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Abstract

It was shown by A. Reid that there are exactly four links whose
trace field is a quadratic extension of the field of rational numbers.
They are: the figure eight knot 41, the Whitehead link 52

1, the link 62
2

and the link 62
3. All of them are two-bridge links with slopes 5/2, 8/3,

10/3 and 12/5 respectively. Recently, the explicit volume formulae
for hyperbolic cone–manifolds, whose underlying space is the 3-sphere
and the singular set is the knot 41 and the links 51

2 and 62
2, have been

obtained by the second named author and his collaborators. In this
paper we find explicitly the hyperbolic volume for cone-manifolds with
the link 62

3 as singular set. Trigonometrical identities (Tangent, Sine
and Cosine Rules) between complex lengths of singular components
and cone angles are obtained for an infinite family of two-bridge links
containing 51

2 and 62
3.

Mathematics Subject Classification 2000: Primary 57M50; Secondary
57M25, 57M27.
Keywords: Hyperbolic orbifold, hyperbolic cone-manifold, complex
length, Tangent Rule, Sine Rule, Cosine Rule, hyperbolic volume.

1 Introduction

Starting from Alexander’s works, polynomial invariants became a very con-
venient instrument for knot investigation. Several kinds of such polyno-
mials were discovered in the last twenty years. Among these, there are
Jones-, Kaufmann-, HOMFLY-, A–polynomials and others ([Kauf], [CCGLS],
[HLM2]). This relates the knot theory with algebra and algebraic geometry.
Algebraic technique is used to find the most important geometrical charac-
teristics of knots such as volume, length of shortest geodesics and others.
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In particular, it was shown by A. Reid that there are exactly four links
whose trace field is a quadratic extension of the field of rational numbers.
They are: the figure eight knot 41, the Whitehead link 52

1, the link 62
2 and

the link 62
3. All of them are two-bridge links with slopes 5/2, 8/3, 10/3 and

12/5 respectively.
The explicit volume formulae for hyperbolic cone–manifolds, whose un-

derlying space is the 3-sphere and the singular set is the knot 41 and the
links 51

2 and 62
2, have been obtained in [MR2], [MV2] and [Me].

The aim of our paper is to find explicitly the hyperbolic volume for cone-
manifolds with the link 62

3 as singular set. In order to do this, we will in-
troduce a family of hyperbolic cone–manifolds Tp(α, β), with the two-bridge
links Tp, with slope (4p + 4/2p + 1) as singular set, and α, β as cone angles.

Trigonometrical identities (Tangent, Sine and Cosine Rules) between com-
plex lengths of singular components and cone angles for Tp(α, β) are obtained.
Then the Schläfli formula applies to find explicit hyperbolic volumes for cone-
manifolds T2(α, β).

In the present paper links and knots are considered as singular subsets of
the three-sphere endowed by Riemannian metric of negative constant curva-
ture.

2 Trigonometrical identities for knots and

links

2.1 Cone–manifolds, complex distances and lengths

We start with the definition of cone–manifold modelled in hyperbolic, spher-
ical or Euclidian structure.

Definition 2.1.1. A 3–dimensional hyperbolic cone–manifold is a Rie-
mannian 3–dimensional manifold of constant negative sectional curvature
with cone-type singularity along simple closed geodesics. To each compo-
nent of singular set we associate a real number n ≥ 1 such that the cone-
angle around the component is α = 2π/n. The concept of the hyperbolic
cone-manifold generalizes the hyperbolic manifold which appears in the par-
tial case when all cone-angles are 2π. The hyperbolic cone-manifold is also a
generalization of the hyperbolic 3–orbifold which arises when all associated
numbers n are integers. Euclidean and spherical cone–manifolds are defined
similarly.
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In the present paper hyperbolic, spherical or Euclidean cone-manifolds C
are considered whose underlying space is the three-dimensional sphere and
the singular set Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σk is a link consisting of components
Σj = Σαj

, j = 1, 2, . . . , k with cone-angles α1, . . . , αk respectively.
Recall a few well-known facts from the hyperbolic geometry.

Let H3 = {(z, ξ) ∈ C × R : ξ > 0} be the upper half model of the
3 -dimensional hyperbolic space endowed by the Riemannian metric

ds2 =
dzdz + dξ2

ξ2
.

We identify the group of orientation preserving isometries of H3 with the
group PSL(2, C) consisting of linear fractional transformations

A : z ∈ C → az + b

cz + d
.

By the canonical procedure the linear transformation A can be uniquely
extended to the isometry of H

3. We prefer to deal with the matrix Ã =(
a b
c d

)
∈ SL(2, C) rather than the element A ∈ PSL(2, C). The matrix

Ã is uniquely determined by the element A up to a sign. If there will be no
confusions we shall use the same letter A for both A and Ã.

