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Machineries for Dehn surgery theory
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Dehn fillings

M is a compact, connected, orientable 3-manifold with a torus bound-

ary component T .
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Slopes

The slope of an essential circle on T is its isotopy class (T ⊂ ∂M).

Let α, β be two slopes on T .

∆(α, β) := minimal geometric intersection number of α and β.
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Dehn surgeries = deleting + filling
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Parameterizing slopes

K : a knot in S3, E(K) = S3 − intN(K)

µ, λ : meridian and longitude ⊂ ∂E(K)

α : an essential simple closed curve in ∂E(K)

α ∼ mµ + lλ for some coprime integers m, l

{slopes} ↔ Q ∪ {1/0}

α ↔ m/l
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Realizing 3-manifolds by Dehn surgery

A set of surgery data (L;α1, . . . , αn) : a link L = K1∪ . . .∪Kn together

with a slope αi for each component Ki.

L(α1, . . . , αn) = the manifold obtained by performing the Dehn surg-

eries prescribed the surgery data (L;α1, . . . , αn).

Theorem (Lickorish, Wallace, 1960). Every closed connected ori-

entable 3-manifold M is homeomorphic to L(α1, . . . , αn) for some n-

component link L in S3.
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Essential surfaces

A 2-sphere S in M is essential if S does not bound a 3-ball in M (and

M is called reducible). If M is not reducible, M is called irreducible.

e.g.)

• S = S2 × {pt} ⊂ S2 × S1

• S : a decomposing sphere in M1#M2
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F (⊂ M, ≇ S2) is compressible if ∃D in M such that D ∩F = ∂D is not

contractible in F . Otherwise, incompressible.

A properly embedded surface F ( 6= S2) in M is essential if incompress-

ible and not parallel into ∂M .
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A 3-manifold X is said to be prime if X = P#Q ⇒ P = S3 or Q = S3.

Prime Decompositon Theorem (Kneser, Milnor). Any com-

pact orientable 3-manifold M has a prime decomposition, i.e. M =

P1# · · ·#Pn (Pi’s are prime).

Torus Decomposition Theorem (Jaco and Shalen, Johannson).

Any irreducible 3-manifold M contains a finite collection of disjoint in-

compressible tori T1, . . . , Tn such that each component of M−IntN(T1∪

. . . ∪ Tn) is either Seifert fibered or atoroidal.
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Topological rigidity of Haken 3-manifolds

A Haken 3-manifold is a compact irreducible 3-manifold that contains

an incompressible surface.

Theorem (Waldhausen). Haken 3-manifolds are determined up to

homeomorphism by their fundamental groups.

cf. L(5,1) ≇ L(5,2)
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Small Seifert Fiber Spaces

Every small fiber space can be obtained from P × S1 by suitably

performing Dehn filling three times, where P is a pair of pants.
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Background(Thurston’s work)

A compact orientable 3-manifold M is hyperbolic if M with its bound-
ary tori removed has a finite volume complete hyperbolic structure.

Theorem (Hyperbolic Dehn Surgery Theorem). If M is a hyper-
bolic 3-manifold with a torus boundary component T , then M(α) are
hyperbolic for all but finitely many slopes α on T .

Theorem (Geometrization Theorem for Haken manifolds). A
compact 3-manifold with non-empty boundary is not hyperbolic if
and only if it is reducible(S), boundary-reducible (D), annular (A), or
toroidal (T ).

Geometrization Conjecture A closed 3-manifold is not hyperbolic
if and only if it is reducible, toroidal, or a small Seifert fiber space.
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Geometrization Theorem for Haken manifolds and
Geometrization Conjecture
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Known results

∆ ≤? S D A T

S 1 0 2 3

D 1 2 2

A 5 5

T 8

Upper bounds for ∆

For example, ∆(S, T ) ≤ 3 means:

Given a hyperbolic manifold M , if M(α), M(β) each contain an essen-

tial sphere and an essential torus, then ∆(α, β) ≤ 3 [Oh, Wu].

15



Boyer and Zhang’s example; ∆(S, T ) = 3
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Theorem (Gordon and Luecke, 1996). (∆(S,S) ≤ 1) Let M be a

hyperbolic 3-manifold with a torus boundary component T . If α, β are

two slopes on T such that both M(α) and M(β) are reducible, then

∆(α, β) ≤ 1.

• ∆(S,S) ≤ 5; Gordon and Litherland, 1984

• ∆(S,S) ≤ 2; Wu, 1992

• ∆(S,S) ≤ 1; Gordon and Luecke, 1996

• ∆(S,S) ≤ 1; Lee, Oh, and Teragaito, 2006, a simple proof
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We prove the following theorem.

