Dehn fillings on 3-manifolds

January 27~28, 2008

Sangyop Lee

References

- C. McA. Gordon, *Dehn filling: a survey*, Knot theory (Warsaw, 1995), 129–144, Banach Center Publ., 42, Polish Acad. Sci., Warsaw, 1998.
- C. McA. Gordon, *Small surfaces and Dehn filling*, Proceedings of the Kirbyfest, Geom. Topol. Monogr. **2** (1998), 177–199.
- S. Boyer, Dehn surgery on knots, Chapter 4 of the Handbook of Geometric Topology, R.J. Daverman, R.B. Sher, ed., Amsterdam, Elsevier, 2002.

Machineries for Dehn surgery theory

Dehn fillings

M is a compact, connected, orientable 3-manifold with a torus boundary component T.

 $M(\alpha) = M \cup_f V$

Slopes

The *slope* of an essential circle on T is its isotopy class $(T \subset \partial M)$. Let α, β be two slopes on T.

 $\Delta(\alpha,\beta) :=$ minimal geometric intersection number of α and β .

Dehn surgeries = deleting + filling

 $L(\alpha_1, \alpha_2) = M_L \cup_f (V_1 \cup V_2)$

Parameterizing slopes

$$\begin{split} &K: \text{ a knot in } S^3, \ E(K) = S^3 - \operatorname{int} N(K) \\ &\mu, \lambda: \text{ meridian and longitude } \subset \partial E(K) \\ &\alpha: \text{ an essential simple closed curve in } \partial E(K) \\ &\alpha \sim m\mu + l\lambda \text{ for some coprime integers } m, l \\ &\{\text{slopes}\} \leftrightarrow \mathbb{Q} \cup \{1/0\} \\ &\alpha \leftrightarrow m/l \end{split}$$

Realizing 3-manifolds by Dehn surgery

A set of surgery data $(L; \alpha_1, \ldots, \alpha_n)$: a link $L = K_1 \cup \ldots \cup K_n$ together with a slope α_i for each component K_i .

 $L(\alpha_1, \ldots, \alpha_n)$ = the manifold obtained by performing the Dehn surgeries prescribed the surgery data $(L; \alpha_1, \ldots, \alpha_n)$.

Theorem (Lickorish, Wallace, 1960). Every closed connected orientable 3-manifold M is homeomorphic to $L(\alpha_1, \ldots, \alpha_n)$ for some ncomponent link L in S^3 .

Essential surfaces

A 2-sphere S in M is *essential* if S does not bound a 3-ball in M (and M is called *reducible*). If M is not reducible, M is called *irreducible*.

e.g.) • $S = S^2 \times \{ pt \} \subset S^2 \times S^1$

- $S = S^2 \times \{pl\} \subseteq S^2 \times S^2$
- S : a decomposing sphere in $M_1 \# M_2$

 $F(\subset M, \ncong S^2)$ is *compressible* if $\exists D$ in M such that $D \cap F = \partial D$ is not contractible in F. Otherwise, *incompressible*.

A properly embedded surface $F(\neq S^2)$ in M is *essential* if incompressible and not parallel into ∂M . A 3-manifold X is said to be *prime* if $X = P # Q \Rightarrow P = S^3$ or $Q = S^3$.

Prime Decompositon Theorem (Kneser, Milnor). Any compact orientable 3-manifold M has a prime decomposition, i.e. $M = P_1 \# \cdots \# P_n$ (P_i 's are prime).

Torus Decomposition Theorem (Jaco and Shalen, Johannson). Any irreducible 3-manifold M contains a finite collection of disjoint incompressible tori T_1, \ldots, T_n such that each component of $M-IntN(T_1 \cup \ldots \cup T_n)$ is either Seifert fibered or atoroidal.

Topological rigidity of Haken 3-manifolds

A *Haken* 3-*manifold* is a compact irreducible 3-manifold that contains an incompressible surface.