Let C be a hyperbolic cone–manifold with the singular set Σ. Then C
defines a nonsingular but incomplete hyperbolic manifold N = C−Σ. Denote
by Φ the fundamental group of the manifold N.

The hyperbolic structure of N defines, up to conjugation in PSL(2, C),
a holonomy homomorphism

ĥ : Φ → PSL(2, C).

It is shown in [Zhou] that the holonomy homomorphism of a compact ori-
entable cone-orbifold can be lifted to SL(2, C). Denote by h : Φ →
SL(2, C) this lifting homomorphism. Chose an orientation on the link
Σ = Σ1 ∪ Σ2 ∪ . . . ∪ Σk and fix a meridian-longitude pair {mj, lj} for each
component Σj = Σαj

. Then the matrices Mj = h(mj) and Lj = h(lj) satisfy
the following properties:

tr (Mj) = 2 cos(αj/2), MjLj = LjMj , j = 1, 2, . . . , k.
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Recall some definitions and results from the book [Fench]. A matrix
l ∈ SL(2,C) satisfying tr(l) = 0 will be called a (normalized) line matrix.
We have from definition l2 = −I, where I is the identity matrix. Hence
any line matrix determines a half-turn about a line in H3, and this line
determines matrix up to sign. According to [Fench, p.63] there exists a
natural one-to-one correspondence between line matrices and oriented lines
in H3. Hereby, if a line matrix l determines an oriented line [e, e′] with and
points e and e′, then the line matrix (−l) determines the line [e′, e]. Moreover,
if matrix f ∈ SL(2,C) is considered as a motion of H3, then the matrix lf l−1

determines the line [f(e), f(e′)].
Let A and B be oriented lines determined by line matrices a and b. A

complex number µ is called a complex distance from A to B if it real part
ℜµ is the distance from A to B, and it imaginary part ℑµ is the angle from
L to M in the obvious sense. We get [Fench, p.68]

cosh µ = −1

2
tr(ab). (2.1)

From now on, all lines in this paper will be supposed to be oriented.
Now we consider a family of links which are generalization of the White-

head link. The link Tp, p ≥ 0, is the two-component link depicted in Figure
??, where p is the number of half twist of one component. For this reason we
will call them twist links. It is easy to see that T0 is the torus link of type
(2, 4) and T1 is the Whitehead link. All twists links are two-bridge links, in
particular Tp is the two-bridge link of type (4p + 4, 2p + 1), for al p. They
are all hyperbolic, except for T0.

Denote by Tp(α, β) the cone-manifold whose underlying space is the 3-
sphere and whose singular set consists of two components of the twist link
Tp with cone angles α = 2π/m and β = 2π/n (see Fig.1). It follows from
Thurston theorem that Tp(α, β) admits a hyperbolic structure for all suffi-
ciently small α and β.

By the Kojima rigidity theorem [Kj] the hyperbolic structure is unique,
up to isometry, if 0 ≤ α, β ≤ π.

In our paper we deal only with such range of angles.
Let us investigate the hyperbolic structure of the cone-manifold Tp(α, β)

The singular set Σ = Σ1 ∪ Σ2 of Tp(α, β) consists of two components Σ1 =
Σ1(α) and Σ2 = Σ2(β) with cone-angles α and β respectively. Tp(α, β)
defines a nonsingular but incomplete hyperbolic manifold N = Tp(α, β)−Σ.
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The fundamental group of the manifold N has the following presentation

Φp = 〈s, t | slp = lps〉,

where s and t are meridians of the components Σ1 and Σ2 respectively, and
lp is a longitude of Σ1. The expression of lp in term of s and t is

lp = s2[s−1, t]p−2[s−1, t−1]p−2, if p is even,

lp = s[t, s]p−3tst[s−1, t−1]p−3, if p is odd.

The hyperbolic structure of N defines, up to conjugation in PSL(2,C),
a holonomy homomorphism

ĥ = ĥα,β : Φp → PSL(2,C).

The images ĥ(s) and ĥ(t) of s and t are rotations in H3 of angles α and
β respectively.

It is shown in [Zhou] that the holonomy homomorphism can be lifted
to SL(2,C) if all cone-angles are at most π. Denote by h = hα,β : Φp →
SL(2,C) this lifting homomorphism and set Γα,β = hα,β(Φp). The group
Γα,β is generated by the two matrices S = hα,β(s) and T = hα,β(t) with the
following properties:

tr(S) = 2 cos
α

2
, tr(T ) = 2 cos

β

2
,

SL = LS, L = hα,β(lp). (2.2)

Recall that a subgroup G of SL(2,C) is called elementary if it has a finite

orbit in H3 ∪ Ĉ. We remark that the group (2.2) is non-elementary, is not
conjugated to a subgroup of SL(2,R) and is not necessary discrete [CCGLS].