Theorem. ∆(S,S) ≤ 3.

Assume for contradiction that ∆(α, β) ≥ 4.

Vα, Vβ : attached solid tori in M(α), M(β)

P̂ ⊂ M(α), Q̂ ⊂ M(β) : essential spheres

We may assume

P̂ ∩ Vα = u1 ∪ . . . ∪ up : meridian disks of Vα

Q̂ ∩ Vβ = v1 ∪ . . . ∪ vq : meridian disks of Vβ
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We assume that P̂ , Q̂ had been chosen so that p, q are minimal.

Let P = P̂ ∩ M and Q = Q̂ ∩ M .

Then P and Q are incompressible and ∂-incompressible.

Isotope P or Q in M so that P ⋔ Q.

The arc components of P ∩Q define two labelled graphs GP and GQ.

No trivial edge by ∂-incompressibility.
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Orient ∂P so that all components of ∂P are homologous in ∂Vα =

T ⊂ ∂M .
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Give a sign to each edge of GP .

Similarly for GQ.
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Parity Rule

An edge is positive in one graph if and only if it is negative in the other.
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Lemma. Any family of parallel negative edges in GP contains at most

q − 1 edges.

Proof. Assume GP contains q parallel negative edges (assume q = 12).
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A neighborhood of A ∪ B ∪ C ∪ D ∪ T in M is a cable space. This is

impossible, since M is hyperbolic. �
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Scharlemann cycles and extended Scharlemann cy-
cles
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Lemma. Any two Scharlemann cycles in GP (resp. GQ) have the

same label pair.

Lemma. No extended Scharlemann cycle.

Lemma. Any family of parallel positive edges in GP contains at most

q/2 + 1 edges. If q is odd, then it contains at most (q + 1)/2 edges.

Proof. Assume GP contains q/2 + 2 parallel positive edges (assume

q = 12).

�
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Reduced graph

Let GP denote the reduced graph of GP , i.e., GP is obtained from GP

by amalgamating each family of parallel edges into a single edge.
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Lemma. Let ux be a vertex of GP such that x is not a label of a

Scharlemann cycle in GQ. Then GP contains at most 3q − 6 negative

edges incident to ux.

Proof. Assume for contradiction that GP contains more than 3q − 6

negative edges incident to ux. Let G+
Q(x) be the subgraph of GQ con-

sisting of all positive x-edges. Let V, E, F be the number of vertices,

edges, and disk faces of G+
Q(x), respectively. Then V = q, E > 3q −6,

and

V − E + F ≥ V − E +
∑

f :faces of G+
Q(x)

χ(f) = χ(Q̂) = 2.

Since GQ contains no extended Scharlemann cycles, every disk face of

G+
Q(x) has at least 3 sides. So, 2E ≥ 3F ≥ 3(E −V +2), which yields

E ≤ 3V −6 = 3q−6. This contradicts our assumption E > 3q−6.
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Lemma. Any vertex of GP has valence at least 5.

Proof. Note that q − 1 ≥ q/2 + 1 if q ≥ 4 and that q − 1 ≥ (q + 1)/2

if q = 3. Hence any family of parallel edges in GP contains at most

q − 1. Therefore if some vertex of GP has valence at most 4, then

it has valence at most 4(q − 1) = 4q − 4(< ∆ · q) in GP . This is

impossible.
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Lemma. GP has at least 3 vertices of valence 5.

Proof. Let V, E, F be the number of vertices, edges, and disk faces

of GP , respectively. Then V = q ≥ 3,2E ≥ 3F, and F ≥ E − V + 2.

Combining the last two inequalities, we obtain

3V − 6 ≥ E.

Suppose that all but two vertices of GP has valence at least 6. Then

2E ≥ 6(V − 2) + 5 × 2 or

E ≥ 3V − 1.

Two inequalities above conflict. �
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Choose a vertex ux of valence 5 in GP such that x is not a label of a

Scharlemann cycle in GQ. Since GP contains at most 3q − 6 negative

edges incident to ux, GP contains at least 2 positive edges incident

to ux. Let N be the number of edge endpoints of GP at ux. Then

3(q − 1) + 2(q/2 + 1) = 4q − 1 ≥ N ≥ ∆ · q, or

3(q − 1) + 2((q + 1)/2) = 4q − 2 ≥ N ≥ ∆ · q.