Theorem (Waldhausen). Haken 3-manifolds are determined up to homeomorphism by their fundamental groups.

cf. $L(5,1) \ncong L(5,2)$

Small Seifert Fiber Spaces

Every small fiber space can be obtained from $P \times S^1$ by suitably performing Dehn filling three times, where P is a pair of pants.

Background(Thurston's work)

A compact orientable 3-manifold M is *hyperbolic* if M with its boundary tori removed has a finite volume complete hyperbolic structure.

Theorem (Hyperbolic Dehn Surgery Theorem). If M is a hyperbolic 3-manifold with a torus boundary component T, then $M(\alpha)$ are hyperbolic for all but finitely many slopes α on T.

Theorem (Geometrization Theorem for Haken manifolds). A compact 3-manifold with non-empty boundary is not hyperbolic if and only if it is reducible(S), boundary-reducible (D), annular (A), or toroidal (T).

Geometrization Conjecture A closed 3-manifold is not hyperbolic if and only if it is reducible, toroidal, or a small Seifert fiber space.

Geometrization Theorem for Haken manifolds and **Geometrization Conjecture**

Known results

$\Delta \leq ?$	S	\mathcal{D}	\mathcal{A}	\mathcal{T}
S	1	0	2	3
\mathcal{D}		1	2	2
\mathcal{A}			5	5
T				8

Upper bounds for Δ

For example, $\Delta(S,T) \leq 3$ means:

Given a hyperbolic manifold M, if $M(\alpha), M(\beta)$ each contain an essen-

tial sphere and an essential torus, then $\Delta(\alpha, \beta) \leq 3$ [Oh, Wu].

Boyer and Zhang's example; $\Delta(S,T) = 3$

Theorem (Gordon and Luecke, 1996). $(\Delta(S,S) \leq 1)$ Let M be a hyperbolic 3-manifold with a torus boundary component T. If α, β are two slopes on T such that both $M(\alpha)$ and $M(\beta)$ are reducible, then $\Delta(\alpha, \beta) \leq 1$.

- $\Delta(\mathcal{S},\mathcal{S}) \leq$ 5; Gordon and Litherland, 1984
- $\Delta(\mathcal{S},\mathcal{S}) \leq$ 2; Wu, 1992
- $\Delta(\mathcal{S},\mathcal{S}) \leq$ 1; Gordon and Luecke, 1996
- $\Delta(S,S) \leq 1$; Lee, Oh, and Teragaito, 2006, a simple proof

We prove the following theorem.

Theorem. $\Delta(S, S) \leq 3$.

Assume for contradiction that $\Delta(\alpha, \beta) \geq 4$.

 V_{α}, V_{β} : attached solid tori in $M(\alpha), M(\beta)$

 $\widehat{P} \subset M(\alpha), \ \widehat{Q} \subset M(\beta)$: essential spheres

We may assume $\widehat{P} \cap V_{\alpha} = u_1 \cup \ldots \cup u_p$: meridian disks of V_{α} $\widehat{Q} \cap V_{\beta} = v_1 \cup \ldots \cup v_q$: meridian disks of V_{β}

We assume that \hat{P}, \hat{Q} had been chosen so that p, q are minimal.

Let $P = \hat{P} \cap M$ and $Q = \hat{Q} \cap M$.

Then P and Q are incompressible and ∂ -incompressible.

Isotope P or Q in M so that $P \pitchfork Q$.

The arc components of $P \cap Q$ define two labelled graphs G_P and G_Q . No trivial edge by ∂ -incompressibility.

Orient ∂P so that all components of ∂P are homologous in $\partial V_{\alpha} = T \subset \partial M$.

21

Give a sign to each edge of G_P .

Similarly for G_Q .

Parity Rule

An edge is positive in one graph if and only if it is negative in the other.

Lemma. Any family of parallel negative edges in G_P contains at most q-1 edges.

Proof. Assume G_P contains q parallel negative edges (assume q = 12).

A neighborhood of $A \cup B \cup C \cup D \cup T$ in M is a cable space. This is impossible, since M is hyperbolic.

