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ANALYTIC STRUCTURE OF SCHLAFLI FUNCTION

KAZUHIKO AOMOTO

§ 1. Introduction

In this note it is shown that Schldfli function can be simply ex-
pressed in terms of hyperlogarithmic functions, namely iterated integrals
of forms with logarithmic poles in the sense of K. T. Chen (Theorem
1). It is also discussed the relation between Schldfli function and hyper-
geometric ones of Mellin-Sato type (Theorem 2). From a combinatorial
point of view the structure of hyperlogarithmic functions seem very

interesting just as the dilog I log (1 — x)/xdx (so-called Abel-Rogers
Jo

function) has played a crucial part in Gelfand-Gabriev-Losik's formula
of 1st Pontrjagin classes. See also [3].

The author would like to express his sincere gratitude to Prof. S.
S. Chern who has pointed out to the author his interest in this subject
and has communicated some references, and to the author's colleagues
too for their stimulating discussions.

§ 2 . Gauss-Bonnet theorem

Let Sn be a n dimensional unit sphere in Rn+ι with the standard
metric and S19 S29 ->Sn+1 be (n + 1) hyperplanes in Rn+ι through the
origin which are in general position. Let

\£Λ) Oj . J j — U

n+l n+1

where fs = 2 ujvxv with 2 u)v = 1. The set of all points of Sn satisfy-
v=l v=l

ing the inequalities

(2.2) f ^ 0, •• , / n + 1 ^ 0

form a n dimensional spherical simplex denoted by Δ. We denote by
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<i,y> the dihedral angle between St and Sj subtended by Δ. Then Δ is
uniquely determined up to the motion of congruences by the n(n + l)/2
quantities — cos<ΐ, /> = atj so that the volume V of Δ can be regarded
as an analytic function of the variables atJ of the n(n + l)/2 dimensional
complex affine space 3£, which is defined by Schlafli's integral on Δ:

(2.3) V = f Σ ( - D ' - ' Maά Λ Λ dx^ A dxj+1 Λ Λ <ten+1

and which can also be expressed as

(2.3)' V = ί e-i/ί̂ ϊ+ +^+i)^ Λ Λ etew+1 .

Let Jίβjij, ε2i2, , εpip) or Viεfa, , ε^) (1 ^ p ^ n + 1, ε̂  = ±1) denote
the chains in Sn defined by the inequalities

(2.4) eJil^0,...,εpfi9^0

or the volumes of them respectively. Clearly we have

(2.5) •{ ̂ lllf "'6plp) + V^lh' "' £p~llp-19 ~ε^
= 7(ε,ii, , 6B-i£β_ι) and

where \Sn\ denotes the volume of Sn equal to 2πn/2/Γ(n/2).
The following Gauss-Bonnet theorem is well-known ([8], [11]).

PROPOSITION 1. For odd n

(2.6) {{n - l)/2} |S»I = Σ Σ ( "D^fe , i2, , Q

/or even n

(2.7) {(n-l)/2}|S»| = Σ Σ ( - D ^ f t , , i) - 27(1,2, .. ,n + 1) .
υ = 2 <i< <iy

This Proposition simply follows from the following combinatorial

lemma.

LEMMA 1. Let μ be a finitely additive measure on a space X and
ϋl9 U2, , Um be a finite number of measurable subsets of X. Then we
have
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Π (x - Uj)\ = μ(X) + Σ (-iYμ(utι n n uj
3 / v = l

if μ{X) < oo.

According to this Proposition all the volumes V{exil9 , spip) are

expressed as linear combinations of \Sn\, V(i,j), V(i19 i2, ί3, i4), , V(i19 ,

i2v) where 2v — 1 = n or w - 1 according as n is odd or even.

§ 3 . Application of Schlafli's formula

We denote by DrΛ2 " " V) the subdeterminant of the symmetric
Vl/2 ' * * Jp/

matrix A

(3.1) A =

1 a12

a21 1

^ T O + 1 , 1 a.n + l,n

consisting of i19 , ip th. lines and j19 , j p th. columns. In particular

ιΛ2 [' [ .A by D(il9 - 9iv). The matrix A defines

a spherical simplex Δ if and only if A is positive definite. In such a

case Hadamard's inequality implies

(3.2) D(ίl9 , ip) ^ Z>OΊ, , /α)

if (ix, ,ip) C OΊ, ••-,/,). We denote by Z? the identity matrix where

<i, i> are all equal to τr/2.

