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Introduction

One important invariant of a closed Riemannian 3-manifold is the Chern–
Simons invariant [1]. The concept was generalized to hyperbolic 3-manifolds with
cusps in [11], and to geometric (spherical, euclidean or hyperbolic) 3-orbifolds, as
particular cases of geometric cone-manifolds, in [7]. In this paper, we study the
behaviour of this generalized invariant under change of orientation, and we give a
method to compute it for hyperbolic 3-manifolds using virtually regular coverings
[10]. We confine ourselves to virtually regular coverings because a covering of a
geometric orbifold is a geometric manifold if and only if the covering is a virtually
regular covering of the underlying space of the orbifold, branched over the singular
locus. Therefore our work is the most general for the applications in mind; namely,
computing volumes and Chern–Simons invariants of hyperbolic manifolds, using
the computations for cone-manifolds for which a convenient Schläfli formula holds
(see [7]). Among other results, we prove that every hyperbolic manifold obtained as
a virtually regular covering of a figure-eight knot hyperbolic orbifold has rational
Chern–Simons invariant. We give explicit examples with computations of volumes
and Chern–Simons invariants for some hyperbolic 3-manifolds, to show the efficiency
of our method. We also give examples of different hyperbolic manifolds with the
same volume, whose Chern–Simons invariants (mod 1

2
) differ by a rational number,

as well as pairs of different hyperbolic manifolds with the same volume and the
same Chern–Simons invariant (mod 1

2
). (Examples of this type were also obtained

in [12] and [9], but using mutation and surgery techniques, respectively, instead of
coverings as we do here.)

1. Chern–Simons number of an oriented cone-manifold

Let
−→
M be a closed oriented geometric cone-manifold of dimension three [6, 7].

We recall here the definition of this concept. There exists a subset Λ ⊂ −→M , called

the singular set, which is a union of curves (singular geodesics), such that
−→
M \ Λ

is a geometric 3-manifold modelled on some geometric space X. In this paper, X
is a simply connected constant curvature space. Points off the singular set have
neighbourhoods homeomorphic to neighbourhoods in the model X. Points on the
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singular set have neighbourhoods homeomorphic to neighbourhoods constructed as
follows. Take an angle α wedge in the model X. (A wedge is the intersection or
union of two half spaces that intersect; the angle α is the dihedral angle, where
0 < α < 2π.) Then identify the two boundaries of the wedge, using the natural
rotation by α, to form a topological space Wα. Points on Λ have neighbourhoods
homeomorphic to neighbourhoods in this topological space. The homeomorphism
carries the singular set to the axis of rotation in the topological space. Transition
functions are isometries. The following lemma generalizes [2, Proposition 3.1.1].

Lemma 1.1. Let
−→
M be an oriented 3-manifold without boundary. Assume that

−→
M

is X-geometric, X = S3, E3, H3. Let Iso+X be the Lie group of orientation-preserving

isometries of X. Let H : π1(
−→
M, o)→ Iso+X be the holonomy of the X-geometry. Then

H can be lifted to the universal covering of Iso+X.

Proof. Choose an orthonormal parallelization P of the Riemannian manifold

M inducing the given orientation in
−→
M . Take a base point o in M and a base point

o′ in X. Let r be an orthonormal reference at o′. The developing map D : M̃ → X is
a local isometry from the universal covering M̃, which sends paths starting in o to
paths starting in o′. Choose r so that the reference of P at o is sent to r. In this way,

to each element γ : [0, 1]→M, γ ∈ π1(
−→
M, o), is associated a path γ′ of orthonormal

references in X starting at r, that is, a path in Iso+X starting at the identity, that is,
an element of the universal covering Lie group G of Iso+X. The map γ → γ′ is the
required lifting of the holonomy γ → γ′(1). In fact, the map is a homomorphism,

because (γ ∗ µ)′ = γ′ ∗ (γ′(1)(µ′)) for every γ, µ ∈ π1(
−→
M, o), and the composition of

two elements γ′, µ′ of G is defined by γ′ ∗ (γ′(1)(µ′)), where (γ′(1)(µ′)) is the image of
the path of references µ′ under the isometry γ′(1) ∈ Iso+X.

We shall use the following notation. For each geodesic Σα, the subscript α denotes
the value of the angle around Σα, which we normalize to be non-negative. A geodesic
Σα is called regular if α = 2π, or singular otherwise. For each geodesic Σα which

bounds an oriented surface
−→
S in M, such that

−→
S ∩ (Λ ∪ Σα) = Σα, the jump, β(Σ),

and the twist, tw(Σ), are defined as follows (compare [7]).

Choose an orientation on the curve Σα, and denote it by
−→
Σα . Consider an oriented

meridian disc
−→
D of the neighbourhood U = {p ∈ −→M 3; d(p,

−→
Σα) 6 ε} of

−→
Σα . (The

orientation of
−→
D followed by the orientation of

−→
Σα coincides with the orientation

of
−→
M .) Let −→m = ∂

−→
D . Call

−→
lc the canonical longitude of

−→
Σα , that is, lc = ∂U ∩ S ,

and the curves
−→
lc ,
−→
Σα are parallel. Let o = −→m ∩ −→lc .

