Unique Path Lifting

정리 1 (Unique path lifting property)

Let $p: X \to X$ be a covering map and let $\alpha: I \to X$ be a path with $\alpha(0) = x_0 \in X$ and $p(\tilde{x}_0) = x_0$. Then α has a unique path lifting $\tilde{\alpha}: I \to X$ with $\tilde{\alpha}(0) = \tilde{x}_0$ i.e., $p \circ \tilde{\alpha}(t) = \alpha(t)$. $\forall t \in I$.

증명 (Existence)

For each t, $\alpha(t) \in X$ has an open neighborhood U_t which is evenly covered by $\prod_{a \in A} V_{t,a}$. Since I=[0,1] is compact, we can choose a Lebesgue number $\epsilon > 0$ for

a cover $\{\alpha^{-1}(U_t)|t \in I\}$ of I. Choose partition of I,

 $0 = t_0 < t_1 < \dots < t_{n+1} = 1$ so that $t_{i+1} - t_i < \epsilon$, $i = 1, \dots n$.

Then note that $\alpha[t_i, t_{i+1}] \subset U_t$ for some t and we lift $\alpha|_{[t_i, t_{i+1}]}$ inductively : Suppose $\alpha|_{[t_0, t_i]}$ is already lifted (note that the initial point x_0 is lifted to $\widetilde{x_0}$).

Then $\alpha[t_i, t_{i+1}] \subset U_t$ for some t and $p^{-1}(U_t) = \prod_{a \in A} V_{t,a}$ and there exists a unique

 $a \in A$ such that $\tilde{\alpha}(t_i) \in V_{t,a}$.

And since $p|_{V_{t,a}} : V_{t,a} \to U_t$ is homeomorphism we can lift $\alpha|_{[t_i,t_{i+1}]}$ using $(p|_{V_{t,a}})^{-1}$ and the proof is completed.

(Uniqueness)

Suppose $p \circ \tilde{\alpha}_i = \alpha$ and $\tilde{\alpha}_i(0) = \tilde{x}_0$ i = 1, 2. Then we show that $J = \{t \in I | \widetilde{\alpha}_1(t) = \widetilde{\alpha}_2(t)\}$ is open and closed non-empty set :

1. (J is non-empty) : $x_0 \in I$.

2. (J is open) : $t \in J$ 에 대해 $\alpha(t) \in X$ 는 evenly cover되는 U를 가지고 $p^{-1}(U) = \coprod V_a$ 에서 $\widetilde{\alpha}_i(t)$ 를 포함하는 V_a 는 유일하다. 그리고 V_a 에서는 p가 homeomorphism 이므로 $\widetilde{\alpha}_1 = (p|_{V_a})^{-1} \circ \alpha = \widetilde{\alpha}_2$ on $(t - \epsilon, t + \epsilon)$ 이다. 따라서 $\exists \epsilon > 0$ such that $(t - \epsilon, t + \epsilon) \in J$.

3. (J is closed) : $J^c = \{t \in I | \widetilde{\alpha_1}(t) \neq \widetilde{\alpha_2}(t)\}$ 이 open 임을 보이자.

 $\widetilde{\alpha_1}(t) \neq \widetilde{\alpha_2}(t)$ for some $t \in I$ 라면, $\alpha(t)$ 에 대해 evenly cover되는 U 가 존재 해서 $p^{-1}(U) = \coprod V_a$ 이다. 그리고 각 $\widetilde{\alpha_i}(t)$ 와 만나는 V_{a_1}, V_{a_2} 가 유일하게 존 재하고, $V_{a_1} \neq V_{a_2}$ 이다. 즉 $\widetilde{\alpha_1}(t - \epsilon, t + \epsilon) \subset V_{a_1}$, $\widetilde{\alpha_2}(t - \epsilon, t + \epsilon) \subset V_{a_2}$ 를 만 족하는 $\epsilon > 0$ 이 존재한다. 따라서 J^c 는 open이다.

I는 connected 이므로 위 1,2,3, 에 의해 J = I 이다. 따라서 I 내부 전체에서 $\widetilde{\alpha_1} = \widetilde{\alpha_2}$ 이다.