Scharlemann cycles and extended Scharlemann cycles

Scharlemann cycle

Extended Scharlemann cycle

Punctured lens space

Lemma. Any two Scharlemann cycles in G_P (resp. G_Q) have the same label pair.

Lemma. No extended Scharlemann cycle.

Lemma. Any family of parallel positive edges in G_P contains at most q/2 + 1 edges. If q is odd, then it contains at most (q + 1)/2 edges.

Proof. Assume G_P contains q/2 + 2 parallel positive edges (assume q = 12).

27

Reduced graph

Let \overline{G}_P denote the *reduced graph* of G_P , i.e., \overline{G}_P is obtained from G_P by amalgamating each family of parallel edges into a single edge.

Lemma. Let u_x be a vertex of G_P such that x is not a label of a Scharlemann cycle in G_Q . Then G_P contains at most 3q - 6 negative edges incident to u_x .

Proof. Assume for contradiction that G_P contains more than 3q - 6 negative edges incident to u_x . Let $G_Q^+(x)$ be the subgraph of G_Q consisting of all positive x-edges. Let V, E, F be the number of vertices, edges, and disk faces of $G_Q^+(x)$, respectively. Then V = q, E > 3q - 6, and

$$V - E + F \ge V - E + \sum_{f: \text{faces of } G_Q^+(x)} \chi(f) = \chi(\hat{Q}) = 2$$

Since G_Q contains no extended Scharlemann cycles, every disk face of $G_Q^+(x)$ has at least 3 sides. So, $2E \ge 3F \ge 3(E - V + 2)$, which yields $E \le 3V - 6 = 3q - 6$. This contradicts our assumption E > 3q - 6.

Lemma. Any vertex of \overline{G}_P has valence at least 5.

Proof. Note that $q - 1 \ge q/2 + 1$ if $q \ge 4$ and that $q - 1 \ge (q + 1)/2$ if q = 3. Hence any family of parallel edges in G_P contains at most q - 1. Therefore if some vertex of \overline{G}_P has valence at most 4, then it has valence at most $4(q - 1) = 4q - 4(< \Delta \cdot q)$ in G_P . This is impossible.

Lemma. \overline{G}_P has at least 3 vertices of valence 5.

Proof. Let V, E, F be the number of vertices, edges, and disk faces of \overline{G}_P , respectively. Then $V = q \ge 3, 2E \ge 3F$, and $F \ge E - V + 2$. Combining the last two inequalities, we obtain

$$3V-6 \geq E.$$

Suppose that all but two vertices of \overline{G}_P has valence at least 6. Then $2E \ge 6(V-2) + 5 \times 2$ or

$$E \geq 3V - 1.$$

Two inequalities above conflict.

Choose a vertex u_x of valence 5 in \overline{G}_P such that x is not a label of a Scharlemann cycle in G_Q . Since G_P contains at most 3q-6 negative edges incident to u_x , \overline{G}_P contains at least 2 positive edges incident to u_x . Let N be the number of edge endpoints of G_P at u_x . Then

 $3(q-1) + 2(q/2+1) = 4q - 1 \ge N \ge \Delta \cdot q$, or $3(q-1) + 2((q+1)/2) = 4q - 2 \ge N \ge \Delta \cdot q$. Both are impossible, completing the proof of our theorem. **Conjecture.** Let M be a hyperbolic 3-manifold with a torus boundary component T. Suppose that there are two distinct slopes α, β on T such that both $M(\alpha)$ and $M(\beta)$ are reducible. Then one of $M(\alpha)$ and $M(\beta)$ contains a reducing sphere which hits the core of the attached solid torus 4 times.

Large Manifolds

A 3-manifold M with a torus $T \subset \partial M$ is large if $H_2(M, \partial M - T) \neq 0$.

In particular, M is large if ∂M is not one or two tori.