NOTATION. We denote by / a subset of indices {il9 i29 , iv] of

{1,2, , n + 1} different from each other and by / its length p.

Let Δ*(il9 —,ίp) be a (w — p) dimensional subsimplex of Δ contained

in the intersection Silί2...ίp of Sn and the hyperplanes fίχ = 0, ,/< p = 0.

We denote by V*(ix, , ΐp) the (^ — p) dimensional volume of Δ*(i19 , ip).

Then Schlafli's fundamental equality can be stated as follows:

SCHLAFLI'S FORMULA.

(3.3)
ί<3
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Proof. [15] or [10] p. 337-p. 340.
This also implies the following:

(S.4) dV*(ί) = Σ V*(ί, OΊ, h))dLl. ^

where < . Λ denotes the dihedral angle between Sh and Sj2 subtended
VI) J2/

by J*(7) in the (n — p) dimensional sphere S7.
From now on we shall assume n equal to odd 2v — 1. Let T be a

lower triangular matrix:

Γ 1

(3.5)

0

such that ί22 > 0, - , ίΛ+ifW+i > 0 and T- ιT = A. Γ is uniquely determined
by A and we have

(3.6) ,2> =

The lower triangular matrix T12 corresponding to J*(l,2) is equal to

(3.7)

0
Λ4,tiZ /4Γ44

where λs denotes 1/Vl + t% +
induction we have

(3.8)

+ t)j for 4 ^ y ̂  n + 1. Therefore by

or more generally

(3.9) /12 2^ - 3 2/, - 2\ = 1 / 2 j
\ 2/ί-l,2^ /

for 0 ^ ^ ^ v — 1. On the other hand a simple calculation shows that

U.i-iIKi i s equal to
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lΊ ~ 1
) / V D a ' 2 ' •,* - 2 , t - 1)D(1,2, ...,i-2,i-l,i)

so that (3.9) is equal to

(3.10)

l/2ilog

/12 2jw

-D\12 .. 2μ-

_D(12 -2μ-
\12 • 2μ -

to
 t

o
to

 t
o

2μ-

2μ

2μ-

2μ

V MDCL,

WD(X,

2,

2,

• • ,2μ-2)D(X,

..•,2μ-2)D(l,

2,

2,

•• ,2μ)

•• ,2μ)

NOTATION. If I and J are two subsets of indices / = (£„•••, ΐp) and

J = (ii,ijj, ,ip,ip+1,ip+2), then we denote by ω(Λ the 1-form defined by

(3.11) l/2t d log

When A is equal to E, namely (i, j} are all equal to π/2, V is reduced to

(l/2)n + 1 |iSn|. We denote by XiίU...t9 the divisor defined by the equation

D(ilf ί2, , ip) = 0 in 36. Let # be a 2(2n"1)-covering of # ramified over

^ i a ^ (X^μS^)y uniformizing all the functions VD(ilyi2, ,i2/l), and

π be the natural projection from # onto 36. If p is even, the form ω(Λ

of (3.11) is well-defined 1-formon # which has logarithmic poles along

*~1(3eίl<,...<,i,+1) or w-1(3£<1<a...<J><,+1) in view of Jacobi's identity:

(3.12)
2) + 2) -

ω

DEFINITION. Let Ω(M;p,q) be the space of continuous paths from

a point p to a point q in a differentiate manifold M, and α>i, ω2,

a finite number of differential 1-forms on M. Let γ be a path of

2), q) namely a differentiate function φ: [0,1] —> M such that ^(0) = p and

^(1) = g. Let fj(t)dt be the pull-back of each ω, by p. According to

K. T. Chen (see [4]) we consider the following integral

(3.13) Γ/i(ίi)dti P
Jo Jo
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which will be called "iterated integral of order m" and denoted by

(3.14) G ^ O ^ O . . oωm .
J r

Now by (3.3), (3.4), (3.10) and (3.11) we can conclude the following:

THEOREM 1. For odd n, V is expressed in terms of iterated integrals

of forms of logarithmic poles (o(Λ on $t\

(3.15) y = Σ
Iσ ) 2n+1~2°

where we put IS'1] = 1 and (70,I19 , Iv) run through all families of

subsets of indices such that (i) |70| = 0, |JΓX| = 2, ,|7J = 2v and (ii) 70

= 0 c 7j c 72 c c 7,. Tfee αδow iterated integrals are done on each

path from E to A in $t.