Both are impossible, completing the proof of our theorem.
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Conjecture. Let M be a hyperbolic 3-manifold with a torus boundary

component T . Suppose that there are two distinct slopes α, β on T

such that both M(α) and M(β) are reducible. Then one of M(α) and

M(β) contains a reducing sphere which hits the core of the attached

solid torus 4 times.
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Large Manifolds

A 3-manifold M with a torus T ⊂ ∂M is large if H2(M, ∂M − T ) 6= 0.

In particular, M is large if ∂M is not one or two tori.

Define
∆∗(X1,X2) = max{∆(α1, α2)| there is a large hyperbolic 3-manifold
M and slopes α1, α2 on some torus component of ∂M , such that
M(αi) is of type Xi, i = 1,2}.

∆ S D A T

S 1 0 2 3

D 1 2 2

A 5 5

T 8

∆∗ S D A T

S 0 0 1 1

D 1 2 1

A 4 4

T 4
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Manifold with boundary a union of tori

Define

∆k(X1,X2) = max{∆(α1, α2)| there is a hyperbolic 3-manifold M such

that ∂M is a disjoint union of k tori, and slopes α1, α2 on some torus

component of ∂M , such that M(αi) is of type Xi, i = 1,2}.

∆ S D A T

S 1 0 2 3

D 1 2 2

A 5 5

T 8

∆2 S D A T

S 1 0 2 2

D 1 2 2

A 5 5

T 5

∆3 S D A T

S 0 0 1 1

D 0 1 1

A 3 3

T 3

35



∆k(k ≥ 4) S D A T

S 0 0 1 1

D 1 1 1

A 2 2

T 2
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Research Aim

M : hyperbolic −→ M(α) : not hyperbolic for finitely many slopes

Such slopes are called exceptional slopes.

Project. How many exceptional slopes?

Example. The figure-8 knot exterior has 10 exceptional slopes.

Conjecture (Gordon). There are at most 10 exceptional slopes for

any hyperbolic 3-manifold.
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Let M be a hyperbolic 3-manifold with a torus boundary component

T . Define

E(M ;T ) = E(M) = {α ⊂ T | M(α) is not hyperbolic }

Then Gordon’s conjecture is reformulated as follows.

Conjecture. |E(M)| ≤ 10. Moreover, |E(M)| ≤ 8 if M is not the

figure-8 knot exterior.
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Double branched covering and Rational tangles
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The figure-8 knot exterior and exceptional slopes

Let M be the exterior of the figure-8 knot.

Then E(M) = {−4,−3,−2,−1,0,1,2,3,4,1/0}

Since the figure-8 knot is amphicheiral, M(r) ∼= M(−r).
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∆ ≤? S D A T

S 1 0 2 3

D 1 2 2

A 5 5

T 8

Upper bounds for ∆

Conjecture. |E(M)| ≤ 10. Moreover, |E(M)| ≤ 8 if M is not the

figure-8 knot exterior.

∆ ≤? 0 1 2 3 4 5 6 7 8

♯{slopes} ≤? 1 3 4 6 6 8 8 10 12
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Theorem (Agol, Lackenby, 2000).Let M be a hyperbolic 3-manifold

with ∂M a single torus. Then |E(M)| ≤ 12.

What if ∂M is not a single torus?

Suppose that M has a torus boundary component T and at least

one other boundary component.
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Examples

For hyperbolic 3-manifolds M with at least two boundary components,

the maximal observed value for |E(M)| is 6.

The following links are the Whitehead link, the Whitehead sister link,

the 2-bridge link associated to 3/10 in Conway’s notation, and the

Berge link.

Theorem (Martelli-Petronio). Their exteriors have exactly 6 excep-

tional slopes.
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Theorem (Lee, 2007). Let M be a hyperbolic 3-manifold with one

torus boundary component and at least one other boundary compo-

nent. Then

|E(M)| ≤ 6.

Moreover, any two exceptional slopes have mutual distance no larger

than 4 unless M is the Whitehead sister link exterior.
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Magic manifold

The exterior of the following link is called the magic manifold.

Exceptional slopes = {−3,−2,−1,0,1/0}.
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Theorem (Lee and Teragaito). Let M be a hyperbolic 3-manifold

with ∂M a union of at least 4 tori. Then

|E(M)| ≤ 4.
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Dehn surgeries on knots in S3

Conjecture. Let K be a hyperbolic knot in S3. Then any excep-

tional Dehn surgery slope r is either (a) integral, or (b) half-integral

and K(r) is toroidal.

L(K) = {r ∈ E(K)|K(r) is a lens space}

S(K) = {r ∈ E(K)|K(r) is a small Seifert fiber space}

T (K) = {r ∈ E(K)|K(r) is toroidal}

It is conjectured that

E(K) = L(K) ∪ S(K) ∪ T (K).
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Cable knots

A cable knot is a satellite knot obtained by starting the satellite con-

struction with a torus knot
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Every cable knot admits a reducing Dehn surgery.
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Cabling conjecture. If a manifold obtained by Dehn surgery on a

knot K ⊂ S3 is reducible, then K is a cable knot.

