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Abstract—In the present article, we obtain some explicit integral formulas for the generalized
Chern–Simons function I

(
W (α, β)

)
for Whitehead link cone-manifolds in the hyperbolic and

spherical cases. We also give the Chern–Simons invariant for the Whitehead link orbifolds. We find
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1. INTRODUCTION
The hyperbolic volume, the Chern–Simons invariant, and the complex lengths of singular geodesics

are important characteristics of geometric structure of a cone-manifold. According to the Kojima–
Mostow rigidity theorem [9, 12], the above invariants are topological invariants as well.

The Chern–Simons invariants for coverings branched over some two-bridge knots were calculated
by H. M. Hilden, M. T. Lozano, and J. M. Montesinos-Amilibia in [5–7]. We consider a two-parameter
family of cone-manifolds with a three-sphere as an underlying space and the cone singularity along
the Whitehead link. The aim of the present article is to find the Chern–Simons invariants of these cone-
manifolds.

Denote by W (α, β) a 3-manifold with a three-sphere as an underlying space and the cone singularity
along the Whitehead link, where α and β are cone angles along the corresponding components
of the singular set. To find the Chern–Simons invariant of a geometric1) 3-manifold W (α, β), we
correspond a real number I

(
W (α, β)

)
to each such manifold. We will give a definition of the num-

ber I
(
W (α, β)

)
in Section 4. This number depends on certain conditions; and, therefore, it is not an in-

variant of a cone-manifold. The Chern–Simons invariant can be defined as the residue of I
(
W (α, β)

)
modulo a certain number if the given cone-manifold is an orbifold. Then, for a 2-parameter family of
cone-manifolds W (α, β), we have a function of two variables I

(
W (α, β)

)
= I(α, β) which is called

the generalized Chern–Simons function. This function has the following important property: It
satisfies an analog of the classical differential Schläfli formula that enables us to find this function.

The article consists of 5 sections. The second section contains preliminaries and necessary defini-
tions. In Section 3, we represent some results by A. D. Mednykh [10] about trigonometry of the White-
head link. Grounding on these results, we obtain imaginary parts of complex lengths of singular
geodesics. In Section 4, we define the Chern–Simons form, the generalized Chern–Simons function,
and the Chern–Simons invariant for the Whitehead link orbifolds. In Section 5, using an analog of
the classical differential Schläfli formula, we obtain some explicit integral formulas for the generalized
Chern–Simons function I

(
W (α, β)

)
in the hyperbolic and spherical cases. These formulas enable us to

find the Chern–Simons invariant of the Whitehead link orbifolds (S3,W, n, m). In addition, in Section 5,
we find the Chern–Simons invariants of the n-fold coverings Mn(W ) of the three-sphere branched over
the Whitehead link and give some results of computations of these invariants.

*E-mail: abrosimov@math.nsc.ru
1)From now on, by “geometric” we mean a structure that admits a metric of constant (positive, negative, or zero) curvature.
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2 ABROSIMOV

2. PRELIMINARIES

In this article, we consider the Whitehead link cone-manifolds C = W (α, β) (see Fig.).

a

b

Fig. The Whitehead link W (α, β)

A cone-manifold C is defined by its underlying space S3, a singular set Σ consisting of two compo-
nents Σα and Σβ , and cone angles α and β. In the case when these angles have the form 2π/n, n ∈ N,
we deal with an orbifold.

An orbifold has the same local structure as a given manifold, and it is a natural object in studying
the discrete groups. Thus, the orbifolds, as a particular case of cone-manifolds, are of special interest,
and the group theory technique is applicable to them.

Further, the cone-manifold C determines a nonsingular but noncomplete manifold N = C − Σ.
Denote by Φ the fundamental group of N . Recall some standard notations: the symbols H3, E3,
or S3 denote the three-dimensional hyperbolic, Euclidean, or spherical spaces, SL(2,C) is the group of
complex matrices of the second order with unit determinant, PSL(2,C) is the corresponding projective
group, SO(3) is the three-dimensional rotation group, and SO(4) is the four-dimensional rotation group.
There are three possible cases with respect to geometry in which a given manifold N is realized.

