II.4 Existence of covering spaces

1. Existence of a covering space assuming the existence of a universal covering space.

 $(\widetilde{X}, \widetilde{x})$ $\downarrow p$: a universal covering with a deck transformation group $G \stackrel{\theta(\cong)}{\leftarrow} \pi_1(X, x)$ (X, x)

정리 1 If
$$H < G$$
, then (\tilde{X}, \tilde{x})
 $p \downarrow \qquad \searrow q$
 (X, x)

where $\widetilde{X}_H = H \setminus \widetilde{X}$ with $r_{\sharp} \pi_1(\widetilde{X}_H, \overline{x}) = \theta^{-1}(H)$ and the quotient map q and the induced map r become covering maps.

왼쪽 그림에서와 같이 p에 의해 evenly cover되는 U를 잡으면 H는 $p^{-1}(U)$ 에 permutation으로 작용하므로 H action에 대한 quotient map q가 covering map이 되는 것은 분명하고 r을 q에 의해 p로 부터 induced되는 \bar{p} 로 정의

하면 r은 당연히 onto이고, U가 역시 r에 의해서 evenly covered 되므로 r은 covering 이 된다. 그리고

$$\begin{split} \alpha &\in \theta^{-1}(H) \subset \pi_1(X, x) \quad \Leftrightarrow \quad \theta(\alpha) \in H \quad \Leftrightarrow \quad \tilde{x} \cdot \alpha \in H \cdot \tilde{x} \\ \Leftrightarrow \quad \bar{x} := q(\tilde{x}) = q(\tilde{x} \cdot \alpha) = \bar{x} \cdot \alpha \quad \Leftrightarrow \quad \alpha \in \Pi_{\bar{x}} = r_{\sharp} \pi_1(\widetilde{X}_H, \bar{x}) \text{ } \mathcal{Y} \text{ 성립하므} \\ \vec{\Xi}, \\ r_{\sharp} \pi_1(\widetilde{X}_H, \bar{x}) = \theta^{-1}(H) \text{ 이다.} \end{split}$$

2. Existence of a universal covering space.

Idea : the set of homotopy classes of paths from x to $y \Leftrightarrow p^{-1}(y) \subset \widetilde{X}$, universal covering, via $[\alpha] \leftrightarrow \tilde{\alpha}(1)$

경의 1 A space X is said to be **semilocally simply connected** if for each $x \in X$, there is a neighborhood U of x such that the homomorphism $i_{\sharp}: \pi_1(U, x) \to \pi_1(X, x)$

induced by inclusion is trivial.

Assume that X is path-connected, locally path-connected and semilocally simply connected.

Let $(P, x) = \{ \alpha : I \to X \mid \alpha(0) = x \}$ Define $\widetilde{X} = (P, x) / \sim$ (recall $\alpha \sim \beta \Leftrightarrow \alpha \simeq \beta$ rel ∂) and $p : \widetilde{X} \to X$ by $p([\alpha]) = \alpha(1)$

Topology of \widetilde{X}

For $\alpha \in (P, x)$ and open set U with $\alpha(1) \in U$, let $(\alpha, U) := \{\alpha * \alpha' | \alpha' : I \to U \text{ with } \alpha'(0) = \alpha(1)\}/\sim \subset \widetilde{X}.$

이때 주어진 $y = \alpha(1) \in X$ 에 대해, U를 path-connected, semilocally simply connected neighborhood of $y(=\alpha(1))$ 라고 하면 $p|: (\alpha, U) \to U$ 는 onto 이고 one-to-one 이다.

이제 p가 evenly covered 임을 보이자. 즉, $p^{-1}(U) = \prod_{\alpha(1)=y} (\alpha, U)$: $(\alpha, U) \cap (\beta, U) \neq \emptyset$ 라고 하자. $\gamma \in (\alpha, U) \cap (\beta, U)$ 에 대하여 α' 와 β' 가 존재해서 $\alpha * \alpha' \sim \gamma \sim \beta * \beta'$ $\Rightarrow \quad \alpha * \alpha' * \overline{\alpha'} \sim \beta * \alpha' * \overline{\alpha'}(: U$ 가 semilocally simply connected 이므로 $\beta * \beta' \sim \beta * \alpha'$

$$\Rightarrow \quad \alpha \sim \beta$$

 $\therefore (\alpha, U) \cap (\beta, U) \neq \varnothing \qquad \Rightarrow \qquad (\alpha, U) = (\beta, U)$

Take $\{(\alpha, U)|U: \text{ open neighborhood of } \alpha(1), \alpha \in (P, x)\}$ as a base for a topology of \widetilde{X} .

Check

1. $\bigcup(\alpha, U) = X$ (obvious)

2. $\gamma \in (\alpha, U) \cap (\beta, V)$

⇒ ∃ $W \subset U \cap V$ such that $(\gamma, W) \subset (\alpha, U) \cap (\beta, V)$ 여기서 $W \succeq$ pathconnected neighborhood of $\gamma(1)$ 이고 U가 semilocally simply connected 이므 로 subset $W \subseteq$ 마찬가지(obvious)

 \widetilde{X} 가 path-connected 임을 보이자. 임의의 $[\alpha] \in \widetilde{X}$ 에 대해서 $\alpha_s(t) := \alpha(st)$ 라고 하면 $\alpha_s \leftarrow \alpha$ 와 x(constant path)를 잇는 path이다. 여기서 $\tilde{\alpha}(s) := [\alpha_s]$ 라고 정의하면 $\tilde{\alpha}(0) = [x], \tilde{\alpha}(1) = [\alpha]$ 가 되어 $[\alpha]$ 와 [x]는 path 로 연결된다. (exercise : $\tilde{\alpha}$ is continuous)

마지막으로 \widetilde{X} 가 simply connected 임을 보이자. Let τ be a loop in $(\widetilde{X}, \widetilde{x})$, where $\widetilde{x} = [x]$ $\Rightarrow \alpha := p \circ \tau$ is a loop in X and $\widetilde{\alpha} = \tau$ $\Rightarrow [\alpha] = \widetilde{\alpha}(1) = \tau(1) = [x] \Rightarrow \alpha \sim x \Rightarrow \tau \sim \widetilde{x}$

따름정리 2 $\forall H < \pi_1(X, x), \exists a \text{ covering space } (\widetilde{X}, \widetilde{x}) \text{ corresponding to } H, \text{ i.e.}$ $p_{\sharp}\pi_1(\widetilde{X}, \widetilde{x}) = H$

Remark

1. Universal covering is "universal", i.e. it covers every other covering by lifting theorem and universal covering is clearly unique up to isomorphism.

2. X has a universal covering.

 $\Rightarrow X \text{ is semilocally simply connected.}$ $\pi_1(\tilde{U}, \tilde{x}) \xrightarrow{i_{\sharp}} \pi_1(\tilde{X}, \tilde{x}) = 0$ $\cong \downarrow p_{\sharp} \quad \circlearrowright \quad \downarrow p_{\sharp}$ $\pi_1(U, x) \xrightarrow{i_{\sharp}} \pi_1(X, x)$ 로 부터 당연하다.

숙제 8

Let (G, e) be a topological group and $p : (\tilde{G}, \tilde{e}) \to (G, e)$ be a covering. Then we can lift the group structure of G to \tilde{G} so that p becomes a homomorphism unique up to the choice of identity $\tilde{e} \in p^{-1}(e)$.