Define

 $\Delta^*(\mathcal{X}_1, \mathcal{X}_2) = \max\{\Delta(\alpha_1, \alpha_2) | \text{ there is a large hyperbolic 3-manifold } M \text{ and slopes } \alpha_1, \alpha_2 \text{ on some torus component of } \partial M, \text{ such that } M(\alpha_i) \text{ is of type } \mathcal{X}_i, i = 1, 2\}.$

Δ	S	\mathcal{D}	$ \mathcal{A} $	\mathcal{T}]	Δ^*	S	\mathcal{D}	$ \mathcal{A} $
S	1	0	2	3		S	0	0	1
\mathcal{D}		1	2	2		\mathcal{D}		1	2
$ \mathcal{A} $			5	5		\mathcal{A}			4
\mathcal{T}				8		\mathcal{T}			

1

4

4

Manifold with boundary a union of tori

Define

 $\Delta^k(\mathcal{X}_1, \mathcal{X}_2) = \max\{\Delta(\alpha_1, \alpha_2) | \text{ there is a hyperbolic 3-manifold } M \text{ such that } \partial M \text{ is a disjoint union of } k \text{ tori, and slopes } \alpha_1, \alpha_2 \text{ on some torus component of } \partial M, \text{ such that } M(\alpha_i) \text{ is of type } \mathcal{X}_i, i = 1, 2\}.$

Δ	S	\mathcal{D}	\mathcal{A}	\mathcal{T}	4
\mathcal{S}	1	0	2	3	
\mathcal{D}		1	2	2	
$ \mathcal{A} $			5	5	
\mathcal{T}				8	

Δ^2	S	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	1	0	2	2
\mathcal{D}		1	2	2
\mathcal{A}			5	5
T				5

Δ^3	S	\mathcal{D}	\mathcal{A}	Τ
S	0	0	1	1
\mathcal{D}		0	1	1
$ \mathcal{A} $			3	3
\mathcal{T}				3
$\Delta^k (k \ge 4)$	S	\mathcal{D}	\mathcal{A}	\mathcal{T}
----------------------	---	---------------	---------------	---------------
S	0	0	1	1
\mathcal{D}		1	1	1
\mathcal{A}			2	2
T				2

Research Aim

M: hyperbolic $\longrightarrow M(\alpha)$: not hyperbolic for finitely many slopes

Such slopes are called *exceptional slopes*.

Project. How many exceptional slopes?

Example. The figure-8 knot exterior has 10 exceptional slopes.

Conjecture (Gordon). There are at most 10 exceptional slopes for any hyperbolic 3-manifold.

Let M be a hyperbolic 3-manifold with a torus boundary component T. Define

 $\mathcal{E}(M;T) = \mathcal{E}(M) = \{ \alpha \subset T | M(\alpha) \text{ is not hyperbolic } \}$

Then Gordon's conjecture is reformulated as follows.

Conjecture. $|\mathcal{E}(M)| \leq 10$. Moreover, $|\mathcal{E}(M)| \leq 8$ if *M* is not the figure-8 knot exterior.

Double branched covering and Rational tangles

The figure-8 knot exterior and exceptional slopes

Let M be the exterior of the figure-8 knot. Then $\mathcal{E}(M) = \{-4, -3, -2, -1, 0, 1, 2, 3, 4, 1/0\}$ Since the figure-8 knot is amphicheiral, $M(r) \cong M(-r)$.

boundary slope -4 $\Delta(4,-4)=8$

$\Delta \leq ?$	S	\mathcal{D}	\mathcal{A}	\mathcal{T}
S	1	0	2	3
\mathcal{D}		1	2	2
\mathcal{A}			5	5
T				8

Upper bounds for Δ

Conjecture. $|\mathcal{E}(M)| \leq 10$. Moreover, $|\mathcal{E}(M)| \leq 8$ if *M* is not the figure-8 knot exterior.

$\Delta \leq ?$	0	1	2	3	4	5	6	7	8
$\sharp{slopes} \leq ?$	1	3	4	6	6	8	8	10	12

Theorem (Agol, Lackenby, 2000). Let M be a hyperbolic 3-manifold with ∂M a single torus. Then $|\mathcal{E}(M)| \leq 12$.