C a s e 1. A hyperbolic geometric structure on N defines a holonomic homomorphism

ĥ : Φ −→ Isom+(H3) = PSL(2,C)

up to conjugation in PSL(2,C).

It is known [2] that the monodromy homomorphism ĥ can be lifted to SL(2,C) if all cone angles are
less than π. Denote by h : Φ −→ Isom+(H3) = SL(2,C) such a homomorphism.

C a s e 2. A Euclidean geometric structure on N defines a homomorphism

h : Φ −→ Isom+(E3) = SO(3) · R3.

C a s e 3. A spherical geometric structure on N defines a homomorphism

h : Φ −→ Isom+(S3) = SO(4).

Choose some orientation on the link Σ = Σα
⋃

Σβ and fix the pairs {mj , lj}, j = α, β, of longitudes
and parallels for each singular component. Then the matrices Mj = h(mj) and Lj = h(lj) satisfy
the following defining relations:

MjLj = LjMj , where j = α, β.

In all three cases (of hyperbolic, Euclidean, and spherical structures) h(lj) is a skew motion with
a displacement δj and an angle of rotation ϕj . Then a jump of the component Σj is a point in R/4πZ
which is defined by an angle ϕj . Denote by ϕj an equivalence class of ϕj modulo 4π. We call the quantity
tw

(
Σj

)
= ϕj α/2π the twist of the component Σj .

See [4] for more details.

Definition 1. We say that the cone-manifold C is obtained by the orbifold Dehn surgery with
the cone angle α = 2π/m on the component Σα if tr(Mα) = 2 cos(α/2).

Definition 2. We say that the cone-manifold C is obtained by the spontaneous Dehn surgery with
the cone angle α = 2π/m on the component Σα if tr(Lα) = 2 cos(α/2).

SIBERIAN ADVANCES IN MATHEMATICS Vol. 18 No. 2 2008



THE CHERN–SIMONS INVARIANTS OF CONE-MANIFOLDS 3

Definition 3. A complex length of the singular component Σj of the cone-manifold C is the com-
plex number γα = δα + iϕα.

From the above definitions it follows immediately that

2 cosh γj = tr(L2
j ), j = α, β, in the case of the orbifold surgery;

2 cosh γj = tr(M2
j ), j = α, β, in the case of the spontaneous surgery

(see [3, p. 46]).
We note that the meridian-longitude pair {mj , lj} of the oriented link is uniquely determined up to

a common conjugating element of the group Φ. Hence, the complex length γj = lj + i ϕj is uniquely
determined up to a sign and (mod 2πi). This means that the complex length γj satisfies the conditions
δj ≥ 0 and−2π < ϕj ≤ 2π which we will hold in what follows.

3. TRIGONOMETRIC IDENTITIES AND THEIR COROLLARIES

Theorem 1 (the sine rule [10]). Let γα = δα + iϕα (resp. γβ) be a complex length of the singular
geodesic of a hyperbolic cone-manifold W (α, β) with a cone angle α (resp. β). Then

sin (ϕα/2)
sinh (δα/2)

=
sin (ϕβ/2)
sinh (δβ/2)

.

Moreover, as was shown in [10, p. 300], the following relations hold:

iB coth (γα/4) = iA coth (γβ/4) = u, (3.1)

where A = cot (α/2), B = cot (β/2), and u, Im(u) > 0, is a root of the cubic equation

u3 −ABu2 +
1
2
(A2B2 + A2 + B2 − 1)u + AB = 0. (3.2)

Similar results take place in the spherical case as well.
The relations (3.1) and (3.2) gives us a practical way to calculate the real part δα (resp. δβ) and

the imaginary part ϕα (resp. ϕβ) of the complex lengths γα (resp. γβ) of singular geodesics. Indeed, for
a suitable choice of analytic branches, from (3.1) it follows that