Introduce the following definitions:

Definition 2.1. Let M be an isometry of H3 different from identity. It
has two fixed points u and v in Ĉ which may coincide. Consider the oriented
axis [u, v]. A complex number δ(M) is call to be the displacement of M if its
real part is the distance which the axis is translated and its imaginary part
is the angle through which the half–planes bounded by the axis are rotated.

The isometry M without an orientation of its axis determines δ(M) only
up to sign. By [Fench, p.46] for the isometry is given by matrix M ∈ SL(2,C)
we have

2 cosh δ(M) = tr(M2) = tr2(M) − 2. (2.3)
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We remark that if δ(M) 6= 0 then M has two different fixed points, so it
admits an axis determined by these points. The line matrix l(M) of this axis
is defined by

l(M) =
M − M−1

2i sinh δ(M)
2

(2.4)

(see [Fench]).

Definition 2.2. A complex length γj of the singular component Σj of the
cone-manifold C is defined as displacement of the isometry Lj of H3 , where
Lj = h(lj) is represented by the longitude lj of Σj .

Immediately from the definition we get [Fench, p.46]

2 cosh γj = tr (L2
j ) (1.1.1)

We note [BZie, p.38] that the meridian-longitude pair {mj, lj} of the
oriented link is uniquely determined up to a common conjugating element of
the group Φ. Hence, the complex length γj = lj + i ϕj is uniquely determined
up to a sign and (mod 2πi) by the above definition.

We need two conventions to choose correctly real and imaginary parts
of γj. The first convention is the following. Since Σj does not shrink to a
point, lj 6= 0. Hence, we choose γj in such a way that lj = ℜ γj > 0. The
second convention is concerned with the imaginary part ϕj = ℑ γj. We want
to choose ϕj such that the following identity holds

cosh
γj

2
= −1

2
tr (Lj) (1.1.2)

By virtue of identity tr (Lj)
2−2 = tr (L2

j ) equality (1.1.1) is a consequence
of (1.1.2). The converse, in general, is true only up to a sign. Under the sec-
ond convention (1.1.1) and (1.1.2) are equivalent. The two above conventions
lead to convenient analytic formulas for calculation of γj and lj . More pre-
cisely, there are simple relations between these numbers and eigenvalues of
matrix Lj . Recall that det Lj = 1. Since matrix Lj is loxodromic it has two
eigenvalues fj and 1/fj. We choose fj so that |fj | > 1. The case |fj| = 1 is
impossible because in this case the matrix Lj is elliptic and lj = 0. Hence

fj = −e
γj
2 , |fj | = e

lj
2 . (1.1.3)
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2.2 Complex distance equation for two-bridge links

Recall that the fundamental group of a link K is generated by two meridians
if and only if K is a two-bridge link [BZ]. The two-bridge link is hyperbolic
if and only if its slope is different of p/1 and p/(p − 1).

Proposition 1 Let Φ = 〈s, t〉 be the fundamental group a hyperbolic two-
bridge link K generated by two meridians. Denote by Γα,β = hα,β(Φ) the
image of Φ under holonomy homomorphism of a hyperbolic cone manifold
K(α, β). Then, up to conjugation in SL(2, C), the generators S = hα,β(s)
and T = hα,β(t) of the group Γα,β can be chosen in such a way that

S =

(
cos α

2
i e

ρ
2 sin α

2

i e−
ρ
2 sin α

2
cos α

2

)
, T =

(
cos β

2
i e−

ρ
2 sin β

2

i e
ρ
2 sin β

2
cos β

2

)
, (2.12)

where ρ is a complex distance between axis of S and T .

Proof. After a suitable conjugation in the group SL(2, C), one can assume
that the axes of elliptic elements S and T are lines with endpoints {±e

ρ
2}

and {±e−
ρ
2} respectively. Since tr (S) = 2 cos α

2
and tr (T ) = 2 cos β

2
, the

matrices S and T are given by the formulas (2.5) . Check that ρ coincides with
the complex distance ρ(S, T ) between oriented axes [−e

ρ
2 , e

ρ
2 ] and [−e−

ρ
2 , e−

ρ
2 ]

of S and T . The line matrices l(S) and l(T ), corresponding to these axes
can be obtained from (2.4).

Since δ(S) = i α and δ(T ) = i β we have l(S) =

(
0 −ie

ρ
2

−ie−
ρ
2 0

)

and l(T ) =

(
0 −ie−

ρ
2

−ie
ρ
2 0

)
, respectively. By [Fench, p.68] we get

cosh ρ(S, T ) = −1
2

tr(l(S)l(T )) = cosh ρ.

The following two propositions can be obtained by direct calculation from
the above statement.