Next, we distinguish three cases, according to whether the curvature of the
Riemannian metric on M is −1, 0 or +1.

Case 1. k = −1. Let H : π1(M \ (Λ ∪ Σα), o) → PSL(2,C) be the holonomy of
the hyperbolic manifold M \ (Λ∪Σα). Then H can be lifted to a map h into SL(2,C)
(Lemma 1.1). If π1(M \ (Λ∪Σα), o) is presented by |a1, . . . , an; r1, . . . , rs|, then the map
h assigns matrices to the generators h(ai) = Ai, i = 1, . . . , n, such that the relations

hold. The element of the group π1(M \ (Λ ∪ Σα), o) represented by the loop
−→
lc is a

word in the alphabet
{
a±1

1 , . . . , a±1
n

}
. Since

−→
lc is nullhomologous in M \ (Λ ∪ Σα),

it is a product of commutators of π1(M \ (Λ ∪ Σα), o). Therefore the number of
appearances of the symbol ai plus the number of appearances of the symbol a−1

i in
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the word for
−→
lc is even. Therefore, because any other lifting of H differs from h by

changing signs in the matrices Ai, one sees that the image of
−→
lc under any of these

liftings is the same. So, up to conjugation in SL(2,C),

h(−→m ) = ±
[
eiα/2 0

0 e−iα/2
]
, h(

−→
lc ) =

[
ev/2 0

0 e−v/2
]
.

(The conjugation puts the matrix h(
−→
lc ) in diagonal form, with δ > 0 in the complex

number v = δ + iβ.) The number δ > 0 is the length of
−→
Σα , and β, −2π 6 β < 2π,

is the angle of the lifted holonomy of
−→
Σα .

Case 2. k = 0. The holonomy H : π1(M \ Λ, o) → Iso+(E3) can be lifted to

a map h into R3 n SU(2) and, as in Case 1, the images of
−→
lc under any of these

liftings coincide. Up to conjugation, we have

h(−→m ) =

(−→
0 ,±

[
eiα/2 0

0 e−iα/2
])

, h(
−→
lc ) =

(
δ
−→
k ,

[
eiβ/2 0

0 e−iβ/2
])

,

where δ > 0 is the length of
−→
Σα , and β, −2π 6 β < 2π, is the angle of the lifted

holonomy of
−→
Σα . (We are using quaternion notation

−→
0 ,
−→
i ,
−→
j ,
−→
k for vectors in R3.)

Case 3. k = 1. The holonomy H : π1(M \Λ, o)→ SO(4) can be lifted to a map
h into SU(2)×SU(2). As before, we can assume, up to conjugation in SU(2)×SU(2),
that

h(−→m ) =

(
±
[
eiα/2 0

0 e−iα/2
]
,±
[
eiα/2 0

0 e−iα/2
])

, h(
−→
lc ) =

([
eiγ 0
0 e−iγ

]
,

[
eiφ 0
0 e−iφ

])
,

where γ > φ. In this case, δ = γ−φ is the length of
−→
Σα , and β = γ+φ, −2π 6 β < 2π,

is the angle of the lifted holonomy of
−→
Σα .

For any k 6= 0 we can normalize by multiplying the metric by a constant such

that the new cone-manifold,
−→
Mn, belongs to Cases 1 or 3. This process, of course,

does not change angles.

Lemma 1.2. The angle of the lifted holonomy of
−→
Σα does not depend on the ori-

entation of the geodesic Σα.

Proof. Let
−→
Σα be an oriented nullhomologous knot in an oriented 3-manifold−→

M . Let
←−
Σα denote the same knot with the opposite orientation. Observe that

the oriented meridian of
←−
Σα is ←−m , that is, the meridian of

−→
Σα with the opposite

orientation. We give the complete proof of this lemma for the hyperbolic case; the
other two cases are analogous. We have

h(←−m ) = (h(−→m ))−1 = ±
[
e−iα/2 0

0 eiα/2

]
, h(

←−
lc ) = (h(

−→
lc ))−1 =

[
e−v/2 0

0 ev/2

]
.

Then, to normalize α, δ and β, we conjugate by

[
0 1
−1 0

]
∈ SL(2,C). We obtain

h(←−m ) = ±
[

0 1
−1 0

] [
e−iα/2 0

0 eiα/2

] [
0 −1
1 0

]
= ±

[
eiα/2 0

0 e−iα/2
]
,

h(
←−
lc ) =

[
0 1
−1 0

] [
e−v/2 0

0 ev/2

] [
0 −1
1 0

]
=

[
ev/2 0

0 e−v/2
]
.
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Definition 1.3. Let Σα be a geodesic (regular or singular) in an oriented

geometric cone-manifold
−→
M 3, of constant curvature k, where Σα is nullhomologous

in
−→
M \ (Λ \ Σα). The jump of Σα is the equivalence class β in R/4πZ represented

by the angle β, −2π 6 β < 2π, of the lifted holonomy of
−→
Σα in the normalized

cone-manifold
−→
Mn, of constant curvature 1, 0,−1. The twist of Σα, tw(Σα), is the real

number βα/2π, and tw(Σα) = βα/2π is an equivalence class in R/2αZ.