ϕα =
γα − γα

2i
= 2 arctan (u/B) + 2 arctan (u/B) = 2 arctan (A/z) + 2 arctan (A/z),

where z = AB/ū, Im(z) > 0, satisfies the equation

z3 +
1
2
(A2B2 + A2 + B2 − 1)z2 −A2B2z + A2B2 = 0. (3.3)

Thus, we have proven the following:

Proposition 1. Let W (α, β) be a hyperbolic Whitehead link cone-manifold. Denote by ϕα

and ϕβ the imaginary parts of complex lengths of singular geodesics of W (α, β) with cone
angles α and β respectively. Then

ϕα = 2 arctan (A/z) + 2 arctan (A/z),
ϕβ = 2 arctan (B/z) + 2 arctan (B/z),

where z, Im(z) > 0 , is a root of the equation (3.3), A = cot (α/2), and B = cot (β/2).
Similar reasoning can be carried out for the spherical cone-manifold W (α, β) too. In the spherical

case (see [7]), all roots of the cubic equation (3.3) are real, and the imaginary parts of complex lengths of
singular geodesics are given by the formulas

ϕα = 2 arctan (A/ζ1) + 2 arctan (A/ζ2), (3.4)

ϕβ = 2 arctan (B/ζ1) + 2 arctan (B/ζ2), (3.5)

where ζ1 and ζ2, 0 ≤ ζ1 < ζ2, are nonnegative roots of (3.3).

SIBERIAN ADVANCES IN MATHEMATICS Vol. 18 No. 2 2008



4 ABROSIMOV

4. THE GENERALIZED CHERN–SIMONS FUNCTION

Define a number I
(
~C, ~Σ

)
(see [6]) associated with an oriented cone-manifold (~C, ~Σ). From now on,

the sign “arrow” indicates that the orientation is specified. We will omit this sign in those cases when
the orientation is immaterial.

Let
(
~C, ~Σ

)
be an oriented cone-manifold with a singular set Σ = Σα1 ∪ · · · ∪ Σαk

. Choose ~m1,

. . . , ~mk as meridians of the singular components whose orientation agrees with the orientation of ~C.
From [11, Theorem 4.3] it follows that there exists a frame field F (~C − Σ− ∪jmj) with special
singularities at Σ ∪ (∪jmj) (see [6]). In what follows, we also call the map

s : ~C − Σ− ∪jmj → F
(
~C − Σ− ∪jmj

)
,

with singularities at Σ ∪ (∪jmj), a frame field (see [6]). Here, the minus stands for the set-theoretic
difference.

Let Q be the Chern–Simons form defined on the positively-oriented orthonormal frame bundle
F

(
~C, ~Σ

)
; and

Q =
1

4π2
(θ12 ∧ θ13 ∧ θ23 + θ12 ∧ Ω12 + θ13 ∧ Ω13 + θ23 ∧ Ω23),

where (θij) is the connection 1-form and (Ωij) is the curvature 2-form of the Riemannian connection on
the 3-manifold ~C − Σ.

Proposition 2 [6]. Let Q be the Chern–Simons form defined on the positively-oriented or-
thonormal frame bundle F

(
~C, ~Σ

)
. Then the number

1
2

∫

s( ~C−Σ−∪mj)

Q (mod 1)

is an invariant of
(
~C, ~Σ

)
.

Let s′ = (f1, f2, f3) be an orthonormal system on a subset of ~C − Σ containing meridians which
possesses the following property: At each point y ∈ mj , the tangent vector f1(y) is the tangent vector
to mj , and f2(y) is tangent to the meridian disc that is bounded by mj . Then τ(mj , s

′) = − ∫
s′(mj)

θ23.

In fact, τ(mj , s
′) ≡ τ(mj) (mod 2π), where τ(mj) is the torsion of the curve mj .

Definition 4. Suppose that

I
(
~C, ~Σ

)
=

1
2

∫

s( ~C−Σ−∪mj)

Q− 1
4π

τ(m, s′)− 1
4π

tw(Σ),

I1

(
~C, ~Σ

) ≡ I
(
~C, ~Σ

)
(mod 1),

Iα/2π

(
~C, ~Σ

) ≡ I
(
~C, ~Σ

)
(mod α/2π).