Proposition 2 Let Φ2 = 〈s, t : sl = ls, l = stst−1s−1tsts−1t−1st〉 be the
fundamental group of the two-bridge link T2 with the slope 12/5 and Γα,β =
hα,β(Φ) is the image of Φ2 under holonomy homomorphism of a hyperbolic
cone manifold T2(α, β) generated by S = hα,β(s) and T = hα,β(t). Denote by
ρ = ρ(S, T ) the complex distance between axes of S and T. Then u = cosh ρ
is a non-real root of the complex distance equation

4u3−4ABu2+(3A2B2+3A2+3B2−1)u−AB(A2B2+A2+B2−3) = 0. (2.13)
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where A = cot α
2

and B = cot β

2
.

Proof. Denote by L = STST−1S−1TSTS−1T−1ST the image of the longi-
tude l under holonomy homomorphism h = hα,β : Φ2 → SL(2,C). Then we
have SL = LS.

Let a be a line matrix corresponding to common normal to axes of S
and T . If matrices S and T are represented in the form (2.12) then one can

take a =

(
i 0
0 −i

)
. It is not difficult to verify that aSa−1 = S−1 and

aTa−1 = T−1.
To complete the proof, we need the following lemma, which gives simple

criteria for matrices S and L to be permutable.

Lemma 3 The following conditions are equivalent: (i) SL = LS; (ii)
aLa−1 = L−1; (iii) tr (aL) = 0.

Proof. In the first we show that (i) and (ii) are equivalent. Indeed, since L =
STS−1T−1ST−1S−1T we get aLa−1 = S−1T−1STS−1TST−1 = S−1L−1S.
Hence (ii) holds if and only if S and L−1 are permutable. The last property
is equivalent to (i). Because of a2 = −I the condition (ii) can be rewritten
in the form aLaL = −I; that is equivalent to (iii).

By this lemma and direct calculations we have

tr (aL) =
?? sinh ρ

??(1 + A2)2(1 + B2)2
·

·(4u3−4ABu2 +(3A2B2 +3A2 +3B2 −1)u−AB(A2B2 +A2 +B2 −3)) = 0,

where u = cosh ρ.
Now we have to show that u is a non-real root of (2.13). Since Γα,β is the

holonomy group of a hyperbolic cone–manifold, it is non-elementary and is
not conjugated to a subgroup of SL(2,R) [CCGLS].

If sinh ρ = 0 then the axes S and T coincide, and the group Γα,β is
elementary. Consequently, u = cosh ρ is a root of equation (2.13).

Suppose that u = cosh ρ is a real root. Let

R(a, b, c, d) =
(c − a)(d − b)

(c − b)(d − a)

be the cross ratio of four points. Then R(−e
ρ
2 , e

ρ
2 ,−e−

ρ
2 , e−

ρ
2 ) = cosh ρ−1

cosh ρ+1
∈

R ∪ {∞}. We have that the axes [−e
ρ
2 , e

ρ
2 ] and [−e−

ρ
2 , e−

ρ
2 ] of S and T lie
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in a common plane. If the axes intersect then the group Γα,β = 〈S, T 〉 has a
fixed point and is elementary. If they do not intersect, Γα,β is conjugated to
a subgroup of SL(2, R).

Therefore, we have shown that u is a non-real root of (2.13) and the proof
of Proposition 2 is completed.

The next proposition can be proved by similar arguments.

Proposition 4 Let Φ3 = 〈s, t : sl = ls, l = stst−1s−1tst−1s−1t−1sts−1t−1st〉
be the fundamental group of the two-bridge link T3 with the slope 16/7 and
Γα,β = hα,β(Φ) is the image of Φ2 under holonomy homomorphism of a hy-
perbolic cone manifold T3(α, β) generated by S = hα,β(s) and T = hα,β(t).
Denote by ρ = ρ(S, T ) the complex distance between axes of S and T. Then
u = cosh ρ is a non-real root of the complex distance equation

0 = 8u5−8ABu4 +8(A2B2 +A2 +B2−1)u3−4AB(A2B2 +A2 +B2−3)u2+

(A4B4+2A4B2+2A2B4−4A2B2+A4+B4−6A2−6B2+1)u+4AB(A2B2+A2+B2−1),

where A = cot α
2

and B = cot β

2
.

2.3 Tangent, Sine and Cosine rules

If we set z = tr (S−1T ), then from presentation in Proposition 1 we have

z = 2(cos
α

2
cos

β

2
− u sin

α

2
sin

β

2
)

where u = cosh ρ.
In several papers ([CCGLS], citeHLM2 and others), devoted to PSL(2,C)

representation of two-generators groups, the parameter z is considered as a
main one.