Remark. The right hand side of (3.15) depends only on homotopy

classes of paths provided A is fixed. In fact Chen's formula of the

exterior differentiation of iterated integrals show (see Proposition 4.1.2

in [4])

d

(3.16)

= ,,.juii<-» »(ί:)— Cr)Hi> - Cr)
where (70, Il9 , Iσ_^ run through all the subsets of indices such that

|70| = 0, \IX\ = 2, ,Iσ = 2σ and 70 c I, c c 7,.! c 7σ, Iσ being fixed.

This vanishes in view of the following identities:

(3.17) Σ <»(ί) Λ ω(K\ = 0
ICKCJ \K/ \J J

l-s:i = 1/1+2

for any subsets of indices 7 and J such that |7| + 4 = |J | , which can be

proved by a direct calculation.

COROLLARY OF THEOREM 1. The monodromy of the many valued

function V on 3t is contained in a unipotent subgroup of upper triangular

matrices.

Proof. This follows from a general theory of iterated integrals
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(see [4] p. 222). In our situation the variation of V along an arbitrary
loop on # — (J π'Kdίi^.i^) can be written as a linear combination

of the iterated integrals

<3 18) ,,,5.
which is closed on Ω because of (3.16). This fact can also be proved in
a direct way by using a generalized Picard-Lefschetz formula due to F.
Pham.

According to H. Poincare and Lappo-Danilevski we shall call "hyper-
logarithmic functions of order m" functions of iterated integrals of rath
order of forms with logarithmic poles, so that V is a hyperlogarithmic
function of order v on 9t.

The volume of a double-rectangular tetrahedron was investigated by
H. S. M. Coxeter [6]. By his notations we have <1,3> = <1,4> = <2,4> = 0,
<1,2> = π/2 - a, <2,3> = β and <3,4> = ττ/2 - γ. Then V is written as
follows:

V - i

(3.19) + ί
J

- - [ daΛ/2ilog(
J \—smγ cos a — iVD

—sin a cos β sin γ — i sin

-sin a cos γ — WD

which gives the same formula as (4.11) in [6], where D means Z?(l,2,3,4)

= cos2 a- cos2 γ — cos2

 i

§ 4 . Power series expansion of V

The integral (1.3) can also be expressed as follows:

(4.1) V = (n + 1) ί dxι A Λ dxn+1 .

By change of variables the right hand side is transformed into

(4.2) (n + DID ί 4 Λ Λ dyn+1
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where Q denotes the quadratic polynomial Σ V)- + Σ ^IOVIVJ with t>zj =

and D denotes D(l,2, , w + 1). δ^ are determined by the relation:

(4.3) B^K-'A-ιK~ι ,

where B denotes the matrix

(4.4)

1

&21

and K denotes the diagonal matrix with positive elements Diag [p19 , pn+J,

pi equal to

It is easily seen that the correspondence (4.3) is birational on 3f, leaving

fixed the divisors (J (J T Γ ^ O ^ . . . ^ ) or U U TΓ-^X^,...-.,).

Now we are going to prove the following theorem:

THEOREM 2. As a function of the variables bij9 V has a convergent

power series expansion at the origin:

Π (-264,) «'
1) Σ ^

ί<3 σίj

(4.5) fc,IH-l\

which is a so-called generalized hyper geometric series. For this kind of

functions see Appendix.

To prove Theorem 2 we want to prove a slightly more general theo-

rem by making use of a technic introduced in [1].