What if ∂M is not a single torus?

Suppose that M has a torus boundary component T and at least one other boundary component.

Examples

For hyperbolic 3-manifolds M with at least two boundary components, the maximal observed value for $|\mathcal{E}(M)|$ is 6.

The following links are the Whitehead link, the Whitehead sister link, the 2-bridge link associated to 3/10 in Conway's notation, and the Berge link.

Theorem (Martelli-Petronio). Their exteriors have exactly 6 exceptional slopes.

Theorem (Lee, 2007). Let *M* be a hyperbolic 3-manifold with one torus boundary component and at least one other boundary component. Then

$|\mathcal{E}(M)| \le 6.$

Moreover, any two exceptional slopes have mutual distance no larger than 4 unless M is the Whitehead sister link exterior.

Magic manifold

The exterior of the following link is called the *magic manifold*.

Exceptional slopes = $\{-3, -2, -1, 0, 1/0\}$.

Theorem (Lee and Teragaito). Let M be a hyperbolic 3-manifold with ∂M a union of at least 4 tori. Then

$|\mathcal{E}(M)| \leq 4.$

Dehn surgeries on knots in S^3

Conjecture. Let K be a hyperbolic knot in S^3 . Then any exceptional Dehn surgery slope r is either (a) integral, or (b) half-integral and K(r) is toroidal.

 $\mathcal{L}(K) = \{r \in \mathcal{E}(K) | K(r) \text{ is a lens space} \}$ $\mathcal{S}(K) = \{r \in \mathcal{E}(K) | K(r) \text{ is a small Seifert fiber space} \}$ $\mathcal{T}(K) = \{r \in \mathcal{E}(K) | K(r) \text{ is toroidal} \}$

It is conjectured that

$$\mathcal{E}(K) = \mathcal{L}(K) \cup \mathcal{S}(K) \cup \mathcal{T}(K).$$

Cable knots

A cable knot is a satellite knot obtained by starting the satellite construction with a torus knot

Every cable knot admits a reducing Dehn surgery.

Cabling conjecture. If a manifold obtained by Dehn surgery on a knot $K \subset S^3$ is reducible, then K is a cable knot.

Known for :

- Satellite knots (Scharlemann)
- Alternating knots (Menasco-Thistlethwaite)
- Knots with at most 4 bridges (Hoffman)
- Symmetric knots (Eudave-Muñoz, Luft and Zhang,..., Hayashi and Shimokawa)
- Knots with at most 10 crossings (Brittenham)

Weak cabling conjecture. If a manifold obtained by Dehn surgery on a knot $K \subset S^3$ is reducible, then it is a composite manifold with only two summands.

Property R Conjecture

Conjecture. If $K \neq O$, then $K(r) \neq S^1 \times S^2$ for any slope r.

Theorem (Gabai, 1987). The conjecture is true.

He solved this problem by using the sutured manifold theory.

Knot Complement Problem

Problem. Are knots in S^3 are determined by their complements?

Theorem (Gordon and Luecke, 1989). Yes.

In fact, they showed the following, using a combinatorial technique.

Theorem. If $K \neq O$, then $K(r) \neq S^3$ for any slope $r \neq 1/0$.

Property P Conjecture. $\pi_1(K(r)) \neq 1$ if $K \neq O$ and $r \neq 1/0$.

Theorem (Kronheimer and Mrowka, Ozsvath and Szabo, 2004). *Property P Conjecture is true.*

They used Heegaard Floer Homology Theory to prove the following.

Theorem. If $K \neq O$, then $K(r) \neq L(2, 1), L(3, 1), L(4, 1)$ for any slope *r*.

Remark. A Lens space of order 5 is obtained by a Dehn surgery on a nontrivial knot.

Theorem (Hirasawa and Shimokawa). Let K be a nontrivial strongly invertible knot. Then no Dehn surgery on K can yield L(2p, 1) for any integer p.