In general, the algebraic equation for u (as well as for z) is very compli-
cated, even for twist links. In spite of this since u = cosh(ρ) has a very clear
geometric sense, we are able to produce some general result for twist links
without calculation of u.

We start with a preliminary result.

Proposition 5 Let Tp(α, β) be a hyperbolic twist link cone–manifold. De-
note by S = hα,β(s) and T = hα,β(t) the images of the generators of
the group Φp = 〈s, t | slp = lps〉 under the holonomy homomorphism
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hα,β : Φp → SL(2,C). Set u = cosh ρ, where ρ is the complex distance
between axes S and T , chosen thus that ℑ u > 0. Moreover, denote by γα

and γβ the complex lengths of the singular components of Tp(α, β) with cone-
angles α and β respectively. Then

u = i cot
α

2
coth

γβ

4
= i cot

β

2
coth

γα

4
. (2.29)

Proof. To prove the statement we need to calculate the complex distance
between axes of elliptic elements S and T in two ways. Denote by L = LS and
V = LT the longitudes of cone-manifold of Tp(α, β) represented by singular
components with cone angles α and β respectively.

First of all we fix an orientation on the axes S and T by the following
line matrices

l(S) =
S − S−1

2 i sinh i α
2

, l(T ) =
T − T−1

2 i sinh i β

2

.

Then the complex distance ρ(S, T ) between oriented axes of S and T is
defined by (2.1):

cosh ρ(S, T ) = −1

2
tr (l(S)l(T )) = cosh ρ(T, S).

Using (2.4) we define the line matrices for LS and LT as

l(LS) =
LS − L−1

S

2i sinh γα

2

, l(LT ) =
LT − L−1

T

2i sinh
γβ

2

.

To continue the proof, we need two lemmas:

Lemma 6 For every S, T we have l(S) = −l(LS) and l(T ) = −l(LT )

Proof. Up to conjugation in SL(2,C), we can assume that S is given by

S =

(
e

iα
2 0

0 e−
iα
2

)
.

Then, since LS is a loxodromic element, with displacement γα, permutable
with S, we have

LS =

(
±e

γα
2 0

0 ±e−
γα
2

)
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By convention (see formula (2.6)) we have

tr (LS) = −2 cosh
γα

2
.

Hence

LS =

(
−e

γα
2 0

0 −e−
γα
2

)

and we obtain

l(LS) =
LS − L−1

S

2i sinh γα

2

=

(
i 0
0 −i

)

and

l(S) =
S − S−1

2 i sinh i α
2

=

(
−i 0
0 i

)
.

Lemma 7 For every S, T we have tr (S) = tr (S−1LT ) and tr (T ) =
tr (T−1LS).

Proof. For the proof of this lemma we need only two facts — the existence
of automorphism θ : S → S, T → T−1LS , LS → LS, induced by order two
rotation of Tp(α, β) along the longitude LS and Kojima’s Rigidity theorem for
cone-manifolds. Since Tp(α, β) is hyperbolic cone-manifold with cone-angles
at most π, by [Kj] there exists an element D ∈ SL(2,C) such that

DSD−1 = S, DTD−1 = T−1LS, DLSD−1 = LS .

Hence T and T−1LS are conjugate and we have the second statement of
lemma. The first can be obtained in a similar way.

To complete the proof of Proposition 5, we note that tr (XY ) =
tr (X)tr (Y ) − tr (X−1Y ), tr (X−1) = tr (X) and tr (XY ) = tr (X−1Y −1)
holds for all X, Y ∈ SL(2,C). By Lemma 6, Lemma 7 and formulae
tr (S) = 2 cos α

2
, tr (LS) = −2 cosh γα

2
, we have

cosh ρ(S, T ) = −1

2
tr (l(S)l(T )) =

1

2
tr (l(S)l(LT )) =

=
1

2
tr

(
S − S−1

2 sin α
2

LT − L−1
T

2i sinh
γβ

2

)
=

tr (SLT − S−1LT − SL−1
T + S−1L−1

T )

8i sin α
2

sinh
γβ

2

=
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=
2(tr (SLT ) − tr (S−1LT ))

8i sin α
2

sinh
γβ

2

=
tr (S)tr (LT ) − 2tr (S−1LT )

4i sin α
2

sinh
γβ

2

=

=
tr (S)tr (LT ) − 2tr (S)

4i sin α
2

sinh
γβ

2

=
tr (S)(2 − tr (LT ))

−4i sin α
2

sinh
γβ

2

=
2 cos α

2
(2 + 2 cosh

γβ

2
)

−4i sin α
2

sinh
γβ

2

= i cot
α

2
coth

γβ

4
.

As immediate consequence of previous proposition, we have the following
results.