Definition 5. The number I
(
~C, ~Σ

)
, expressed as a function of cone angles corresponding to

the components of a singular set Σ of a cone-manifold C, is the generalized Chern–Simons function.

Proposition 3. The number I1/l.c.m.{n,m}
(
~C, ~Σ2π/n ∪ ~Σ2π/m

)
is an invariant of the orbifold

(
~C,

~Σ2π/n ∪ ~Σ2π/m

)
.

Proof. The real number I
(
~C, ~Σ

)
depends only on the choice of the frame field s provided that

the values ϕj are chosen so that −2π ≤ ϕj < 2π. From Proposition 2 it follows that the class I1

(
~C, ~Σ

)

is independent of the choice of s. The class Iα/2π

(
~C, ~Σ

)
depends on the choice of s, but this class does

not depend on a representative of the equivalence class ϕj . In the case of αj = 2π/nj , the cone-manifold
is an orbifold.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 18 No. 2 2008



THE CHERN–SIMONS INVARIANTS OF CONE-MANIFOLDS 5

In order to avoid conglomeration of indices, consider the case of Σ = Σα ∪ Σβ (the singular set is
a two-component link with cone angles α and β). This particular case can be easily extended to the case
of a k-component singular set. Moreover, in this article, we study the Whitehead link case in detail.
Let α = 2π/n and β = 2π/m; i.e., α/2π = 1/n and β/2π = 1/m. Then the number I1

(
~C, ~Σα ∪ ~Σβ

)

is independent of the choice of s. The number I1/n

(
~C, ~Σα ∪ ~Σβ

)
is independent of a representative

in the equivalence class ϕα. The number I1/m

(
~C, ~Σα ∪ ~Σβ

)
is independent of a representative in

the equivalence class ϕβ .

Following [6], denote by (S3, W, n, m) the Whitehead link orbifold with the cone angles 2π/n
and 2π/m, where n,m ∈ N.

Definition 6. The Chern–Simons invariant (CS-invariant in a shorter form) for the orbifold
(S3,W, n, m) is given by the formula

CS(S3, W, n, m) = I

(
W

(
2π

n
,
2π

m

)) (
mod

1
l.c.m.{n,m}

)
.

Observe that the above definition is correct according to Proposition 3.

Remark 1 [6]. Suppose that α = β = 2π. Then the cone-manifold
(

~M,Σ2π

)
is a geometric mani-

fold ~M (the singular set degenerates in this case). The classes I1 and Iα/2π are equal, since α/2π = 1.
Hence,

I1

(
~M,Σ

) ≡ CS
(

~M
)

(mod 1).

Denote by “tilde” the n-fold cyclic covering of the cone-manifold (~C, ~Σα) branched over ~Σα. We have
(
~̃
C,

~̃Σnα

)
→ (

~C, ~Σα

)
.

Remark 2 [6]. Suppose that α = β. Then

I
(
~̃
C,

~̃Σnα

)
= nI

(
~C, ~Σα

)
,

I1

(
~̃
C,

~̃Σnα

)
≡ nI1

(
~C, ~Σα

)
(mod 1),

Inα/2π

(
~̃
C,

~̃Σnα

)
≡ nIα/2π

(
~C, ~Σα

)
(mod nα/2π).

5. THE SCHLÄFLY FORMULA AND THE CHERN–SIMONS INVARIANT

In this section, we will obtain explicit formulas for the Chern–Simons invariant for certain cone-
manifolds in the hyperbolic and spherical geometries. As in the case of volumes, the starting point for
the CS-invariant calculation is the Schläfli formula (for more details see, for example, [8] or [6]).

Theorem 2 (the Schläfly formula for torsion). Suppose that Ct is a smooth one-parameter fam-
ily of cone-manifold structures (of curvature K) on a 3-manifold with a singular set Σ. Then
the derivative of the generalized Chern–Simons function I for Ct satisfies the relation

K dI(Ct) =
1

4π2

∑

i

ϕθi dθi,

where the summation is taken over all components of the singular set Σ with imaginary parts of
the complex length ϕθi and the cone angles θi.