Problem (Teragaito). $K(r) \neq L(4n, 2n \pm 1)$ if K is a hyperbolic knot? (Known for any integer $n \neq 4$: Tange)

(-2,3,7)-pretzel knot and exceptional surgery slopes

Exceptional slopes : 16, 17, 18, 37/2, 19, 20, 1/0

- S^3 : 1/0
- Lens space : 18,19
- Small Seifert fiber space : 17
- Toroidal manifold : 16,37/2,20

Berge's construction

Let $W_1 \cup W_2$ be a genus 2 Heegaard splitting of S^3 .

Let $K \subset \partial W_1 = \partial W_2$ be a knot such that $W_i \cup H(K)$ is a solid torus.

Then K(r) is a lens space for some integral slope r.

Conjecture. If a knot K admits a lens space surgery, then K is a Berge's knot.

Lens space surgeries and genera of knots

Theorem (Culler, Gordon, Luecke, and Shalen). Let K be a knot in S^3 which is not a torus knot. If $\pi_1(K(r))$ is cyclic, then r is an integral slope.

Conjecture (Goda and Teragaito). Let *K* be a hyperbolic knot in S^3 . If K(r) is a lens space, then *K* is fibered and $2g(K) + 8 \le |r| \le 4g(K) - 1$.

Theorem (Rasmussen). Suppose that K is a nontrivial knot which admits a lens space surgery of slope r. Then $|r| \le 4g(K) + 3$.

Toroidal Dehn surgeries

Theorem (Gordon and Luecke). If a hyperbolic knot K admits a toroidal surgery of slope r, then r is either integral or half-integral. (r = n or n/2 for some integer n.)

Eudave-Muñoz gave infinitely many hyperbolic knots k(l, m, n, p) which admits a half-integral toroidal surgery.

Other known results

Theorem (Boyer and Zhang).

- If K(r) is toroidal Seifert fibered, then r is integral.
- If a 2-bridge knot K admits a toroidal surgery slope r, then $r \in 4\mathbb{Z}$.

Theorem (Boyer and Zhang, Patton). If an alternating knot K admits a toroidal surgery slope r, then $r \in 4\mathbb{Z}$.

Theorem (Brittenham and Wu). Classification of Dehn surgeries on 2-bridge knots. (toroidal surgery \Rightarrow genus one or Klein bottle surgery)

Eudave-Muñoz knots

- strongly invertible
- tunnel number one
- The core of the attached solid torus hits the essential torus twice (minimally).
- K(r) contains a unique essential torus (up to isotopy).

Theorem (Gordon and Luecke). If K(n/2) is toroidal, then K is a Eudave-Muñoz knot.

Integral toroidal surgeries

- K: a hyperbolic knot such that K(r) is toroidal $(r \in \mathbb{Z})$
- strongly invertible?
 No. (Genus one knots which are not strongly invertible)
- tunnel number one? Arbitrary high! (Eudave-Muñoz and Luecke)
- How many times (minimally) does the core of the attached solid torus hit an essential torus? Arbitrary many! (Osoinach)
- How many non-isotopic essential tori in K(r)? Unsolved.

Conjecture (Eudave-Muñoz). Any hyperbolic knot has at most 3 toroidal surgery slopes.

examples

The figure-8 knot : -4, 0, 4

The (-2, 3, 7)-pretzel knot : 16, 37/2, 20

Toroidal surgeries and genera of knots

Conjecture (Teragaito). If a hyperbolic knot K admits a toroidal surgery of slope r, then $|r| \le 4g(K)$.

```
Known for :
-genus one knots (Teragaito)
-alternating knots (Teragaito)
-genus two knots (Lee)
```

Theorem (Ichihara). $|r| < 3 \cdot 2^{7/4} g(K)$.

Known : $|r| \le 6g(K) - 3$.

Seifert fibered surgeries

Not so much is known.

Conjecture (Eudave-Muñoz). Any Seifert fibered Dehn surgery on a hyperbolic knot is integral.

