Dehn fillings on 3-manifolds

January 27~28, 2008

Sangyop Lee

References

- C. McA. Gordon, Dehn filling: a survey, Knot theory (Warsaw, 1995), 129-144, Banach Center Publ., 42, Polish Acad. Sci., Warsaw, 1998.
- C. McA. Gordon, Small surfaces and Dehn filling, Proceedings of the Kirbyfest, Geom. Topol. Monogr. 2 (1998), 177-199.
- S. Boyer, Dehn surgery on knots, Chapter 4 of the Handbook of Geometric Topology, R.J. Daverman, R.B. Sher, ed., Amsterdam, Elsevier, 2002.

Machineries for Dehn surgery theory

Sutured Manifold Theory

Essential Lamination Theory

Dehn fillings

M is a compact, connected, orientable 3-manifold with a torus boundary component T.

$$
M(\alpha)=M \cup_{f} V
$$

Slopes

The slope of an essential circle on T is its isotopy class ($T \subset \partial M$). Let α, β be two slopes on T. $\Delta(\alpha, \beta):=$ minimal geometric intersection number of α and β.

Dehn surgeries $=$ deleting + filling

Parameterizing slopes

$K:$ a knot in $S^{3}, E(K)=S^{3}-\operatorname{int} N(K)$
$\mu, \lambda:$ meridian and longitude $\subset \partial E(K)$
α : an essential simple closed curve in $\partial E(K)$
$\alpha \sim m \mu+l \lambda$ for some coprime integers m, l
$\{$ slopes $\} \leftrightarrow \mathbb{Q} \cup\{1 / 0\}$
$\alpha \leftrightarrow m / l$

Realizing 3-manifolds by Dehn surgery

A set of surgery data $\left(L ; \alpha_{1}, \ldots, \alpha_{n}\right)$: a link $L=K_{1} \cup \ldots \cup K_{n}$ together with a slope α_{i} for each component K_{i}.
$L\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ the manifold obtained by performing the Dehn surgeries prescribed the surgery data ($L ; \alpha_{1}, \ldots, \alpha_{n}$).

Theorem (Lickorish, Wallace, 1960). Every closed connected orientable 3-manifold M is homeomorphic to $L\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ for some n component link L in S^{3}.

Essential surfaces

A 2-sphere S in M is essential if S does not bound a 3-ball in M (and M is called reducible). If M is not reducible, M is called irreducible.
e.g.)

- $S=S^{2} \times\{\mathrm{pt}\} \subset S^{2} \times S^{1}$
- S : a decomposing sphere in $M_{1} \# M_{2}$

$F\left(\subset M, \nexists S^{2}\right)$ is compressible if $\exists D$ in M such that $D \cap F=\partial D$ is not contractible in F. Otherwise, incompressible.

A properly embedded surface $F\left(\neq S^{2}\right)$ in M is essential if incompressible and not parallel into ∂M.

A 3-manifold X is said to be prime if $X=P \# Q \Rightarrow P=S^{3}$ or $Q=S^{3}$.

Prime Decompositon Theorem (Kneser, Milnor). Any compact orientable 3-manifold M has a prime decomposition, i.e. $M=$ $P_{1} \# \cdots \# P_{n}$ (P_{i} 's are prime).

Torus Decomposition Theorem (Jaco and Shalen, Johannson). Any irreducible 3-manifold M contains a finite collection of disjoint incompressible tori T_{1}, \ldots, T_{n} such that each component of $M-\operatorname{Int} N\left(T_{1} \cup\right.$ $\left.\ldots \cup T_{n}\right)$ is either Seifert fibered or atoroidal.

Topological rigidity of Haken 3-manifolds

A Haken 3-manifold is a compact irreducible 3-manifold that contains an incompressible surface.

Theorem (Waldhausen). Haken 3-manifolds are determined up to homeomorphism by their fundamental groups.
cf. $L(5,1) \not \neq L(5,2)$

Small Seifert Fiber Spaces

Every small fiber space can be obtained from $P \times S^{1}$ by suitably performing Dehn filling three times, where P is a pair of pants.