Theorem 3. Let W (α, β) be a hyperbolic cone-manifold. Then the generalized Chern–Simons
function is given by the formula

I
(
W (α, β)

)
=

∫ −1

ζ1

F (ζ,A, B) dζ +
∫ −1

ζ2

F (ζ, A,B) dζ −
(

π − α

2π

)2

−
(

π − β

2π

)2

+ C,

SIBERIAN ADVANCES IN MATHEMATICS Vol. 18 No. 2 2008



6 ABROSIMOV

where

F (ζ, A,B) =
1

2π2(ζ2 − 1)
log

[
2(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ2 − ζ3)

]
,

A = cot (α/2), B = cot (β/2), C = 11/24, ζ1 = z , ζ2 = z , Im(z) > 0, and z is a root of the cubic
equation

z3 +
1
2
(A2B2 + A2 + B2 − 1)z2 −A2B2z + A2B2 = 0.

Proof. According to the Schläfli formula for torsion, we have

∂I

∂α
= − ϕα

4π2
,

∂I

∂β
= − ϕβ

4π2
, (5.6)

where ϕα and ϕβ are the imaginary parts of complex lengths of singular geodesics with the correspond-
ing cone angles α and β.

Put

Ĩ =
∫ −1

ζ1

F (ζ, A, B)dζ +
∫ −1

ζ2

F (ζ,A, B)dζ −
(

π − α

2π

)2

−
(

π − β

2π

)2

+ C1,

where C1 is some integration constant, and show that Ĩ satisfies the condition (5.6). Then Ĩ = I, and
the theorem is proven.

By the Newton–Leibniz formula, we obtain

∂Ĩ

∂α
= −F (ζ1, A, B)

∂ζ1

∂α
+

∫ −1

ζ1

∂F (ζ, A,B)
∂A

∂A

∂α
dζ − F (ζ2, A,B)

∂ζ2

∂α

+
∫ −1

ζ2

∂F (ζ, A, B)
∂A

∂A

∂α
dζ +

π − α

2π2
. (5.7)

Observe that F (ζ1, A, B) = F (ζ2, A, B) = 0 if ζ1, ζ2, A, and B are the same as in the statement of
the theorem. Moreover, since α = 2arccotA, we infer

∂A

∂α
= −1 + A2

2
,

∂F (ζ, A,B)
∂A

∂A

∂α
=

A

2π2(ζ2 + A2)
.

Hence, by Proposition 1, from the equation (5.7) it follows that

∂Ĩ

∂α
=

1
2π2

∫ −1

ζ1

A dζ

ζ2 + A2
+

1
2π2

∫ −1

ζ2

Adζ

ζ2 + A2
+

π − α

2π2

= − 1
2π2

[
arctan (A/ζ1) + arctan (A/ζ2) + 2 arctanA + α− π

]

= − 1
2π2

[
arctan (A/z) + arctan (A/z̄)

]

= − ϕα

4π2
,

since 2 arctanA = 2 arctan
(
cot (α/2)

)
= 2 arctan

(
tan (π/2− α/2)

)
= π − α.

The equation
∂I

∂β
= − ϕβ

4π2
can be obtained by analogy.

In [1], the constant C = 11/24 was found as a constituent part of the generalized Chern–Simons
function independent of the variables α and β. Letting the constant C1 equal to this value, we obtain
the claim of the theorem.

The analogous theorem is valid in the spherical case as well.

SIBERIAN ADVANCES IN MATHEMATICS Vol. 18 No. 2 2008



THE CHERN–SIMONS INVARIANTS OF CONE-MANIFOLDS 7

Theorem 4. Let W (α, β) be a spherical Whitehead link cone-manifold. Then the generalized
Chern–Simons function is given by the formula

I
(
W (α, β)

)
=

∫ −1

ζ1

F (ζ,A, B) dζ +
∫ −1

ζ2

F (ζ,A, B) dζ −
(

π − α

2π

)2

−
(

π − β

2π

)2

+ C,

where

F (ζ, A, B) =
1

2π2(ζ2 − 1)
log

[
2(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ2 − ζ3)

]
,

A = cot (α/2), B = cot (β/2), C = 11/24, ζ1 = z1 , ζ2 = z2 , 0 ≤ z1 < z2 , and z1 and z2 are the real
roots of the cubic equation

z3 +
1
2
(A2B2 + A2 + B2 − 1)z2 −A2B2z + A2B2 = 0.