Theorem 8 (The Tangent Rule) Suppose that cone–manifold Tp(α, β) is hy-
perbolic. Denote by γα and γβ complex lengths of the singular geodesics of
W (α, β) with cone angles α and β respectively. Then

tanh γα

4

tanh
γβ

4

=
tan α

2

tan β

2

.

The following two theorems are consequences of the Tangent Rule.

Theorem 9 (The Sine Rule) Let γα = lα+i ϕα (resp.γβ) be a complex length
of the singular geodesic of a hyperbolic cone-manifold Tp(α, β) with cone angle
α (resp. β). Then

sin ϕα

2

sinh lα
2

=
sin

ϕβ

2

sinh
lβ
2

.

Proof. By the Tangent Rule we have

tanh γα

4

A
=

tanh
γβ

4

B
,

where A = tan α
2

and B = tan β

2
are real numbers. Hence

ℜ(tanh γα

4
)

A
=

ℜ(tanh
γβ

4
)

B
,

and
ℑ(tanh γα

4
)

A
=

ℑ(tanh
γβ

4
)

B
.
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By dividing one equation by the other we obtain

ℜ(tanh γα

4
)

ℑ(tanh γα

4
)

=
ℜ(tanh

γβ

4
)

ℑ(tanh
γβ

4
)
.

By direct calculations we have

ℜ(tanh
γα

4
) =

1

2
(tanh

γα

4
+ tanh

γ̄α

4
) =

sinh lα
2

cosh lα
2
− cos ϕα

2

and

ℑ(tanh
γα

4
) =

1

2
(tanh

γα

4
− tanh

γ̄α

4
) =

sin ϕα

2

cosh lα
2
− cos ϕα

2

.

Since lα > 0, we have cosh lα
2

> 1. Therefore cosh lα
2
− cos ϕα

2
> 0 and the

result follows.

Theorem 10 (The Cosine Rule) Let γα = lα + i ϕα (resp.γβ) be a complex
length of the singular geodesic of a hyperbolic cone-manifold Tp(α, β) with
cone angle α (resp. β). Then

cos ϕα

2
cosh

lβ
2
− cos

ϕβ

2
cosh lα

2

cosh lα
2

cosh
lβ
2
− cos ϕα

2
cos

ϕβ

2

=
cos α − cos β

1 − cos α cos β
.

Proof. By the Tangent Rule

tanh γα

4
tanh γ̄α

4

A2
=

tanh
γβ

4
tanh

γ̄β

4

B2
,

where A = tan α
2

and B = tan β

2
. Hence

1 + cos α

1 − cos α

cosh lα
2
− cos ϕα

2

cosh lα
2

+ cos ϕα

2

=
1 + cos β

1 − cos β

cosh
lβ
2
− cos

ϕβ

2

cosh
lβ
2

+ cos
ϕβ

2

.

Set p = cos α, q = cos β, a =
cos ϕα

2

cosh lα
2

, b =
cos

ϕβ
2

cosh
lβ
2

and rewrite the above

equation in the form

1 + p

1 − p

1 − a

1 + a
=

1 + q

1 − q

1 − b

1 + b
,

13



or, equivalently, as

log
1 + p

1 − p
+ log

1 − a

1 + a
= log

1 + q

1 − q
+ log

1 − b

1 + b
.

Since arctanh p = 1
2

log 1+p

1−p
we have

arctanh p − arctanh a = arctanh q − arctanh b.

and
arctanh p − arctanh q = arctanh a − arctanh b.

Hence
p − q

1 − pq
=

a − b

1 − ab

and after the putting a, b, p, q in the obtained formula we are done.

We remark that, in the case of Whitehead link cone–manifolds, Tangent
and Sine rules are obtained in [M].

3 Explicit volume calculation for twist link

cone–manifolds

3.1 The Schläfli formula

In this section we will obtain explicit formulas for volume of some special
cone–manifolds in the hyperbolic and spherical geometries. In the case of
complete hyperbolic structure on the simplest knot and link complements
such formulas in terms of Lobachevsky function are well-known and widely
represented in [T]. In general situation, a hyperbolic cone–manifold can be
obtained by completion of non-complete hyperbolic structure on a suitable
knot or link complement. If the cone–manifold is compact explicit formulas
are know just in a few cases [Hds] , [HLM3], [MV2], []. In all these cases
the starting point for the volume calculation is the Schläfli formula (see, for
example [Hds] )

Theorem 11 (The Schläfli volume formula) Suppose that Ct is a smooth 1–
parameter family of (curvature K) cone–manifold structures on a n-manifold,

14



with singular locus Σ of a fixed topological type. Then the derivative of volume
of Ct satisfies

(n − 1)KdV (Ct) =
∑

σ

Vn−2(σ)dθ(σ)

where the sum is over all components σ of the singular locus Σ, and θ(σ) is
the cone angle along σ.