Background(Thurston's work)

A compact orientable 3-manifold M is hyperbolic if M with its boundary tori removed has a finite volume complete hyperbolic structure.

Theorem (Hyperbolic Dehn Surgery Theorem). If M is a hyperbolic 3-manifold with a torus boundary component T, then $M(\alpha)$ are hyperbolic for all but finitely many slopes α on T.

Theorem (Geometrization Theorem for Haken manifolds). A compact 3-manifold with non-empty boundary is not hyperbolic if and only if it is reducible (\mathcal{S}), boundary-reducible (\mathcal{D}), annular (\mathcal{A}), or toroidal (\mathcal{T}).

Geometrization Conjecture A closed 3-manifold is not hyperbolic if and only if it is reducible, toroidal, or a small Seifert fiber space.

Geometrization Theorem for Haken manifolds and Geometrization Conjecture

Known results

$\Delta \leq ?$	\mathcal{S}	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	1	0	2	3
\mathcal{D}		1	2	2
\mathcal{A}			5	5
\mathcal{T}				8

Upper bounds for Δ

For example, $\Delta(\mathcal{S}, \mathcal{T}) \leq 3$ means:
Given a hyperbolic manifold M, if $M(\alpha), M(\beta)$ each contain an essential sphere and an essential torus, then $\Delta(\alpha, \beta) \leq 3$ [Oh, Wu].

Boyer and Zhang's example; $\Delta(\mathcal{S}, \mathcal{T})=3$

Theorem (Gordon and Luecke, 1996). $(\Delta(\mathcal{S}, \mathcal{S}) \leq 1)$ Let M be a hyperbolic 3-manifold with a torus boundary component T. If α, β are two slopes on T such that both $M(\alpha)$ and $M(\beta)$ are reducible, then $\Delta(\alpha, \beta) \leq 1$.

- $\Delta(\mathcal{S}, \mathcal{S}) \leq 5 ;$ Gordon and Litherland, 1984
- $\Delta(\mathcal{S}, \mathcal{S}) \leq 2 ; \mathrm{Wu}, 1992$
- $\Delta(\mathcal{S}, \mathcal{S}) \leq 1 ;$ Gordon and Luecke, 1996
- $\Delta(\mathcal{S}, \mathcal{S}) \leq 1$; Lee, Oh, and Teragaito, 2006, a simple proof

We prove the following theorem.

Theorem. $\Delta(\mathcal{S}, \mathcal{S}) \leq 3$.

Assume for contradiction that $\Delta(\alpha, \beta) \geq 4$.
V_{α}, V_{β} : attached solid tori in $M(\alpha), M(\beta)$
$\widehat{P} \subset M(\alpha), \widehat{Q} \subset M(\beta):$ essential spheres

We may assume
$\widehat{P} \cap V_{\alpha}=u_{1} \cup \ldots \cup u_{p}:$ meridian disks of V_{α}
$\widehat{Q} \cap V_{\beta}=v_{1} \cup \ldots \cup v_{q}:$ meridian disks of V_{β}

We assume that \hat{P}, \widehat{Q} had been chosen so that p, q are minimal.
Let $P=\widehat{P} \cap M$ and $Q=\widehat{Q} \cap M$.
Then P and Q are incompressible and ∂-incompressible.
Isotope P or Q in M so that $P \pitchfork Q$.
The arc components of $P \cap Q$ define two labelled graphs G_{P} and G_{Q}. No trivial edge by ∂-incompressibility.

$$
\text { e.g. } \Delta=2, p=4, q=4
$$

Orient ∂P so that all components of ∂P are homologous in $\partial V_{\alpha}=$ $T \subset \partial M$.

Give a sign to each edge of G_{P}.

Similarly for G_{Q}.

Parity Rule

An edge is positive in one graph if and only if it is negative in the other.

Lemma. Any family of parallel negative edges in G_{P} contains at most $q-1$ edges.

Proof. Assume G_{P} contains q parallel negative edges (assume $q=12$).

A neighborhood of $A \cup B \cup C \cup D \cup T$ in M is a cable space. This is impossible, since M is hyperbolic.