Proof. According to the Schläfli formula for torsion, we have

∂I

∂α
= − ϕα

4π2
,

∂I

∂β
= − ϕβ

4π2
, (5.8)

where ϕα and ϕβ are the imaginary parts of complex lengths of singular geodesics with the correspond-
ing cone angles α and β.

Put

Ĩ =
∫ −1

ζ1

F (ζ,A, B) dζ +
∫ −1

ζ2

F (ζ,A, B) dζ −
(

π − α

2π

)2

−
(

π − β

2π

)2

+ C2,

where C2 is an integration constant, and show that Ĩ satisfies the condition (5.8). Then Ĩ = I, and
the theorem is proven.

By the Newton–Leibniz formula, we obtain

∂Ĩ

∂α
= −F (ζ1, A,B)

∂ζ1

∂α
+

∫ −1

ζ1

∂F (ζ, A,B)
∂A

∂A

∂α
dζ

− F (ζ2, A, B)
∂ζ2

∂α
+

∫ −1

ζ2

∂F (ζ,A, B)
∂A

∂A

∂α
dζ +

π − α

2π2
. (5.9)

Note that F (ζ1, A,B) = F (ζ2, A, B) = 0 if ζ1, ζ2, A, and B are the same as in the statement of
the theorem. Moreover, since α = 2arccotA, we obtain

∂A

∂α
= −1 + A2

2
,

∂F (ζ, A,B)
∂A

∂A

∂α
=

A

2π2(ζ2 + A2)
.

Hence, (3.4), (3.5), and (5.9) yield

∂Ĩ

∂α
=

1
2π2

∫ −1

ζ1

A dζ

ζ2 + A2
+

1
2π2

∫ −1

ζ2

Adζ

ζ2 + A2
+

π − α

2π2

= − 1
2π2

[
arctan (A/ζ1) + arctan (A/ζ2) + 2 arctanA + α− π

]

= − 1
2π2

[
arctan (A/z1) + arctan (A/z2)

]

= − ϕα

4π2
.

The equation
∂I

∂β
= − ϕβ

4π2
can be derived similarly.
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8 ABROSIMOV

In [1], the constant C = 11/24 was found as a constituent part of the generalized Chern–Simons
function independent of the variables α and β. Letting the constant C2 equal to this value, we obtain
the claim of the theorem.

According to Definition 6, Theorems 3 and 4 allow us to find the CS-invariant of the orbifolds
(S3,W, n, m) in the hyperbolic and spherical cases:

CS(S3, W, n, m) = I

(
W

(
2π

n
,
2π

m

)) (
mod

1
l.c.m.{n,m}

)
. (5.10)

The following theorem gives a useful application of the CS-invariant of the orbifolds (S3,W, n, m) to
finding the classical CS-invariant.

Theorem 5. Let Mn(W ) be the n-fold cyclic covering of the three-sphere branched over
the Whitehead link. Then the CS-invariant of the manifold Mn(W ) can be obtained by the formula

CS
(
Mn(W )

)
= nCS(S3,W, n, n) (mod 1).

The proof of the last theorem is immediate from Remarks 1 and 2. ¤
In the table below, we present the results of computations of the CS-invariant for some n-fold cyclic

coverings of the three-sphere branched over the Whitehead link. The data of this table were computed
on using the program package Mathematica 5.0 (Wolfram Research).

CS
(
M2(W )

)
0, 375000 . . .

CS
(
M4(W )

)
0, 618178 . . .

CS
(
M6(W )

)
0, 320379 . . .

CS
(
M10(W )

)
0, 539523 . . .

CS
(
M12(W )

)
0, 093624 . . .
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