Basic topological property

1. M : n-manifold.

 \Rightarrow M $\,$ is Hausdorff, locally compact, locally connected, 1st countable.

2. *M* is connected \Leftrightarrow M is path-connected

중명 At first, path-connected space is connected clearly. Conversely, since M is locally homeomorphic to Euclidean space, every point in M has a pathconnected neighborhood. Recall that X is path-connected if and only if X is connected and every point in X has a path-connected neighborhood. (Proof: Each path-component of X is open because each point in path-component has a path-connected neighborhood inside its component by maximality. A pathcomponent is also closed since the compliment is open. By connectedness, open and closed set is only X itself.)

정리 1 Let M be a compact n-manifold.

1) Let \mathcal{U} be an open cover of M. Then there exists a **partition of unity** subordinate to \mathcal{U} .

2) There exists $\phi: M \hookrightarrow \mathbb{R}^N$, an **embedding** into a Euclidean space.

중명 1) We can choose a finite coordinate refinement of \mathcal{U} because M is compact. In fact, we can choose $\{V_1, V_2, \ldots, V_k\}$, an open covering of M such that $V_j \subset \overline{V_j} \subset U_j$ for a coordinate chart $\{U_j, \phi_j\}$, where $\{U_1, \ldots, U_k\}$ is an open refinement of \mathcal{U} . M is a normal space since it is compact Hausdorff. Using Urysohn lemma, we can construct $a_i \colon M \to [0, 1]$ by

Using Urysohn lemma, we can construct $g_j: M \to [0,1]$ by

$$g_j(x) = \begin{cases} 1, \ x \in \overline{V_j} \\ 0, \ x \in U_j^c \end{cases}$$

Define

$$f_j(x) := \frac{g_j(x)}{\sum_{j=1}^k g_j(x)}$$

Then we can easily check $\{f_j\}$ is a partition of unity.

2) For each i = 1, ..., k, define $\psi_i : M \to \mathbb{R}^{n+1}$ by $\psi_i(x) = (g_i(x)\phi_i(x), g_i(x))$. then ψ_i is well-defined on M. Let $\psi : M \to \mathbb{R}^{n+1} \times \cdots \times \mathbb{R}^{n+1} = \mathbb{R}^{k(n+1)} = \mathbb{R}^N$ be given by $\psi = (\psi_1, ..., \psi_k)$. We claim ψ is one-to-one. Suppose that $\psi(x) = \psi(y)$, then $\psi_i(x) = \psi_i(y)$ and $g_i(x) = g_i(y)$ for every i = 1, ..., k. And if $x \in V_j$ then $g_j(y) = g_j(x) = 1$ and hence $y \in U_j$. Now $\phi_j(x) = \phi_j(y)$ implies x = y as ϕ_j is a homeomorphism. Hence ψ is an embedding since M is compact. 정리 2 If M is 2^{nd} countable, then M is paracompact. In fact, each open cover has a countable locally finite refinement consisting of open sets with compact closures.

중명 At first, we show that there exists a countable basis \mathcal{A} consisting of relatively compact open sets. Since M is 2^{nd} countable, there exists a countable basis \mathcal{B} . Let $\mathcal{A} = \{B \in \mathcal{B} : \overline{B} \text{ is compact}\}.$

M은 locally compact 이기때문에 x를 포함하는 임의의 neighborhood U에 대하여 relatively compact open set V를 선택할 수 있고, V또한 x를 포함하 는 open set이므로 $x \in B \subset V$ 인 basis element B를 찾을수 있다. $\overline{B} \in \overline{V}$ 즉 compact set 안의 닫힌 집합이므로 B는 relatively compact 이다. 따라서 A is also a countable basis and denote $A = \{A_1, A_2, \ldots\}$.

Secondly, there exists a compact exhaustion, i.e., $\{G_i : i = 1, 2, ...\}$ such that

$$G_1 \subset \overline{G_1} \subset G_2 \subset \overline{G_2} \subset G_3 \subset \dots$$

and $M = \bigcup_{i=1}^{\infty} G_i$, G_i is open and $\overline{G_i}$ is compact. Indeed define G_k inductively with $G_1 = A_1$ and $G_k = A_1 \bigcup \cdots \bigcup A_{j_k}$. Then $\overline{G_k} \subset A_1 \bigcup \cdots \bigcup A_{j_k} \bigcup A_{j_k+1} \bigcup \cdots \bigcup A_{j_{k+1}}$ for some $j_{k+1} > j_k$ since $\overline{G_k}$ is compact. Now let $G_{k+1} = A_1 \bigcup \cdots \bigcup A_{j_{k+1}}$. Let $\mathcal{U} = \{U_\alpha : \alpha \in \mathcal{I}\}$ be a given cover of M. For each fixed index i, let $V_\alpha = U_\alpha \bigcap (G_{i+2} - \overline{G_{i-1}})$. Then $\{V_\alpha : \alpha \in \mathcal{I}\}$ is an open cover of a compact set $\overline{G_{i+1}} - G_i$ and hence there exists a finite subcover \mathcal{V}_i . Now $\mathcal{V} = \bigcup_{i=1}^{\infty} \mathcal{V}_i$ is the desired refinement. \Box

따름정리 3 If M is 2^{nd} countable, then there exists a partition of unity subordinate to an arbitrarily given open cover.

* 일반적으로 manifold *M* 은 2nd countable 을 가정한다.

HW2. (1) 1학기때 배운 필요한 topology를 review할것.(제출할 필요없음.) (2) smooth bump function을 construct할 수 있나?