Scharlemann cycles and extended Scharlemann cy-

 cles

Scharlemann cycle

Extended
Scharlemann cycle

Punctured lens space

Lemma. Any two Scharlemann cycles in G_{P} (resp. G_{Q}) have the same label pair.

Lemma. No extended Scharlemann cycle.
Lemma. Any family of parallel positive edges in G_{P} contains at most $q / 2+1$ edges. If q is odd, then it contains at most $(q+1) / 2$ edges.

Proof. Assume G_{P} contains $q / 2+2$ parallel positive edges (assume $q=12$).

Reduced graph

Let \bar{G}_{P} denote the reduced graph of G_{P}, i.e., \bar{G}_{P} is obtained from G_{P} by amalgamating each family of parallel edges into a single edge.

Lemma. Let u_{x} be a vertex of G_{P} such that x is not a label of a Scharlemann cycle in G_{Q}. Then G_{P} contains at most $3 q-6$ negative edges incident to u_{x}.

Proof. Assume for contradiction that G_{P} contains more than $3 q-6$ negative edges incident to u_{x}. Let $G_{Q}^{+}(x)$ be the subgraph of G_{Q} consisting of all positive x-edges. Let V, E, F be the number of vertices, edges, and disk faces of $G_{Q}^{+}(x)$, respectively. Then $V=q, E>3 q-6$, and

$$
V-E+F \geq V-E+\sum_{f: \text { faces of } G_{Q}^{+}(x)} \chi(f)=\chi(\widehat{Q})=2 .
$$

Since G_{Q} contains no extended Scharlemann cycles, every disk face of $G_{Q}^{+}(x)$ has at least 3 sides. So, $2 E \geq 3 F \geq 3(E-V+2)$, which yields $E \leq 3 V-6=3 q-6$. This contradicts our assumption $E>3 q-6$.

Lemma. Any vertex of \bar{G}_{P} has valence at least 5 .

Proof. Note that $q-1 \geq q / 2+1$ if $q \geq 4$ and that $q-1 \geq(q+1) / 2$ if $q=3$. Hence any family of parallel edges in G_{P} contains at most $q-1$. Therefore if some vertex of \bar{G}_{P} has valence at most 4 , then it has valence at most $4(q-1)=4 q-4(<\Delta \cdot q)$ in G_{P}. This is impossible.

Lemma. \bar{G}_{P} has at least 3 vertices of valence 5 .

Proof. Let V, E, F be the number of vertices, edges, and disk faces of \bar{G}_{P}, respectively. Then $V=q \geq 3,2 E \geq 3 F$, and $F \geq E-V+2$. Combining the last two inequalities, we obtain

$$
3 V-6 \geq E
$$

Suppose that all but two vertices of \bar{G}_{P} has valence at least 6. Then $2 E \geq 6(V-2)+5 \times 2$ or

$$
E \geq 3 V-1
$$

Two inequalities above conflict.

Choose a vertex u_{x} of valence 5 in \bar{G}_{P} such that x is not a label of a Scharlemann cycle in G_{Q}. Since G_{P} contains at most $3 q-6$ negative edges incident to u_{x}, \bar{G}_{P} contains at least 2 positive edges incident to u_{x}. Let N be the number of edge endpoints of G_{P} at u_{x}. Then

$3(q-1)+2(q / 2+1)=4 q-1 \geq N \geq \Delta \cdot q$, or
$3(q-1)+2((q+1) / 2)=4 q-2 \geq N \geq \Delta \cdot q$.
Both are impossible, completing the proof of our theorem.

Conjecture. Let M be a hyperbolic 3-manifold with a torus boundary component T. Suppose that there are two distinct slopes α, β on T such that both $M(\alpha)$ and $M(\beta)$ are reducible. Then one of $M(\alpha)$ and $M(\beta)$ contains a reducing sphere which hits the core of the attached solid torus 4 times.

Large Manifolds

A 3-manifold M with a torus $T \subset \partial M$ is large if $H_{2}(M, \partial M-T) \neq 0$.
In particular, M is large if ∂M is not one or two tori.
Define
$\Delta^{*}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)=\max \left\{\Delta\left(\alpha_{1}, \alpha_{2}\right) \mid\right.$ there is a large hyperbolic 3-manifold M and slopes α_{1}, α_{2} on some torus component of ∂M, such that $M\left(\alpha_{i}\right)$ is of type $\left.\mathcal{X}_{i}, i=1,2\right\}$.