Known for :

- Satellite knots (Scharlemann)

- Alternating knots (Menasco-Thistlethwaite)

- Knots with at most 4 bridges (Hoffman)

- Symmetric knots (Eudave-Muñoz, Luft and Zhang,..., Hayashi and

Shimokawa)

- Knots with at most 10 crossings (Brittenham)

Weak cabling conjecture. If a manifold obtained by Dehn surgery

on a knot K ⊂ S3 is reducible, then it is a composite manifold with

only two summands.
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Property R Conjecture

Conjecture. If K 6= O, then K(r) 6= S1 × S2 for any slope r.

53



Theorem (Gabai, 1987). The conjecture is true.

He solved this problem by using the sutured manifold theory.

54



Knot Complement Problem

Problem. Are knots in S3 are determined by their complements?
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Theorem (Gordon and Luecke, 1989). Yes.

In fact, they showed the following, using a combinatorial technique.

Theorem. If K 6= O, then K(r) 6= S3 for any slope r 6= 1/0.

Property P Conjecture. π1(K(r)) 6= 1 if K 6= O and r 6= 1/0.
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Theorem (Kronheimer and Mrowka, Ozsvath and Szabo, 2004).

Property P Conjecture is true.

They used Heegaard Floer Homology Theory to prove the following.

Theorem. If K 6= O, then K(r) 6= L(2,1), L(3,1), L(4,1) for any slope

r.

Remark. A Lens space of order 5 is obtained by a Dehn surgery on a

nontrivial knot.

57



Theorem (Hirasawa and Shimokawa).Let K be a nontrivial strongly

invertible knot. Then no Dehn surgery on K can yield L(2p,1) for

any integer p.

Problem (Teragaito). K(r) 6= L(4n,2n ± 1) if K is a hyperbolic

knot? (Known for any integer n 6= 4 : Tange)
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(−2,3,7)-pretzel knot and exceptional surgery slopes

Exceptional slopes : 16,17,18,37/2,19,20,1/0

- S3 : 1/0

- Lens space : 18,19

- Small Seifert fiber space : 17

- Toroidal manifold : 16,37/2,20
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Berge’s construction

Let W1 ∪ W2 be a genus 2 Heegaard splitting of S3.

Let K ⊂ ∂W1 = ∂W2 be a knot such that Wi ∪ H(K) is a solid torus.

Then K(r) is a lens space for some integral slope r.

Conjecture. If a knot K admits a lens space surgery, then K is a

Berge’s knot.
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Lens space surgeries and genera of knots

Theorem (Culler, Gordon, Luecke, and Shalen). Let K be a knot

in S3 which is not a torus knot. If π1(K(r)) is cyclic, then r is an

integral slope.

Conjecture (Goda and Teragaito). Let K be a hyperbolic knot in

S3. If K(r) is a lens space, then K is fibered and 2g(K) + 8 ≤ |r| ≤

4g(K) − 1.

Theorem (Rasmussen). Suppose that K is a nontrivial knot which

admits a lens space surgery of slope r. Then |r| ≤ 4g(K) + 3.
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Toroidal Dehn surgeries

Theorem (Gordon and Luecke). If a hyperbolic knot K admits a

toroidal surgery of slope r, then r is either integral or half-integral.

(r = n or n/2 for some integer n.)

Eudave-Muñoz gave infinitely many hyperbolic knots k(l, m, n, p) which

admits a half-integral toroidal surgery.
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Other known results

Theorem (Boyer and Zhang).

• If K(r) is toroidal Seifert fibered, then r is integral.

• If a 2-bridge knot K admits a toroidal surgery slope r, then r ∈ 4Z.

Theorem (Boyer and Zhang, Patton). If an alternating knot K

admits a toroidal surgery slope r, then r ∈ 4Z.

Theorem (Brittenham and Wu). Classification of Dehn surgeries

on 2-bridge knots. (toroidal surgery ⇒ genus one or Klein bottle

surgery)
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Eudave-Muñoz knots

• strongly invertible

• tunnel number one

• The core of the attached solid torus hits the essential torus twice

(minimally).

• K(r) contains a unique essential torus (up to isotopy).

Theorem (Gordon and Luecke). If K(n/2) is toroidal, then K is a

Eudave-Muñoz knot.
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Integral toroidal surgeries

K : a hyperbolic knot such that K(r) is toroidal (r ∈ Z)

• strongly invertible?