Remarks. (1) The invariant tw(Σα) should be understood as a kind of ‘torsion’
of the geodesic. When the geodesic is singular, it contains a correction factor because
of the angle α. It is equivalent to torsion(Σ2π) (mod 2π) if the geodesic is not singular
(see [16, Definition 1.2]). This is because the torsion of a regular geodesic computed
in a suitable frame field is β.

(2) If Σα is any geodesic (not necessarily nullhomologous) in a geometric cone-
manifold, then it is always possible to define an invariant j(Σα) as the equivalence
class (mod α) of the angle β of the lifted holonomy of any longitude of the knot
Σα. This is because if two longitudes differ by, say, k meridians, then the angles of
the lifted holonomy differ by kα. In particular, if α = 2π, then this invariant is also
equivalent to the ordinary torsion of Σα (mod 2π). However, we shall not work with
this invariant in the present article.

Definition 1.4. Let (
−→
M,Σα) be a cone-manifold, where the singular set Σα is a

nullhomologous knot in M. Choose an orientation in Σα, and denote the resulting

oriented curve by
−→
Σα . Define the oriented meridian −→m , as before. Consider the

number

I(
−→
M,
−→
Σα, s) =

1

2

∫
s(
−→
M−−→Σα−−→m )

Q− 1

4π
τ(m, s′)− 1

4π
tw(Σα),

where Q is the Chern–Simons form defined on the positively-oriented orthonormal

frame bundle, F(
−→
M \ Σα), and s :

−→
M \ (Σα ∪ m) → F(

−→
M \ (Σα ∪ m)) is a frame field

having special singularities at
−→
Σα ∪ −→m (see [16, 11]), and, finally, s′ is a positively-

oriented orthonormal frame field defined in a neighbourhood of m such that the first
vector of the frame s′(x), x ∈ m, is tangent to m, and the second vector is tangent
to the meridian disc of Σα bounded by m and points in the direction of Σα. The
number τ(m, s′) is the torsion of the meridian in the sense of Yoshida [16, Definition
1.1]. In fact, τ(m, s′) (mod 2π) is the torsion of m in the Riemannian geometry of

the manifold
−→
M \ −→Σα [16, Definition 1.2]. Note that τ(m, s′) does not depend on the

orientation of m.

This number, I(
−→
M,
−→
Σα, s), was defined in [7], where it was shown that it general-

izes the Chern–Simons invariant of Riemannian 3-manifolds. Using a subscript, Iλ
denotes the equivalence class of I (mod λ). We showed in [7] that the equivalence

class I1(
−→
M,
−→
Σα, s) :≡ I(−→M,

−→
Σα, s) (mod 1) does not depend on the section s, and there-

fore can be denoted by I1(
−→
M,
−→
Σα). Specifically, in [7] we defined the Chern–Simons

invariant of the orbifold (
−→
M,
−→
Σ , n) := (

−→
M,
−→
Σ2π/n) as

CS(
−→
M,
−→
Σ , n) :≡ I1/n(

−→
M,
−→
Σ2π/n) ≡ I1(

−→
M,
−→
Σ2π/n) ≡ I(−→M,

−→
Σ2π/n, s) (mod 1/n).

Suppose that we choose for Σα the other possible orientation,
←−
Σα . Then the frame
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field s can be modified in a neighbourhood of the link in such a way that the new

frame field s is a frame field having special singularities at
←−
Σα ∪←−m and such that∫

s(
−→
M−−→Σα−−→m )

Q =

∫
s(
−→
M−←−Σα−←−m )

Q;

see, for instance, [12, p. 114], where s is obtained by rotating s (near the singular
locus) in the plane perpendicular to the e2-vector. Then

I(
−→
M,
−→
Σα, s) = I(

−→
M,
←−
Σα, s).

Proposition 1.5. I1(
−→
M,Σα) :≡ I(

−→
M,
−→
Σα) (mod 1) is independent of the orien-

tation given to the singular curve Σα. In particular, the Chern–Simons invariant of

the orbifold (
−→
M,Σ2π/n), denoted now by CS(

−→
M,Σ, n), is independent of the orientation

of Σα.

Proof. By the above observations and Lemma 1.2, it follows that I1(
−→
M,
−→
Σα)

(mod 1) is well defined regardless of the orientation of Σα.

Lemma 1.6. Let (
−→
M,Σα) be an oriented geometric cone-manifold, where the sin-

gular set Σα is a nullhomologous knot in M. Denote by (
←−
M,Σα) the same cone-manifold

with the opposite orientation. Then

I(
−→
M,Σα, s) = −I(←−M,Σα, ŝ),

where ŝ(x) is the frame obtained by changing the sign of the first vector in the frame
s(x).