Δ	\mathcal{S}	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	1	0	2	3
\mathcal{D}		1	2	2
\mathcal{A}			5	5
\mathcal{T}				8

Δ^{*}	\mathcal{S}	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	0	0	1	1
\mathcal{D}		1	2	1
\mathcal{A}			4	4
\mathcal{T}				4

Manifold with boundary a union of tori

Define
$\Delta^{k}\left(\mathcal{X}_{1}, \mathcal{X}_{2}\right)=\max \left\{\Delta\left(\alpha_{1}, \alpha_{2}\right) \mid\right.$ there is a hyperbolic 3-manifold M such that ∂M is a disjoint union of k tori, and slopes α_{1}, α_{2} on some torus component of ∂M, such that $M\left(\alpha_{i}\right)$ is of type $\left.\mathcal{X}_{i}, i=1,2\right\}$.

Δ	\mathcal{S}	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	1	0	2	3
\mathcal{D}		1	2	2
\mathcal{A}			5	5
\mathcal{T}				8

Δ^{2}	\mathcal{S}	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	1	0	2	2
\mathcal{D}		1	2	2
\mathcal{A}			5	5
\mathcal{T}				5

Δ^{3}	\mathcal{S}	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	0	0	1	1
\mathcal{D}		0	1	1
\mathcal{A}			3	3
\mathcal{T}				3

$\Delta^{k}(k \geq 4)$	\mathcal{S}	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	0	0	1	1
\mathcal{D}		1	1	1
\mathcal{A}			2	2
\mathcal{T}				2

Research Aim

$M:$ hyperbolic $\longrightarrow M(\alpha):$ not hyperbolic for finitely many slopes

Such slopes are called exceptional slopes.

Project. How many exceptional slopes?

Example. The figure-8 knot exterior has 10 exceptional slopes.

Conjecture (Gordon). There are at most 10 exceptional slopes for any hyperbolic 3-manifold.

Let M be a hyperbolic 3-manifold with a torus boundary component T. Define
$\mathcal{E}(M ; T)=\mathcal{E}(M)=\{\alpha \subset T \mid M(\alpha)$ is not hyperbolic $\}$

Then Gordon's conjecture is reformulated as follows.

Conjecture. $|\mathcal{E}(M)| \leq 10$. Moreover, $|\mathcal{E}(M)| \leq 8$ if M is not the figure-8 knot exterior.

Double branched covering and Rational tangles

$\Delta(\mathrm{p} / \mathrm{q}, \mathrm{r} / \mathrm{s})=\mathrm{ps}-\mathrm{qr}$

The figure-8 knot exterior and exceptional slopes

Let M be the exterior of the figure- 8 knot.
Then $\mathcal{E}(M)=\{-4,-3,-2,-1,0,1,2,3,4,1 / 0\}$
Since the figure-8 knot is amphicheiral, $M(r) \cong M(-r)$.

boundary slope 4

boundary slope -4

$\triangle \leq ?$	\mathcal{S}	\mathcal{D}	\mathcal{A}	\mathcal{T}
\mathcal{S}	1	0	2	3
\mathcal{D}		1	2	2
\mathcal{A}			5	5
\mathcal{T}				8

Upper bounds for Δ

Conjecture. $|\mathcal{E}(M)| \leq 10$. Moreover, $|\mathcal{E}(M)| \leq 8$ if M is not the figure-8 knot exterior.

$\Delta \leq ?$	0	1	2	3	4	5	6	7	8
$\sharp\{$ slopes $\} \leq ?$	1	3	4	6	6	8	8	10	12

Theorem (Agol, Lackenby, 2000). Let M be a hyperbolic 3-manifold with ∂M a single torus. Then $|\mathcal{E}(M)| \leq 12$.

What if ∂M is not a single torus?
Suppose that M has a torus boundary component T and at least one other boundary component.

Examples

For hyperbolic 3-manifolds M with at least two boundary components, the maximal observed value for $|\mathcal{E}(M)|$ is 6 .