No. (Genus one knots which are not strongly invertible)

• tunnel number one?

Arbitrary high! (Eudave-Muñoz and Luecke)

• How many times (minimally) does the core of the attached solid

torus hit an essential torus?

Arbitrary many! (Osoinach)

• How many non-isotopic essential tori in K(r)?

Unsolved.
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Conjecture (Eudave-Muñoz). Any hyperbolic knot has at most 3

toroidal surgery slopes.

examples

The figure-8 knot : −4,0,4

The (−2,3,7)-pretzel knot : 16,37/2,20
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Toroidal surgeries and genera of knots

Conjecture (Teragaito). If a hyperbolic knot K admits a toroidal

surgery of slope r, then |r| ≤ 4g(K).

Known for :

-genus one knots (Teragaito)

-alternating knots (Teragaito)

-genus two knots (Lee)

Theorem (Ichihara). |r| < 3 · 27/4g(K).

Known : |r| ≤ 6g(K) − 3.
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Seifert fibered surgeries

Not so much is known.

Conjecture (Eudave-Muñoz). Any Seifert fibered Dehn surgery on

a hyperbolic knot is integral.

Conjecture (Motegi). If K(r) is a Seifert fiber space, then there

exists a knot c in S3 disjoint from K such that c is unknotted and

becomes a Seifert fiber in K(r). (The knot c is called a seiferter.)

Known : If an r-surgery on K yielding a Seifert fiber space for some

rational number r has a seiferter, then r is integral, except when K

is a torus knot or a cable of a torus knot.
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Examples

(1) figure-eight knot

E(K) = {0,±1,±2,±3,±4,∞}

(2) (−2,3,7)-pretzel knot

E(K) = {16,17,18,37/2,19,20,∞}
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More examples (Wu)

Conjecture (Teragaito). Integral exceptional slopes are consecu-

tive. Moreover, integral toroidal slopes appear at the border, except

figure-eight knot.
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Theorem. (Cyclic Surgery Theorem) If a hyperbolic knot has two

lens spaces surgery slopes, then they are consecutive.

Conjecture. If a hyperbolic knot has two lens spaces surgery slopes

r and r + 1, then 2r+1
2 is a toroidal slope.
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Laminations

A lamination λ on a 3-manifold M is a decomposition of a closed

subset of M into surfaces called leaves so that M is covered by charts

of the form I2 × I where the leaves pass through a chart in slice of

the form I2 × {pt}.
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Essential laminations

The lamination λ is essential if no leaf is a sphere or a torus bounding

a solid torus, Mλ is irreducible and ∂Mλ is both incompressible and

end-incompressible in Mλ.
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Branched surfaces

A lamination λ is carried by B if it can be isotoped into N(B) every-

where transverse to an I-foliation V of N(B). It is fully carried if it

intersects every fiber of V.
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Essential branched surfaces

A closed branched surface B in a ∂-irreducible 3-manifold M is essen-

tial if it satisfies the following conditions.

1. B has no disks of contact.

2. ∂hN(B) is incompressible in E(B) = M − IntN(B).

3. There are no monogons in E(B).

4. No component of ∂hN(B) is a sphere.

5. E(B) is irreducible.

6. B contains no Reeb branched surface.

7. B fully carries a lamination.
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Theorem (Gabai and Oertel). λ is an essential lamination if and

only if it is fully carried by an essential branched surface.

Theorem (Gabai and Oertel). If a compact orientable 3-manifold

contains an essential lamination, then its universal cover is homeo-

morphic to R3.
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Persistently laminar knots

A knot is persistently laminar if its complement contains an essential

lamination and the lamination remains essential under all nontrivial

Dehn surgeries.

Persistently laminar knots have the strong Property P and satisfies

the Cabling Conjecture.
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All composite knots are persistently laminar.

Theorem (Delman). All non-torus 2-bridge knots are persistently

laminar.
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Brittenham showed that any knot having the following tangle as its

part is persistently laminar.
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Applications of Dehn surgery theory

For a knot K in S3,

u(K) = min. # of self intersections needed to change K to O

Theorem (Gordon and Luecke). The knots K with cr(K) ≤ 10 and

u(K) = 1 are completely determined.
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K = O

D : a disk in S3 such that ∂D ∩ K = ∅ and (min.|IntD ∩ K|) ≥ 2

Kn : a knot obtained from K by performing 1/n-surgery on ∂D.

(It is known that if (min.|IntD ∩ K|) = 2, then Kn is prime.)

Theorem (Hayashi and Motegi). If Kn is composite, then n = ±1.
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