y as φj is a homeomorphism. Hence ψ is an embedding since M
is compact.
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Ça�h� 2 If M is 2nd countable, then M is paracompact.
In fact, each open cover has a countable locally finite refinement consisting of
open sets with compact closures.

¤� ÃZ� At first, we show that there exists a countable basis A consisting of
relatively compact open sets. SinceM is 2nd countable, there exists a countable
basis B. Let A = {B ∈ B : B is compact}.
M �Ér locally compact s�l�M:ë�H\� x\�¦ �í�<Ê���H e��_�_� neighborhood U\�
@/�#� relatively compact open set V\�¦ ���×þ�½+É Ãº e���¦, V ¢̧ô�Ç x\�¦ �í�<Ê�
��H open sets�Ù¼�Ð x ∈ B ⊂ V ��� basis element B\�¦ ¹1Ô�̀¦Ãº e����. B ∈ V 7£¤
compact setîß�_�{���2³|9�½+Ës�Ù¼�Ð B��H relatively compacts���.����"f A is
also a countable basis and denote A = {A1, A2, . . .}.

Secondly, there exists a compact exhaustion, i.e., {Gi : i = 1, 2, . . .} such
that

G1 ⊂ G1 ⊂ G2 ⊂ G2 ⊂ G3 ⊂ . . .

and M =
⋃∞

i=1Gi, Gi is open and Gi is compact. Indeed define Gk inductively
withG1 = A1 andGk = A1

⋃
· · ·

⋃
Ajk

. ThenGk ⊂ A1

⋃
· · ·

⋃
Ajk

⋃
Ajk+1

⋃
· · ·

⋃
Ajk+1

for some jk+1 > jk since Gk is compact. Now let Gk+1 = A1

⋃
· · ·

⋃
Ajk+1

.
Let U = {Uα : α ∈ I} be a given cover of M . For each fixed index i, let
Vα = Uα

⋂
(Gi+2 − Gi−1). Then {Vα : α ∈ I} is an open cover of a compact

set Gi+1 −Gi and hence there exists a finite subcover Vi. Now V =
⋃∞

i=1 Vi is
the desired refinement.

����̧Ça�h� 3 If M is 2nd countable, then there exists a partition of unity sub-
ordinate to an arbitrarily given open cover.

* {9�ìøÍ&h�Ü¼�Ð manifold M �Ér 2nd countable �̀¦ ��&ñ
ô�Ç��.
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