The following links are the Whitehead link, the Whitehead sister link, the 2-bridge link associated to 3/10 in Conway's notation, and the Berge link.

Theorem (Martelli-Petronio). Their exteriors have exactly 6 exceptional slopes.

Theorem (Lee, 2007). Let M be a hyperbolic 3-manifold with one torus boundary component and at least one other boundary component. Then

$$
|\mathcal{E}(M)| \leq 6 .
$$

Moreover, any two exceptional slopes have mutual distance no larger than 4 unless M is the Whitehead sister link exterior.

Magic manifold

The exterior of the following link is called the magic manifold.

Exceptional slopes $=\{-3,-2,-1,0,1 / 0\}$.

Theorem (Lee and Teragaito). Let M be a hyperbolic 3-manifold with ∂M a union of at least 4 tori. Then

$$
|\mathcal{E}(M)| \leq 4
$$

Dehn surgeries on knots in S^{3}

Conjecture. Let K be a hyperbolic knot in S^{3}. Then any exceptional Dehn surgery slope r is either (a) integral, or (b) half-integral and $K(r)$ is toroidal.
$\mathcal{L}(K)=\{r \in \mathcal{E}(K) \mid K(r)$ is a lens space $\}$
$\mathcal{S}(K)=\{r \in \mathcal{E}(K) \mid K(r)$ is a small Seifert fiber space $\}$
$\mathcal{T}(K)=\{r \in \mathcal{E}(K) \mid K(r)$ is toroidal $\}$

It is conjectured that

$$
\mathcal{E}(K)=\mathcal{L}(K) \cup \mathcal{S}(K) \cup \mathcal{T}(K)
$$

Cable knots

A cable knot is a satellite knot obtained by starting the satellite construction with a torus knot

Every cable knot admits a reducing Dehn surgery.

\longleftarrow

Cabling conjecture. If a manifold obtained by Dehn surgery on a knot $K \subset S^{3}$ is reducible, then K is a cable knot.

Known for :

- Satellite knots (Scharlemann)
- Alternating knots (Menasco-Thistlethwaite)
- Knots with at most 4 bridges (Hoffman)
- Symmetric knots (Eudave-Muñoz, Luft and Zhang,..., Hayashi and Shimokawa)
- Knots with at most 10 crossings (Brittenham)

Weak cabling conjecture. If a manifold obtained by Dehn surgery on a knot $K \subset S^{3}$ is reducible, then it is a composite manifold with only two summands.

Property R Conjecture

Conjecture. If $K \neq O$, then $K(r) \neq S^{1} \times S^{2}$ for any slope r.

Theorem (Gabai, 1987). The conjecture is true.

He solved this problem by using the sutured manifold theory.

Knot Complement Problem

Problem. Are knots in S^{3} are determined by their complements?

Theorem (Gordon and Luecke, 1989). Yes.

In fact, they showed the following, using a combinatorial technique.
Theorem. If $K \neq O$, then $K(r) \neq S^{3}$ for any slope $r \neq 1 / 0$.
Property P Conjecture. $\pi_{1}(K(r)) \neq 1$ if $K \neq O$ and $r \neq 1 / 0$.

Theorem (Kronheimer and Mrowka, Ozsvath and Szabo, 2004). Property P Conjecture is true.

They used Heegaard Floer Homology Theory to prove the following.
Theorem. If $K \neq O$, then $K(r) \neq L(2,1), L(3,1), L(4,1)$ for any slope r.

Remark. A Lens space of order 5 is obtained by a Dehn surgery on a nontrivial knot.

Theorem (Hirasawa and Shimokawa). Let K be a nontrivial strongly invertible knot. Then no Dehn surgery on K can yield $L(2 p, 1)$ for any integer p.

Problem (Teragaito). $K(r) \neq L(4 n, 2 n \pm 1)$ if K is a hyperbolic knot? (Known for any integer $n \neq 4$: Tange)

(-2, 3, 7)-pretzel knot and exceptional surgery slopes

Exceptional slopes: 16,17, 18, 37/2, 19, 20, 1/0

- $S^{3}: 1 / 0$
- Lens space : 18,19
- Small Seifert fiber space : 17
- Toroidal manifold : 16, 37/2,20

Berge's construction

Let $W_{1} \cup W_{2}$ be a genus 2 Heegaard splitting of S^{3}.
Let $K \subset \partial W_{1}=\partial W_{2}$ be a knot such that $W_{i} \cup H(K)$ is a solid torus. Then $K(r)$ is a lens space for some integral slope r.