Proof. Consider the diffeomorphism

φ : F(
−→
M − Σα)→ F(

←−
M − Σα),

(e1(x), e2(x), e3(x)) 7→ (−e1(x), e2(x), e3(x)).

If we denote by Q̂ the Chern–Simons form in F(
←−
M − Σα), then it is easy to check

that δφ(Q̂) = Q, where δφ denotes the map induced by φ on forms. Observe that
ŝ = φ ◦ s. Then the result is a consequence of the following equalities:∫

s(
−→
M−Σα−m)

Q =

∫
(
−→
M−Σα−m)

δs(Q) =

∫
(
−→
M−Σα−m)

δs(δφ(Q̂))

=

∫
(
−→
M−Σα−m)

δ(φ ◦ s)(Q̂) = −
∫

(
←−
M−Σα−m)

δŝ(Q̂) = −
∫
ŝ(
←−
M−Σα−m)

Q̂,

τ(m, s′) = −τ(m, ŝ′),
tw(Σα ⊂ −→M ) = −tw(Σα ⊂ ←−M ).

Corollary 1.7. Let (
−→
M,Σα) be an oriented geometric cone-manifold, where the

singular set Σα is a nullhomologous knot in M. Denote by (
←−
M,Σα) the same cone-

manifold with the opposite orientation. Then

I1(
−→
M,Σα) ≡ −I1(

←−
M,Σα) (mod 1),

CS(
−→
M,Σ, n) ≡ −CS(

←−
M,Σ, n) (mod 1/n).
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Corollary 1.8. Let (
−→
M,Σα) be an oriented geometric cone-manifold, where the

singular set Σα is a nullhomologous knot in M. If there exists an orientation-reversing

isometry, then I1(
−→
M,Σα) ≡ 0 (mod 1/2).

Corollary 1.9. Let K be a hyperbolic and amphicheiral knot in S3. Then

I1(
−→
S 3, Kα) ≡ 0 (mod 1/2) for any angle 0 6 α 6 π.

2. Chern–Simons invariant and virtually regular coverings over orbifolds

The concept of virtually regular covering was defined in [10], where some of its
properties were explored.

Definition 2.1 ([10]). A branched covering p : N → M is virtually regular if
there exists an unbranched covering u : P → N such that p ◦ u : P → M is regular.
It is surprising that this is equivalent to the property that the branching index is
constant along the fibre over each point of the branching set. Notice that if one
can prove that every simply connected 3-manifold is a virtually regular covering of
S3, then the Poincaré Conjecture follows by Thurston’s geometrization results for
orbifolds; indeed, a simply connected virtually regular covering is regular.

We are interested here in virtually regular coverings over an oriented geometric

3-orbifold (
−→
M,Σ, n), p : N →M, such that the branching set is the singular set Σ2π/n,

and the branching indices are all equal to n. This guarantees that N is a geometric

manifold. Indeed, the geometric structure on the base (
−→
M,Σ, n) lifts to a geometric

structure on the cover N, where the only possible singularity is the link p−1(Σ2π/n).
But because the branching indices are all n, the angle around each component of

p−1(Σ2π/n) is n · 2π/n = 2π, that is, N is a geometric 3-manifold. Denote by
−→
N the

manifold N with the orientation induced by the orientation of
−→
M .

Theorem 2.2. Let (
−→
M,Σ, n) be an oriented geometric 3-orbifold, where the singu-

lar set Σ2π/n is a nullhomologous knot in M. Let p : N → M be an h-fold virtually
regular covering, branched over Σ2π/n with branching index n. Then the volume and

the Chern–Simons invariant of the geometric manifold
−→
N are related to those of the

orbifold (
−→
M,Σ, n) by the formulas

Vol(
−→
N ) = hVol(

−→
M,Σ, n),

CS(
−→
N ) ≡ hCS(

−→
M,Σ, n)− k/2n (mod 1/2),

CS(
−→
N ) ≡ hCS(

−→
M,Σ, n) (mod 1/2n),

where k (mod n) is the intersection number of the union of any set of canonically

oriented longitudes, for p−1(
−→
Σ2π/n), with p−1(

−→
lc ).

Proof. The fundamental group of N is isomorphic to a discrete group ΓN of
isometries of S3, E3 or H3, according to whether the geometry is spherical, euclidean
or hyperbolic. This group ΓN is a subgroup of index h of ΓM , the group of the

orbifold (
−→
M,Σ, n). The volume of N is the volume of a fundamental domain for the

action of the group ΓN , which is h times the volume of the fundamental domain for
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the group ΓM . This proves that

Vol(
−→
N ) = hVol(

−→
M,Σ, n).

The Chern–Simons invariant of the orbifold (
−→
M,Σ, n) is, by definition,

CS(
−→
M,Σ, n) ≡ I(−→M,Σ2π/n, s) (mod 1/n),

where s is a frame field having special singularities at the link
−→
Σ2π/n ∪ −→m . This

frame field s lifts to a frame field s̃ in
−→
N , having special singularities at the link

p−1(
−→
Σ2π/n) ∪ p−1(−→m ). Then∫

s̃(
−→
N−p−1(

−→
Σ2π/n)−p−1(−→m ))

Q = h

∫
s(
−→
M−Σ2π/n−m)

Q.