In the present paper we will deal mostly with three-dimensional cone–
manifold structures of negative constant curvature K = −1, or positive con-
stant curvature K = 1. The Schläfli formula in this case reduces to

KdV =
1

2

∑

i

lθi
dθi, (2.1.1)

where the sum is taken over all components of the singular set Σ with lengths
lθi

and cone angles θi.
Our aim is to obtain the volume formulas for twist link hyperbolic cone–

manifolds T2(α, β). We note that formula for T1(α, β) were obtained earlier
in [Me1] and [MV2].

Thus, we can prove the following:

Proposition 12 Suppose that the cone–manifold T2(α, β) is hyperbolic. Let
lα and lβ be the real lengths of the singular geodesics of T2(α, β), with cone
angles α and β respectively. Then

lα = 2i arctan
A

ζ
− 2i arctan

A

ζ
, (12.1)

lβ = 2i arctan
B

ζ
− 2i arctan

B

ζ
, (12.2)

where ζ, ℑ(ζ) > 0 is a root of the equation

4(z2 + A2)(z2 + B2) = (1 + A2)(1 + B2)(z − z2)2, (12.3)

with A = cot α
2

and B = cot β

2
.

Proof. By Proposition 5 we have

i B coth
γα

4
= i A coth

γβ

4
= u, (1.2.1),
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where u = cosh ρ, and ρ is a complex distance between axes S and T chosen
thus that ℑ u > 0, A = cot α

2
, B = cot β

2
. By Proposition 1 u is a root of the

cubic equation

4u3 − 4ABu2 + (3A2B2 + 3A2 + 3B2 − 1)u− AB(A2B2 + A2 + B2 − 3) = 0.

From (1.2.1), for a suitable choice of analytical branches

lα =
γα

2
+

γα

2
= 2i arctan

u

B
− 2i arctan

u

B
= 2i arctan

A

ζ
− 2i arctan

A

ζ
,

where ζ = AB/u,ℑ(ζ) > 0 satisfy the following equation

Q(z) = (A2B2+A2+B2−3)z3−(3A2B2+3A2+3B2−1)z2+4A2B2z−4A2B2 = 0.

To finish the proof we note that

(z + 1)Q(z) = −4(z2 + A2)(z2 + B2) + (1 + A2)(1 + B2)(z − z2)2.

In the next section we will apply this result to calculate the volume of
T2(α, β) via Schläfli formula.

We remark that formulae (12.1) and (12,2), as a consequence of Tangent
Rule, also hold for all twist links Tp, with ζ = AB/ū, where u = cosh ρ.

For example, an algebraic equation for ζ in the case of twist link T3 can
be easily obtained from Proposition 4. But in this case the equation became
too complicated and Schläfli formula can not be applied in explicit way.

3.2 Volume of twist link cone–manifolds

The case of Whitehead link cone manifolds T1(α, β) has already been solved
(see [Me1] and [MV2]).

Theorem 13 [Me1, MV2] Let T1(α, β) be a hyperbolic Whitehead link cone–
manifold with cone angles α and β. Then the volume of T1(α, β) is given by
the formula

Vol T1(α, β) = i

∫ ζ2

ζ1

log

[
2(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ2 − ζ3)

]
dζ

ζ2 − 1
.

where A = cot α
2
, B = cot β

2
, ζ1 = z, ζ2 = z and z is a non-real root, with

ℑ(z) > 0, of the equation

2(z2 + A2)(z2 + B2) = (1 + A2)(1 + B2)(z2 − z3).
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The case of T2(α, β) is discussed below.

Theorem 14 Let T2(α, β) be a hyperbolic twist link cone–manifold with cone
angles α and β. Then the volume of T2(α, β) is given by the formula

VolT2(α, β) = i

∫ ζ2

ζ1

log

[
4(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ − ζ2)2

]
dζ

ζ2 − 1
.

where A = cot α
2
, B = cot β

2
, ζ1 = z, ζ2 = z and z is a non-real root, with

ℑ(z) > 0, of the equation

4(z2 + A2)(z2 + B2) = (1 + A2)(1 + B2)(z − z2)2.

Proof. Denote by V = V ol T3(α, β) the hyperbolic volume of T3(α, β).
Then by virtue of the Schlänfli formula we have

∂V

∂α
= − lα

2
,

∂V

∂β
= − lβ

2
, (2.2.4)

where lα and lα are lengths of singular geodesics corresponding to cone angles
α and β respectively.