Conjecture. If a knot K admits a lens space surgery, then K is a Berge's knot.

Lens space surgeries and genera of knots

Theorem (Culler, Gordon, Luecke, and Shalen). Let K be a knot in S^{3} which is not a torus knot. If $\pi_{1}(K(r))$ is cyclic, then r is an integral slope.

Conjecture (Goda and Teragaito). Let K be a hyperbolic knot in S^{3}. If $K(r)$ is a lens space, then K is fibered and $2 g(K)+8 \leq|r| \leq$ $4 g(K)-1$.

Theorem (Rasmussen). Suppose that K is a nontrivial knot which admits a lens space surgery of slope r. Then $|r| \leq 4 g(K)+3$.

Toroidal Dehn surgeries

Theorem (Gordon and Luecke). If a hyperbolic knot K admits a toroidal surgery of slope r, then r is either integral or half-integral. ($r=n$ or $n / 2$ for some integer n.)

Eudave-Muñoz gave infinitely many hyperbolic knots $k(l, m, n, p)$ which admits a half-integral toroidal surgery.

$$
\begin{aligned}
& n=0 \text { or } p=0 \\
& k=k \text { half twists }
\end{aligned}
$$

Other known results

Theorem (Boyer and Zhang).

- If $K(r)$ is toroidal Seifert fibered, then r is integral.
- If a 2-bridge knot K admits a toroidal surgery slope r, then $r \in 4 \mathbb{Z}$.

Theorem (Boyer and Zhang, Patton). If an alternating knot K admits a toroidal surgery slope r, then $r \in 4 \mathbb{Z}$.

Theorem (Brittenham and Wu). Classification of Dehn surgeries on 2-bridge knots. (toroidal surgery \Rightarrow genus one or Klein bottle surgery)

Eudave-Muñoz knots

- strongly invertible
- tunnel number one
- The core of the attached solid torus hits the essential torus twice (minimally).
- $K(r)$ contains a unique essential torus (up to isotopy).

Theorem (Gordon and Luecke). If $K(n / 2)$ is toroidal, then K is a Eudave-Muñoz knot.

Integral toroidal surgeries

K : a hyperbolic knot such that $K(r)$ is toroidal ($r \in \mathbb{Z}$)

- strongly invertible?

No. (Genus one knots which are not strongly invertible)

- tunnel number one?

Arbitrary high! (Eudave-Muñoz and Luecke)

- How many times (minimally) does the core of the attached solid torus hit an essential torus?
Arbitrary many! (Osoinach)
- How many non-isotopic essential tori in $K(r)$?

Unsolved.

Conjecture (Eudave-Muñoz). Any hyperbolic knot has at most 3 toroidal surgery slopes.

examples

The figure-8 knot : $-4,0,4$

The (-2,3,7)-pretzel knot : 16, 37/2, 20

Toroidal surgeries and genera of knots

Conjecture (Teragaito). If a hyperbolic knot K admits a toroidal surgery of slope r, then $|r| \leq 4 g(K)$.

Known for:
-genus one knots (Teragaito)
-alternating knots (Teragaito)
-genus two knots (Lee)
Theorem (Ichihara). $|r|<3 \cdot 2^{7 / 4} g(K)$.
Known: $|r| \leq 6 g(K)-3$.

Seifert fibered surgeries

Not so much is known.

Conjecture (Eudave-Muñoz). Any Seifert fibered Dehn surgery on a hyperbolic knot is integral.

Conjecture (Motegi). If $K(r)$ is a Seifert fiber space, then there exists a knot c in S^{3} disjoint from K such that c is unknotted and becomes a Seifert fiber in $K(r)$. (The knot c is called a seiferter.)

Known : If an r-surgery on K yielding a Seifert fiber space for some rational number r has a seiferter, then r is integral, except when K is a torus knot or a cable of a torus knot.