THEOREM 2'. The integral

(4.6) 9 = f ( 1 - Q)> yi

n\\1dy1 A Λ dyn+1
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for λ0 >̂ 0, λι ^ 0, , λn+ί ^ 0 has a convergent power series expansion

near the origin:

π (-2g'«

"Π(4.7) "Π

n
2

To prove (4.7) we need

L E M M A 2. // λo,λ19 •• ,Λra+1 are all sufficiently large,

Γ

(4.8) = in + 1 + 2Λ + λx + + Xn+O/2ko

• I 2/ί* 3/a" - l/i+SKl — Q)iodl/ι Λ Λ dl/w +i .

Proof. We have by exterior differentiation

d( — ( "- Q' *y/ ' ' ' fl""^1 2] (-l)j-1yjdy1 A
v 2>ί0

Λ d^_i Λ d2/i+1 Λ ••- Λdyn

# i Λ ••• Λ dyn+ι .

Integrating both sides we get Lemma 2.

Proof of Theorem 2. For sufficiently large λQ,λ19 — 9λn+1 we have

dθίli2 dθiaσ_liaσ

(4.9) _ f α O V o - . . ^ ^

• yuβ-x Vi%βdy\ Λ Λ d2/w+1.

According to Lemma 2 the right hand side is equal to
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(4.10)

Π (ll λό + 2λo + n + 1 + 2σ - 2(fc - 1))
fe=l \ 1 /

ί (1 - Qyoyϊ • yλ*#yiχyi% yi%β.xyi%βdyι Λ Λ dyn+1.

When bij are all zero, then φ is reduced to

"ff
* l(4.11)

+ 1)

^TOJ^Ml + ' ' '

Theorem 21 follows from (4.8) ~ (4.11), because the convergence of the

power series (4.7) is obvious. The proof is complete.

Now we want to express V as power series expansion of the vari-

ables ttJ similar to (3.5) so that

J \ *Ί 9

(4.12) Λ = = tn'Xι

We consider the integral V(λu λ2, ,λn+1):

(4.13) ί > fP-ft f&VdXi Λ dx2 A Λ dxn+1 .

T h e n f o r l a r g e λ 1 9 λ 2 , - , λ n + ί w e h a v e

0 5 . . . 3 ")
Λl> Λ2> 9 Λn + ls

ί J " ©*„)"' (9ί»+,.β)' +1

I fH.fH-σix , . . f-ίn + l-σn + l . l- -σn + l.n . /y»ff2i+ + σn + i,i
— I Jl J2 J n+l *Ί

.^32+ +^+i,2 . . . αj +i. da j Λ Λ dxn+ι

n+l

* Π
i l

For all ttj — 0, the above is reduced to

n + l / ;

0Γ(-
k — 1 \

σkl ' * ' σk,k-l

^ t λn+ι + n
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"ff U*i - 1) α - aiΛ *,.«_, + 1)
1 = 1

so that (4.13) is equal to

Π Pi g f c l ' ' * σk>k-\ "Ί~ σk + Uk Ί~ * * ' ~\~ σn + Uk 4~ 1 \
1 1 \ 2 /Σ

V 2

Π
- σiΛ - . . . - oiΛ.x + 1)

In particular if ^ = = Λn+1 = 0 we have the volume V:

THEOREM 2'.

(4.14) = Σ * " N Λ ^

2 / i>j

Π (««/)•"

σ

where the quotients

pi—Gki — . . . — σfc^.t + σfc+i,fc + * + σn+Uk + 1\

\ 2 /_

Γ(-σkl — . . . — σfc .̂x + 1)

have definite values and the right hand side is well-defined. This is also
a hyper geometric function.

§5. Hyperbolic case

Let H be the hyperbolic space form defined by

(5.1)

with the standard metric. In view of (2.3)' the analytic continuation
V, of V along the path {φ,} (see (2.1))
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from 0 = 0 to θ — — ,l<:k<^ri) can be written as follows:

(5.3)

•L e-u-*l-~'-*Z+*l+i)dχ1 Λ dxn A dxn

The second hand side is equal to the volume Yf of the simplex Δ' in H
defined by fx ^ 0, ,/n + 1 ^ 0 and with the faces Ht :ft = 0. The dihedral
angle between j?* and Hj subtended by Δf is equal to (see (2.1))

(5.4)
N 7 " / In

so that Schlafli formula has the form:

(5.5) dΨ = - Σ ^'(ii

where F7(i, i) means the volume of the (n — 2) dimensional subsimplex
J*(ί,ί7 defined by fi=fj = 0.