Remark. (Uniqueness of lifting) Y가 connected 이고 $f : (Y, y_0) \to (X, x_0)$ 가 lifting $\tilde{f} : (Y, y_0) \to (\tilde{X}, \tilde{x_0})$ 를 가지면, 이는 unique하다. (증명) Y의 connectedness 를 이용, 위 정리의 증명에서 I 대신 Y 를 써서 똑 같이 하면 된다.

정리 2 (Lifting of homotopy of paths.)

Let $p: (\widetilde{X}, \widetilde{x_0}) \to (X, x_0)$ be a covering space. And $\alpha: I \to X$ with $\alpha(0) = x_0$ and $F: \alpha \simeq \beta$ be a homotopy between α and β . Then $\exists ! \widetilde{F}: I \times I \to \widetilde{X}$ such that $p \circ \widetilde{F} = F$ and $\widetilde{F}(0, 0) = \widetilde{x_0}$.

In particular, \widetilde{F} gives a homotopy between $\widetilde{\alpha} = F_0$ and $\widetilde{\beta} = F_1$.

Furthermore (1) if F keeps initial point x_0 fixed, i.e., $F(0, u) = x_0 \ \forall u \in I$, then \widetilde{F} keeps initial point \widetilde{x}_0 fixed,

and (2) if F keeps end points $\alpha(0) = \beta(0)$ and $\alpha(1) = \beta(1)$ fixed, then \widetilde{F} keeps end points $\alpha(0) = \beta(0)$ and $\alpha(1) = \beta(1)$ fixed.

증명 이 증명 역시 존재성만 보이면, 유일성은 *I*²의 connectedness에 의해 보 장된다.

For each (t, u), F(t, u) has an open neighborhood $U_{(t,u)}$ which is evenly covered by $p^{-1}(U_{(t,u)}) = \prod_{a \in A} V_{(t,u),a}$. Choose a Lebesgue number $\epsilon > 0$ for a cover $\{F^{-1}(U_{(t,u)}) \mid (t, u) \in I \times I\}$ for compact $I \times I$. Choose a partition $0 = t_0 < t_1 < \cdots < t_{n+1} = 1$ with $t_{i+1} - t_i < \frac{\epsilon}{2}$

 $0 = u_0 < u_1 < \dots < u_{n+1} = 1$ with $u_{i+1} - u_i < \frac{\epsilon}{2}$ so that

each $[t_i, t_{i+1}] \times [u_i, u_{i+1}] \subset F^{-1}(U_{(t,u)})$ for some (t, u).

As in Theorem 1, F is defined inductively starting from $[t_0, t_1] \times [u_0, u_1]$ so that $F(0,0) = \widetilde{x_0} \in V_{(0,0),\alpha}$ using the homeomorphism $p|_{V_{(0,0),\alpha}} : V_{(0,0),\alpha} \to U_{(0,0)}$. Then lift $F|_{[t_1,t_2]\times[u_0,u_1]}, \cdots, F|_{[t_n,t_{n+1}]\times[u_0,u_1]}$ successively as before to obtain a lifting of $F|_{[0,1]\times[u_0,u_1]}$.

Now lift $F|_{[0,1]\times[u_1,u_2]}$ using the already lifted portion as above, and lift $F|_{I\times[u_2,u_3]}$, \cdots etc., finally to get a lifting $\widetilde{F}: [0,1] \times [0,1] \to \widetilde{X}$.

위 정리의 (1)과 (2)는 lifting의 uniqueness에 의해서 constant map의 lifting은 constant map일 수 밖에 없으므로 성립한다. □

Exercise. \tilde{F} 가 연속임을 보여라. (Hint) $X = A \cup B$, A and B both closed(or open) in X 라면 $f: X \to Y$ 에서 $f|_A$ and $f|_B$ 가 연속이면 f는 연속임을 보인후 이를 이용하 라.

따름정리 3 $\alpha \sim \beta \Rightarrow \tilde{\alpha} \sim \tilde{\beta}$. 여기서 $\alpha, \beta \in X$ 의 path들이고 $\tilde{\alpha}, \tilde{\beta} \in \mathcal{C}$ initial point를 가지는 lifting 들이 다.