Conjecture (Motegi). If K(r) is a Seifert fiber space, then there exists a knot c in S^3 disjoint from K such that c is unknotted and becomes a Seifert fiber in K(r). (The knot c is called a *seiferter*.)

Known : If an r-surgery on K yielding a Seifert fiber space for some rational number r has a seiferter, then r is integral, except when K is a torus knot or a cable of a torus knot.

Examples

(1) figure-eight knot

$$\mathcal{E}(K) = \{0, \pm 1, \pm 2, \pm 3, \pm 4, \infty\}$$

$$T \ S \ S \ S \ T \ S \ S \ S \ T$$

$$-4 \ -3 \ -2 \ -1 \ 0 \ 1 \ 2 \ 3 \ 4$$

(2) (-2, 3, 7)-pretzel knot

70

More examples (Wu)

Conjecture (Teragaito). Integral exceptional slopes are consecutive. Moreover, integral toroidal slopes appear at the border, except figure-eight knot.
Theorem. (Cyclic Surgery Theorem) If a hyperbolic knot has two lens spaces surgery slopes, then they are consecutive.

Conjecture. If a hyperbolic knot has two lens spaces surgery slopes r and r + 1, then $\frac{2r+1}{2}$ is a toroidal slope.

$$\begin{array}{cccc}
L & T & L \\
\hline
+ & + & + \\
r & \frac{2r+1}{2} & r+1 \\
\end{array}$$

Laminations

A lamination λ on a 3-manifold M is a decomposition of a closed subset of M into surfaces called *leaves* so that M is covered by charts of the form $I^2 \times I$ where the leaves pass through a chart in slice of the form $I^2 \times \{\text{pt}\}$.

Essential laminations

The lamination λ is *essential* if no leaf is a sphere or a torus bounding a solid torus, M_{λ} is irreducible and ∂M_{λ} is both incompressible and end-incompressible in M_{λ} .

Branched surfaces

A lamination λ is *carried by* B if it can be isotoped into N(B) everywhere transverse to an I-foliation \mathcal{V} of N(B). It is *fully carried* if it intersects every fiber of \mathcal{V} .

Essential branched surfaces

A closed branched surface B in a ∂ -irreducible 3-manifold M is *essential* if it satisfies the following conditions.

- 1. *B* has no disks of contact.
- 2. $\partial_h N(B)$ is incompressible in E(B) = M IntN(B).
- 3. There are no monogons in E(B).
- 4. No component of $\partial_h N(B)$ is a sphere.
- 5. E(B) is irreducible.
- 6. *B* contains no Reeb branched surface.
- 7. *B* fully carries a lamination.

Theorem (Gabai and Oertel). λ is an essential lamination if and only if it is fully carried by an essential branched surface.

Theorem (Gabai and Oertel). If a compact orientable 3-manifold contains an essential lamination, then its universal cover is homeomorphic to \mathbb{R}^3 .

Persistently laminar knots

A knot is *persistently laminar* if its complement contains an essential lamination and the lamination remains essential under all nontrivial Dehn surgeries.

Persistently laminar knots have the strong Property P and satisfies the Cabling Conjecture.

All composite knots are persistently laminar.

Theorem (Delman). All non-torus 2-bridge knots are persistently laminar.

Brittenham showed that any knot having the following tangle as its part is persistently laminar.

Applications of Dehn surgery theory

For a knot K in S^3 , $u(K) = \min$. # of self intersections needed to change K to O

unknotting number 1 knot

Theorem (Gordon and Luecke). The knots K with $cr(K) \le 10$ and u(K) = 1 are completely determined.

K = O

D: a disk in S^3 such that $\partial D \cap K = \emptyset$ and $(\min | \operatorname{Int} D \cap K |) \ge 2$ K_n : a knot obtained from K by performing 1/n-surgery on ∂D . (It is known that if $(\min | \operatorname{Int} D \cap K |) = 2$, then K_n is prime.)

Theorem (Hayashi and Motegi). If K_n is composite, then $n = \pm 1$.