We note that the geometrical limit T2(π, 0) of the cone-manifold T2(α, 0)
as α → π − 0 is not hyperbolic, since its 2-fold covering branched over the
π-component is the complement of the two-bridge link of type (6, 1), which
is toric. Moreover, T2(π, 0) does not contain 2-dimensional suborbifolds of
type S2(π, π, π). Hence, by Theorem 7.1.2 of [Kj], we have

V → 0 as α → π and β → 0. (2.2.5)

We set W =
∫ ζ2

ζ1
F (ζ, A, B)dζ , where

F (ζ, A, B) =
i

ζ2 − 1
log

4(ζ2 + A2)(ζ2 + B2)

(1 + A2)(1 + B2)(ζ − ζ2)2
.

and show that W satisfies conditions (2.2.4) and (2.2.5). Then W = V and
the theorem is proven.

By the Leibnitz formula we get

∂W

∂α
= F (ζ2, A, B)

∂ζ2

∂α
− F (ζ1, A, B)

∂ζ1

∂α
+

∫ ζ2

ζ1

∂F (ζ, A, B)

∂A

∂A

∂α
dζ (2.2.6)
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We note that F (ζ1, A, B) = F (ζ2, A, B) = 0 if ζ1, ζ2, A and B are the
same as in the statement of the theorem. Moreover, since α = 2 arccot A we
have ∂A

∂α
= −1+A2

2
and

∂F (ζ, A, B)

∂A

∂A

∂α
=

i

ζ2 + 1
.

Hence, by Proposition 1.2.3 we obtain from (2.2.6)

∂W

∂α
= i

∫ ζ2

ζ1

dζ

ζ2 + 1
= i arctan

A

ζ2
− i arctan

A

ζ1
= − lα

2
.

The equation ∂W
∂β

= − lβ
2

can be obtained in the same way. The boundary

condition (2.2.5) for the function W follows from the integral formula.

3.3 Particular cases and examples

1. Case α = β.

In this case the equation Q(z) = ... splits into two quadratic equations:
(1+A2)(z−z2)+2(z2 +A2) = 0 and (1+A2)(z−z2)−2(z2 +A2) = 0.
The first one has two real roots z = −1 and z = 2A2/(A2 − 1). The
second has two non-real roots

z1,2 =
1 + A2 ±

√
1 − 22A2 − 7A4

2(3 + A2)
.

By [HLM4], ∆ = 1 − 22A2 − 7A4 is < 0 in the hyperbolic case, = 0
in the Euclidean case and > 0 in the spherical case. In the Euclidean
case we obtain A2 = cot2(α0/2) = (

√
128 − 11)/7 = 0.0448.... A =

A0 = cot (α0/2) = 0.21169.... So cone-manifold is hyperbolic for 0 ≤
α < α0 =?? and is Euclidean for α = α0.

This gives

VolT2(α, α) =

∫ A

A0

arctanh

√
7t2 + 22t − 1

t(5 + t2)

d t

t2 + 1
.

Since the integrant is pure imaginary for 0 ≤ t < A0 we are able to
compute the volume in a more convenient way

Vol T2(α, α) = 4ℜ
∫ A

0

arctanh

√
7t2 + 22t − 1

t(5 + t2)

d t

t2 + 1
.
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2.

Vol T2(0, 0) = 2i

∫ 1+i
√

7

2

1−i
√

7

2

log
2

z − z2

d z

z2 − 1
= 5.333489...

3.

VolT2(π/2, π/2) = 2i

∫ 1+i
√

7

4

1−i
√

7

4

log
z2 + 1

z − z2

d z

z2 − 1
= 2.66674...

Note that VolT2(0, 0) = 2 VolT2(π/2, π/2).

4.

VolT2(0, π/3) = i

∫ 1− 1−i
√

3
3√

4

1− 1+i
√

3
3√

4

log
z2 + 3

(z − z2)2

d z

z2 − 1
= 4.61656...

The results of above numerical calculation coincide with the correspon-
dent results obtained by Weeks’s SnapPea program [We].

References

[BZ] Yu. D. Burago, V. A. Zalgaller, Geometric inequalities, Grundlehren
der Mathematischen Wissenschaften, 285, Berlin ets., Springer-Verlag,
1988.

[BZie] G. Burde, H. Zieschang, Knots, De Gruyter Studies in Mathematics,
Berlin - New-York, 1985.

[CCGLS] D. Cooper, M. Culler, H. Gillet, D. D. Long and P. B. Shalen,
Plane curves associated to character varieties of 3-manifolds, Invent.
Math., vol. 118 (1994), 47-84.

[DM] D. Derevnin, A. Mednykh, On the volume of spherical Lambert cube,
Preprint, 2001.

[D] R. Diaz, A Characterization of Gram Matrices of Polytopes, Discrete
Comput. Geom., Vol. 21 (1999), 551-601.

[Fench] W. Fenchel, Elementary Geometry in Hyperbolic Space, Walter de
Gruyter, Berlin–New York 1989.

19
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