The link p−1(−→m ) has l = h/n components, m̃1, . . . , m̃l , such that the restriction of p
to a neighbourhood of each one of them is an n-cyclic unbranched covering onto a
neighbourhood of m. This implies that

τ(m̃i) ≡ nτ(m, s′) (mod 2π).

The link p−1(
−→
Σ2π/n) has, say, d components, Σ̃1, . . . , Σ̃d. The restriction of p to a

suitable neighbourhood Ni of Σ̃i is a qin covering onto the neighbourhood (p(Ni)) of
Σ2π/n, branched over Σ2π/n, where

∑d
i=1 qi = h/n. To obtain the jump of Σ̃i, consider

the unbranched covering between tori p|∂(Ni) : ∂(Ni)→ ∂(p(Ni)). The pair (−→m ,−→lc ) is

a homology basis on ∂(p(Ni)). Let
−→̃
mi be a component of p−1(−→m ) which is a meridian

on ∂(Ni). Let
−→
Li be an oriented simple closed curve in ∂(Ni) such that (

−→̃
mi ,
−→
Li ) is a

homology basis on ∂(Ni), and p(
−→̃
mi ) = n−→m and p(

−→
Li ) = qi

−→
lc + ki

−→m . Notice that

ki = p(
−→
Li ) · −→lc =

−→
Li · (component of p−1(

−→
lc ) in ∂(Ni)).

(Any other possible
−→
Li
′ differs from

−→
Li by a multiple of the meridian

−→̃
mi .) Thus the

number ki is well defined (mod n). Therefore (recall that
−→
Σi is not singular)

τ(
−→
Σi ) ≡ tw(

−→
Σi ) = qin tw(

−→
lc ) + ki 2π/n (mod 2π).

The Torsion Formula for the Chern–Simons invariant [11] states that

CS(
−→
N ) ≡ 1

2

∫
s̃(
−→
N−p−1(Σ2π/n−m))

Q− 1

4π

(
l∑
i=1

τ(m̃i)

)
− 1

4π

(
d∑
i=1

τ(
−→
Σi )

)
(mod 1

2
).

Then

CS(
−→
N ) ≡ 1

2
h

∫
s(
−→
M−Σ2π/n−m)

Q− 1

4π

(
l∑
i=1

n τ(m, s′)

)
− 1

4π

(
d∑
i=1

(
qin tw(

−→
lc ) + ki

2π

n

))

≡ 1

2
h

∫
s(
−→
M−Σ2π/n−m)

Q− 1

4π

(
ln τ(m, s′)

)− 1

4π

(
d∑
i=1

(
qin tw(

−→
lc )
))
−
(

d∑
i=1

ki
1

2n

)

≡ h
(

1

2

∫
s(
−→
M−Σ2π/n−m)

Q− 1

4π
τ(m, s′)− 1

4π
tw(Σ2π/n)

)
−
(

d∑
i=1

ki
1

2n

)

≡ h(CS(
−→
M,Σ, n)

)−( d∑
i=1

ki
1

2n

)
(mod 1

2
).



chern–simons invariants 361

Therefore

CS(
−→
N ) ≡ h(CS(

−→
M,Σ, n)

)− k

2n
(mod 1

2
),

where k =
∑d

i=1 ki = (
⋃−→
Li ) · p−1(

−→
lc ). Thus

CS(
−→
N ) ≡ h(CS(

−→
M,Σ, n)

)
(mod 1/2n).

Notice that the above theorem gives an easy method to obtain the Chern–Simons
invariant (mod 1

2
) of geometric manifolds obtained by virtually regular coverings of

orbifolds, if the monodromy of the covering is given. We shall use this method in
some examples explained later.

Corollary 2.3. Let K be a hyperbolic and amphicheiral knot in S3. Then any
hyperbolic manifold M obtained as a virtually regular covering of the orbifold (S3, K, n)
has rational Chern–Simons invariant. In fact,

CS(
−→
M ) ≡ 0 (mod 1/2n).

Proof. The result follows from Corollary 1.9 and Theorem 2.2.

This is true, in particular, for the figure-eight knot (rational knot 5/3), which is a
universal knot [4]. Recall also that the hyperbolic orbifold (S3, 5/3, 12) is a universal
orbifold [5].

3. Some examples

Virtually regular coverings of geometric orbifolds are a source of examples of
the following two kinds:

(1) different geometric manifolds with the same volume and Chern–Simons
invariant (mod 1

2
);

(2) geometric manifolds with the same volume whose Chern–Simons invariants
differ by a rational number.

In this section we give various examples as a sample of the method of construc-
tion. Notice that by computing the Chern–Simons invariant in this way, we have
a very easy method for distinguishing certain hyperbolic manifolds with the same
volume.