We denote by A' the matrix corresponding to (i, jy:

(5.6)

-cos<2iy
-cos<12y —cos<i, w + i y

1 — cos (n,n + iy
— cos (n + l ,ny 1

Then Theorem 1 implies the following:

THEOREM Γ. For odd n we have

(5.7)

where the integrals are done on each path from E to Af in # .

COROLLARY. Let V be the volume of a hyperbolic simplex Δ' cor-
responding to a fixed point ~A! e # . Then Yf — Ψ is equal to a linear
combination of the iterated integrals along a path from A/ to Ar:
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(5.8)

where I09119 - 9IV run through all the subsets of indices such that (i)

|/0 | = 0, \I,\ = 2, . . , |/ v | = 2v and (ii) Io = 0 c I, c - C Iv.

Proof. This easily follows from Proposition 1.5.1 in [4].

Appendix. Hypergeometric functions of Mellin-Sato type

We reproduce here briefly Sato's result in [14].

Let G be the group of m-product of C* ~ C — (0) and X be its dual,

Horn ((?, C*) which is isomorphic to Z m . We denote by Xc its complexi-

fication. Let {χ19 , χm} be a basis of X so that any ω of Xc can be

written as ω = 2 ŝ  χy with (Sj, , sTO) e Cm.

β - 1

NOTATION. For a rational function f(v) on Z we denote by f] /(y)

the product:

(6.1)
-1-/ i i Jyv> v

= 0

Under this situation Sato's fundamental theorem says

THEOREM A, 1. £7αcfc class in the cohomology H\X, C(x)) can be

represented by a so-called ί(b-functίon"

(6.2) 6 » = Π Γπ"1 (e.(ω) + a. + P

where aκ denotes a constant and eκ a suitable Q-valued linear function

on Z m .

Let X% be the dual of Xc so that X% is isomorphic to the Lie

algebra corresponding to G. For any point τ of X% we put eτ = ί, where

ί = (t19 •• , t f f l )eG. We denote by ίχ the pairing β<χ'τ>.

DEFINITION. Arbitrary function u on X% satisfied by the following

system of (pseudo) differential equations
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(6.3) &,(ti—, •••,tm^\u = rz-u
\ υti vι>m'

for any χeX, is called "hypergeometrίc function of Mellin-Sato type".

This system is maximally overdetermined on X%.

LEMMA A, 1. The Mellin transform of a generalized Γ-function u(ω)

\u(ω) = f
(6.4)

= u{ω)t<ΰdωι

is α hyper geometric function of MS type if it exists.

Proof. Easy.

THEOREM 2/ D-V is a Mellin transform of V

v = nfιr(8ιk + '" + gfc-1>fc + gfc»fc+i + '" +s*>
i=i \ 2(6.5)

namely we have the following integral representation:

(6.6) (^Λ 7(8) Π ( - 2 α ^ Π
\2^/ Jr i<J i£i<j£n+i

where γ denotes a chain of n(n + l)/2 dimension which is the product

of paths γi3 defined on each sίrplane as in the figure:

Xis

Proof. The integral on each γij is equal to the sum of all residues

on Sij = 0,1,2,3, which gives the power series expansion (4.5).

It is easy to see that D V is a hypergeometric function of MS

type in the variables a2

i3.
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Finally some problems unknown to the author are raised here.

PROBLEM 1. To determine all meromorphic 1-forms on St with
logarithmic poles along (J \J π~ι($iχiz...ί2μ_) and the infinity. It is

seen by residue calculus that 2n~3-n(n + 1) such 1-forms of the type (3.11)
are linearly independent over C. For the further properties of logarithmic
poles see [7] and [9].

PROBLEM 2. What kind of functions are the inverse of hyperloga-
rithmic functions? They could be a generalization of exponential func-
tions which satisfy some kind of addition formula and are related to
A. N. Parsin's generalized Jacobian variety (see [12] and [13]).

PROBLEM 3. To determine the order of the maximally over determined
system of (pseudo-) differential equations (6.3).
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