Contractible space and Brouwer fixed point

정의 1 A space X is contractible to $x_0 \in X$ if $id_X \simeq c$, where $c: X \to \{x_0\} \subset X$ is a constant map.

Remark $contractible \Rightarrow path \ connected.$

예 1. \mathbf{R}^n is contractible.

F(x)=tx 로 주면 이는 id 와 0 간에 homotopy 를 준다.

- 2. D^n is contractible. 역시 F(x)=tx 로 주면 된다.
- 3. Any space which is homeomorphic to D^n .
- 4. A "tree" is contractible.(그림)
- 5. S^1 is not contractible.

숙제 6. X \cong Y and X is contractible \Rightarrow Y is also contractible.

Can you show that S^1 is not contractible. $(\pi_1$ 을 쓰지 않고 직접적으로 보일 수 있나?)

Remark.

1. X is contractible to $x_0 \in X \Rightarrow X$ is contractible to any other point of X: X가 contractible to x_0 이면 path connected 이므로 $\forall x_1 \in \mathcal{M}$ 대해 x_0, x_1 사이에 path ρ 가 존재한다. $F = id_X$ 와 c_{x_0} 간의 homotopy라 할 때 아래와 같이 정의된 H는 id_X 와 c_{x_0} 사이에 원하는 homotopy를 준다.

$$H(x,t) = \begin{cases} F(x,2t) & 0 \le t \le \frac{1}{2} \\ \rho(2t-1) & \frac{1}{2} \le t \le 1. \end{cases}$$

2. X is $contractible \Leftrightarrow X \simeq \{point\}$:

$$(\Rightarrow$$
 증명) $\{x_0\} \hookrightarrow X \rightarrow \{x_0\}$ 에서

i c_r

 $c_{x_0}\circ i=id_{x_0}$ 이고 X 가 contractible 이므로 $i\circ c_{x_0}\simeq id_X$ 이다. 따라서 $X\simeq\{x_0\}$ 이다.

(\Leftarrow 증명) $X \simeq \{x_0\}$ 이므로 homotopy equivalence f: $X \to \{x_0\}, g: \{x_0\} \to X$ 가 존재한다. 이 때 f는 constant map c_{x_0} 가 되고 따라서 $g \circ f$ 역시 constant map 이 된다. 그런데 $g \circ f \simeq id_X$ 이므로 X 는 contractible하다.

정리 1 X is contrantible $\Rightarrow \pi_1(X) = 0$.

증명 $X \simeq \{x_0\}$ 이므로 $\pi_1(X) \cong \pi_1(\{point\}) = 0$.

Fact. $\pi_1(S^1) \cong \mathbf{Z}$.

따라서 S^1 은 contractible하지 않다. $\mathbf{R}^2 \setminus \{0\}$ 역시 마찬가지이다.

정리 2 (Brouwer fixed point theorem)

Let $f: D^2 \to D^2$ be a map. Then f has a fixed point, i.e., $\exists x \in D^2$ such that f(x)=x.

증명 Suppose not. Then $x \neq f(x), \forall x \in D^2$.

Define a function $g: D^2 \to \partial D^2$ as follows:

Let g(x) be the point of intersection of the half line from f(x) to x with ∂D^2 . i.e., g(x) = f(x) + t(x - f(x)) where t is the unique solution of ||f(x) + t(x - f(x))|| = 1. Then g is continuous and g is id on $\partial D^2 = S^1$ i.e.,

i g $S^1 \hookrightarrow D^2 \to S^1$ and $g \circ i = id$ 이므로 대응하는 fundamental group들을 생각해 보면,

$$\begin{array}{cccc}
i_{\sharp} & g_{\sharp} \\
\pi_{1}(S^{1},1) & \xrightarrow{} & \pi_{1}(D^{2},1) & \xrightarrow{} & \pi_{1}(S^{1},1) \\
\mathbf{Z} & 0 & \mathbf{Z}
\end{array}$$

이 되고 이는 funtorial property에 의해 모순이다. 즉 $0=g_\sharp\circ i_\sharp=(g\circ i)_\sharp=id_\sharp=id:\mathbf{Z}\to\mathbf{Z}$ 이므로 이는 모순이 된다.