Example 1. Some virtually regular coverings of the figure-eight knot orbifolds.
Consider the figure-eight knot, which is the 2-bridge knot 5/3 (41 in [13]). The
group G(5/3) = π1(S3 − (5/3)) has the presentation |a, b : aba−1b−1a = ba−1b−1ab|,
where the generators a, b are represented by meridians.

The reflection through O (see Fig. 1) defines an orientation-reversing involution
u of S3 which fixes the knot 5/3 as a set. This exhibits the strong amphicheirality of
5/3. The involution u defines the automorphism u] on G(5/3) given by

u](a) = a, u](b) = c = b−1ab.

The π-turn around the axis A (see Fig. 1) defines an orientation-preserving involution
v of S3 which fixes the knot as a set but reverses its orientation. This implies the



362 h. m. hilden, m. t. lozano and j. m. montesinos-amilibia

strong invertibility of the knot 5/3, as it does for any 2-bridge knot. The induced
automorphism v] on G(5/3) is given by

v](a) = a−1, v](b) = b−1.

Both automorphisms, u] and v], will be taken into account in studying all the
virtually regular coverings of a given type.

a

b

a

O

c = b–1a b

a

b
A

Fig. 1. Two projections of the figure-eight knot

(1) Virtually regular coverings of 6 sheets. The representations ωi : G(5/3)→ S6,
i = 1, 2, 3, 4, where S6 is the permutation group of 6 elements, given by

ω1(a) = (1 2 3 4 5 6), ω1(b) = (1 2 3 4 5 6),

ω2(a) = (1 2 3 4 5 6), ω2(b) = (1 2 6 4 5 3),

ω3(a) = (1 2 3 4 5 6), ω3(b) = (1 2 4 3 6 5),

ω4(a) = (1 2 3 4 5 6), ω4(b) = (1 3 6 4 2 5),

are monodromies of virtually regular coverings of 6 sheets and branching index 6
over the knot 5/3. In fact, any other monodromy of a virtually regular covering of
6 sheets and branching index 6, over the knot 5/3, is conjugate to one of them. (A
virtually regular covering with h = n is called a locally cyclic covering. This kind
of branched covering was first considered by Kneser, and quoted by Seifert and
Threlfall as a footnote [15].) Denote the virtually regular covering with monodromy
ωi by pi : Mi → S3, i = 1, 2, 3, 4. Observe that

ω1 ◦ u] ∼= ω1, ω1 ◦ v] ∼= ω1,

ω2 ◦ u] ∼= ω2, ω2 ◦ v] ∼= ω2,

ω4 ◦ u] ∼= ω3, ω3 ◦ v] ∼= ω3.

Therefore u lifts to an isometry between
−→
M3 and

−→
M4, thus we have to consider as

different examples only
−→
M1,
−→
M2 and

−→
M3. We see also that u lifts to an orientation-

reversing homeomorphism of
−→
M1, and to an orientation-reversing homeomorphism

of
−→
M2. Thus CS(

−→
M1) ≡ CS(

←−
M1) ≡ −CS(

−→
M1) ≡ 0 (mod 1

2
), and analogously

CS(
−→
M2) ≡ 0 (mod 1

2
). This shows that

−→
M1 and

−→
M2 have the same Chern–Simons

invariant CS(
−→
M1) ≡ CS(

−→
M2) ≡ 0 (mod 1

2
). In what follows, we shall say that a

manifold is amphicheiral if it admits an orientation-reversing homeomorphism. Thus−→
M1 and

−→
M2 are amphicheiral. The volume of the three hyperbolic manifolds

−→
Mi,

i = 1, 2, 3, is the same:

Vol(
−→
M1) = Vol(

−→
M2) = Vol(

−→
M3) = 6 Vol(

−→
S 3, 5/3, 6) = 7.327725 . . . .
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(The volumes of the hyperbolic orbifolds Vol(
−→
S 3, 5/3, n) were obtained in [6].)

Therefore
−→
M1 and

−→
M2 have the same volume and the same Chern–Simons invariant.

However, these two manifolds are not homeomorphic. In fact, their first homology
groups are different (see, for instance, [3]):

H1(M1) = C40 ⊕ C8 and H1(M2) = C8 ⊕ C8,

where Cl is the cyclic group of l elements.

Let us compute the Chern–Simons invariant of
−→
M3 using Theorem 2.2.

The canonical longitude lc of the knot is a representative of the element [lc] =
ba−1b−1aab−1a−1b in the group G(5/3). In this case (as in all locally cyclic coverings),
the preimage of the knot has only one component. To compute the Chern–Simons
invariant of the hyperbolic manifold M3, we have to consider the covering between
tori p3|T̂ : T̂ → T , where T is the boundary of a tubular neighbourhood of the knot

5/3, and T̂ = p−1
3 (T ). The monodromy of this covering is given by

ω3(a) = (1 2 3 4 5 6), ω3([lc]) = (1 3 5)(2 4 6).