Examples

(1) figure-eight knot

$$
\begin{gathered}
\mathcal{E}(K)=\{0, \pm 1, \pm 2, \pm 3, \pm 4, \infty\} \\
\begin{array}{ccccccccc}
\mathrm{T} & \mathrm{~S} & \mathrm{~S} & \mathrm{~S} & \mathrm{~T} & \mathrm{~S} & \mathrm{~S} & \mathrm{~S} & \mathrm{~T} \\
\hline 1 & & 1 & 1 & 1 & & 1 & 1 & 1 \\
-4 & -3 & -2 & -1 & 0 & 1 & 2 & 3 & 4
\end{array}
\end{gathered}
$$

(2) (-2, 3, 7)-pretzel knot

$$
\mathcal{E}(K)=\{16,17,18,37 / 2,19,20, \infty\}
$$

More examples (Wu)
(-1/2,1/3,2/11)-Montesinos knot (-1/3,-2/5,2/3)-Montesinos knot

Conjecture (Teragaito). Integral exceptional slopes are consecutive. Moreover, integral toroidal slopes appear at the border, except figure-eight knot.

Theorem. (Cyclic Surgery Theorem) If a hyperbolic knot has two lens spaces surgery slopes, then they are consecutive.

Conjecture. If a hyperbolic knot has two lens spaces surgery slopes r and $r+1$, then $\frac{2 r+1}{2}$ is a toroidal slope.

Laminations

A lamination λ on a 3-manifold M is a decomposition of a closed subset of M into surfaces called leaves so that M is covered by charts of the form $I^{2} \times I$ where the leaves pass through a chart in slice of the form $I^{2} \times\{\mathrm{pt}\}$.

Essential laminations

The Iamination λ is essential if no leaf is a sphere or a torus bounding a solid torus, M_{λ} is irreducible and ∂M_{λ} is both incompressible and end-incompressible in M_{λ}.

Branched surfaces

A lamination λ is carried by B if it can be isotoped into $N(B)$ everywhere transverse to an I-foliation \mathcal{V} of $N(B)$. It is fully carried if it intersects every fiber of \mathcal{V}.

Essential branched surfaces

A closed branched surface B in a ∂-irreducible 3-manifold M is essential if it satisfies the following conditions.

1. B has no disks of contact.
2. $\partial_{h} N(B)$ is incompressible in $E(B)=M-\operatorname{Int} N(B)$.
3. There are no monogons in $E(B)$.
4. No component of $\partial_{h} N(B)$ is a sphere.
5. $E(B)$ is irreducible.
6. B contains no Reeb branched surface.
7. B fully carries a lamination.

Theorem (Gabai and Oertel). λ is an essential lamination if and only if it is fully carried by an essential branched surface.

Theorem (Gabai and Oertel). If a compact orientable 3-manifold contains an essential lamination, then its universal cover is homeomorphic to \mathbb{R}^{3}.

Persistently laminar knots

A knot is persistently laminar if its complement contains an essential lamination and the lamination remains essential under all nontrivial Dehn surgeries.

Persistently laminar knots have the strong Property P and satisfies the Cabling Conjecture.

All composite knots are persistently laminar.

Theorem (Delman). All non-torus 2-bridge knots are persistently laminar.

Brittenham showed that any knot having the following tangle as its part is persistently laminar.

Applications of Dehn surgery theory

For a knot K in S^{3}, $u(K)=\min$. \# of self intersections needed to change K to O

unknotting number 1 knot

Theorem (Gordon and Luecke). The knots K with $\operatorname{cr}(K) \leq 10$ and $u(K)=1$ are completely determined.
$K=O$
D : a disk in S^{3} such that $\partial D \cap K=\emptyset$ and (min. $\left.|\operatorname{Int} D \cap K|\right) \geq 2$ K_{n} : a knot obtained from K by performing $1 / n$-surgery on ∂D. (It is known that if (min. $|\operatorname{Int} D \cap K|)=2$, then K_{n} is prime.)

Theorem (Hayashi and Motegi). If K_{n} is composite, then $n= \pm 1$.