Figure 2 shows the torus T̂ , and the homology basis (
−→̃
m ,
−→
L ). Vertical lines of T̂ in

Fig. 2 project onto the canonical longitude lc, and horizontal lines project on the
meridian m.

1 2 3 4 5

L
1 2 3 4

1

6 1

5 6
m̃

Fig. 2. The torus T̂

The value of k for the covering p3 (p3(
−→
L ) =

−→
lc +k−→m ) can be obtained geometri-

cally, directly from Fig. 1. An alternative algebraic method is the following. Observe
that ω3([lc]) and ω3(a) always generate an abelian group. (This is because a and
[lc] commute in G(K) for any knot K .) In fact, for any locally cyclic covering of h
sheets, ω([lc]) and ω(a) generate the cyclic group of h elements. Therefore ω([lc]) is
a power of ω(a). The number n minus this power (mod n) is k: ω3([lc]) = (ω3(a))n−k .
Then k = 4. Therefore

CS(
−→
M3) ≡ 6 CS(

−→
S 3, 5/3, 6)− 2

6
≡ 1

6
(mod 1

2
).

Therefore the Chern–Simons invariant distinguishes
−→
M3 from the manifolds with

equal volume,
−→
M1 and

−→
M2. We can also deduce from this invariant that the manifold−→

M3 is not amphicheiral. This is because CS(
←−
M3) ≡ −CS(

−→
M3) ≡ 1

3
(mod 1

2
), and

1
6
6≡ 1

3
(mod 1

2
), so CS(

←−
M3) 6≡ CS(

−→
M3). This is not the case in the next example.

(2) Virtually regular coverings of 8 sheets with branching index 4. The repre-
sentations ω5, ω6 : G(5/3) → S8, where S8 is the permutation group of 8 elements,
given by

ω5(a) = (1 2 3 4)(5 6 7 8), ω5(b) = (1 3 5 2)(4 6 8 7),

ω6(a) = (1 2 3 4)(5 6 7 8), ω6(b) = (1 2 5 7)(3 8 4 6),

are the monodromies of virtually regular coverings with h = 8 sheets and branching
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index n = 4. Denote them by pi : Mi → S3, i = 5, 6. Observe that ω5 ◦ u] ∼= ω6.

Therefore
−→
M5 is equal to

←−
M6, so we study only

−→
M5.

1 2 3 4

1
L1

1

2 3 4
5

T1

m̃1

1
m̃2

L2
T2

8765

5 6 7 8 5

Fig. 3. The tori T1 and T2

Because ω5([lc]) = (1 4 3 2)(5 8 7 6), p−1
5 (T ) consists of two components: denote

them by T1 and T2. Figure 3 shows these tori, and the homology basis (
−→̃
mi ,
−→
Li ) in

each case. Computing as before, k1 = k2 = 5. Therefore

CS(
−→
M5) ≡ 8 CS(

−→
S 3, 5/3, 4)− ( 5

8
+ 5

8

) ≡ 1
4

(mod 1
2
).

Since 1
4
≡ − 1

4
(mod 1

2
), the invariant CS (mod 1

2
) fails to show whether or not

−→
M5 is

amphicheiral. In fact,
−→
M5 is not amphicheiral, and this is shown by the linking form

of
−→
M5. Its first homology group is H1(M5) ∼= C24 (see [3]), and some calculations

show that the linking form for
−→
M5, L−→

M5
: C24 × C24 → Q/Z, is given in any base g

of C24 by L−→
M5

(g, g) = 5
24

. Since L←−
M5

(g, g) = − 5
24

, the linking forms L−→
M5

and L←−
M5

are not equivalent. This implies that the manifold
−→
M5 is not amphicheiral.

Example 2. Some virtually regular coverings of the 2-bridge knot 7/3 orbifolds.
Consider the 2-bridge knot 7/3 (52 in [13]). The group G(7/3) = π1(S3 − (7/3))
has the presentation |a, b : abab−1a−1ba = bab−1a−1bab|, where the generators a, b
are represented by meridians. Here [lc] = bab−1a−1baaba−1b−1aba−1a−1a−1a−1. The
strong invertibility of the knot 7/3 defines an automorphism v] on G(7/3) given by
v](a) = a−1, v](b) = b−1.

Virtually regular coverings of 5 sheets. The representation ν1 : G(K7/3) → S5,
where S5 is the permutation group of 5 elements, given by ν1(a) = ν1(b) = (1 2 3 4 5),
is the monodromy of the 5-cyclic covering p1 : N1 → S3 branched over the knot
K7/3. The monodromy of the canonical longitude is ν1([lc]) = (1)(2)(3)(4)(5). The
representation ν2 : G(K7/3) → S5 given by ν2(a) = (1 2 3 4 5), ν2(b) = (1 2 4 5 3) is
the monodromy of a locally cyclic covering p2 : N2 → S3 branched over the same
knot K7/3. The monodromy of the canonical longitude is ν2([lc]) = (1 3 5 2 4). Both
coverings are virtually regular coverings of 5 sheets. Computations as before yield
k1 = 0 and k2 = 5. Thus

Vol(N1) = Vol(N2) = 5 Vol(S3, K7/3, 5) = 8.6124 . . . ,

CS(N1) ≡ 5 CS(S3, K7/3, 5) ≡ 0.0083333 . . . (mod 1
2
),

CS(N2) ≡ 5 CS(S3, K7/3, 5)− 3
10
≡ 0.0083333 . . .+ 1

5
≡ 0.208333 . . . (mod 1

2
).

Therefore N1 and N2 are topologically different.
Virtually regular coverings of 6 sheets. The representations ν3, ν4 : G(K7/3)→ S6

given by
ν3(a) = (1 2 3 4 5 6), ν3(b) = (1 2 3 4 5 6),

ν4(a) = (1 2 3 4 5 6), ν4(b) = (1 2 4 3 6 5),
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are the monodromies of locally cyclic coverings of 6 sheets. (The monodromy ν3

corresponds to the 6-cyclic covering.) Denote them by pi : Ni → S3, i = 3, 4. Because
ν3([lc]) = (1)(2)(3)(4)(5)(6) and ν4([lc]) = (1 3 5)(2 4 6), k3 = 0 and k4 = 4. Therefore

Vol(N3) = Vol(N4) = 6 Vol(S3, K7/3, 6) = 12.2552 . . . ,

CS(N3) ≡ 6 CS(S3, K7/3, 6) ≡ 0.30277 . . . (mod 1
2
),

CS(N4) ≡ 6 CS(S3, K7/3, 6)− 4
12
≡ 0.30277 . . .+ 1

6
≡ 0.46944 . . . (mod 1

2
).

Therefore N3 and N4 are topologically different.
Virtually regular coverings of 7 sheets. The representations νi : G(K7/3) → S7,

i = 5, 6, 7, 8, 9, given by

ν5(a) = (1 2 3 4 5 6 7), ν5(b) = (1 2 3 4 5 6 7),

ν6(a) = (1 2 3 4 5 6 7), ν6(b) = (1 2 4 3 7 6 5),

ν7(a) = (1 2 3 4 5 6 7), ν7(b) = (1 2 5 4 7 6 3),

ν8(a) = (1 2 3 4 5 6 7), ν8(b) = (1 2 5 4 3 7 6),

ν9(a) = (1 2 3 4 5 6 7), ν9(b) = (1 2 7 4 3 6 5),

are the monodromies of locally cyclic coverings of 7 sheets. (The monodromy ν5

corresponds to the 7-cyclic covering.) Denote them by pi :
−→
Ni → −→S 3, i = 5, 6, 7, 8, 9.

Observe that ν6 ◦ v] ∼= ν8 and ν7 ◦ v] ∼= ν9. Therefore
−→
N8
∼= −→N6 and

−→
N9
∼= −→N7.

Thus we study only
−→
N5,
−→
N6 and

−→
N7. The images of the canonical longitude and the

corresponding values of ki are

ν5([lc]) = (1)(2)(3)(4)(5)(6)(7), k5 = 0,

ν6([lc]) = (1 4 7 3 6 2 5), k6 = 4,

ν7([lc]) = (1)(2)(3)(4)(5)(6)(7), k7 = 0.

Therefore

Vol(N5) = Vol(N6) = Vol(N7) = 7 Vol(S3, K7/3, 7) = 15.7081 . . . ,

CS(
−→
N5) ≡ CS(

−→
N7) ≡ 7 CS(S3, K7/3, 7) ≡ 0.11441 . . . (mod 1

2
),

CS(
−→
N6) ≡ 7 CS(S3, K7/3, 7)− 4

14
≡ 0.11441 . . .+ 3

14
≡ 0.32869 . . . (mod 1

2
).

We see that the Chern–Simons invariant distinguishes
−→
N6 from the manifolds with

the same volume,
−→
N5 and

−→
N7. These two manifolds can be distinguished by the first

homology group:

H1(
−→
N5) = C13 ⊕ C13, H1(

−→
N7) = C4 ⊕ Z.

Remark. It is interesting to compare the homological invariants (homology
groups and linking form) with the topological invariants, volume and Chern–Simons
invariant. It transpires that volume is relatively weak in distinguishing manifolds
that can be cut into hyperbolic polyhedra which are cut-and-paste equivalent. This
occurs with branched coverings, with the same numbers of sheets, of the same knot.
The Chern–Simons invariant is sensitive to the different ways of pasting together
the faces of the defining polyhedron: it measures the total amount of twisting in the
pasting process (the proof of Case 2 is in Theorem 3.5 of [7]). The symmetry of the
knot limits this amount of twisting. Therefore CS is more effective in distinguishing
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manifolds via coverings when the knot has few symmetries. From the above examples,
we can deduce that homological invariants are probably stronger than the volume
and the Chern–Simons invariant, when working with branched coverings over the
same knot.

We used the program GAP [14] to find the above monodromies. Volumes and
Chern–Simons invariants of the orbifolds (S3, K, n) are taken from [8].
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