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This paper summarizes the basic properties of the Euler dilogarithm function. often 
referred to as the Spence function. These include integral representations, series 
expansions, linear and quadratic transformations. functional relations. numerical val- 
ues for special arguments and relations to the hypergeometric and generalized hyper- 
geometric function. The basic properties of the two functions closely related to the 
dilogarithm (the inverse tangent integral and Clausen's integral) are also included. A 
brief summary of the defining equations and properties for the frequently used gen- 
eralizations of the dilogarithm (polylogarithm. Nielsen's generalized polylogarithm, 
Jonqui6re's function. Lerch's function) is also given. A rksum6 of the earliest articles 
that consider the integral defining this function, from the late seventeenth century 
to the early nineteenth century, is presented. Critical refererices to details concerning 
these functions and their applications in physics and mathematics are listed. 

Keywords: Euler dilogarithm; Spence function; Debye function; 

Jonquibre's function; polylogarithms; Clausen's integral 


1. Introduction 

The dilogarithrn function, also rcferred to as the Sperlce fiiriction, has a long history 
coriilected with some of the great narnes in the history of matl-ierriatics. The integral 
that defines it first appears in one of the letters from Leibriiz to Johann Bernoulli 
in 1696. part of an exteilsive correspondence between Leibniz and the Bernoullis. 
However. the properties of this integral as a distinct function were first studied 
by Landen in 1760. Since then it has, along with its generalilation. the polyloga- 
ritkim, been studied by some of the great mathematicians of the past-Euler, Abel, 
Lot)achevsky, Kurnmer and Rainanl~jan ainong others. It appears in a very wide 
range of fields-number theory, algebraic geometry, electric network arid radiation 
problems. the statistical mechanics of ideal gases, and, in quantum electrodynamics, 
in any calculation of higher-order processes sucl-i as vacuurn polarizatiori and radia- 
tive correctioris. Nonetheless. there does not seem to be a concise reference work 
sumnlarizing the essential properties of the dilogarithm as a function of coinplex 
argument. With this paper we hope to provide such a reference. 

2. Definition and notation 

The Euler dilogarithm is defined for complex argument x by 

ln(1 - t )
dt. (2.1) 
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2808 L. C. Maximon 

It is also useful to  write t,his int,egral in the equivalent forin 

ln(1 - zt)  
dt. 

We coilsider here the principal branch of the dilogarithiil. defined by taking the 
principal branch of the logarithm. for which In z has a cut along the negative real 
axis, with (argzl < T. This defines the principal branch of the dilogarithm as a 
single-valucd function in the complex plane cut along the real axis from 1 to +x 
(0 < arg(z - A surve) of the notatio~ls and definitions adopted by different 1)< 2 ~ ) .  
authors may be found in Lcwiil (1981. 9 1.10, pp. 27-29). In particular, the function 
L2(2) is denoted by C2(z) in Griibner & Hofreiter (1975), b) S2(z) in Kolbig et al. 
(1970) and Kolbig (1986). by Li2(z) in Lewiil (1981) and Roskies et al. (1990) and 
by Sp(z) in 't Hooft & Veltman (1979). 

3. Analytic continuation for dilogarithms 

Using either of the representations (2.1) and (2.2), one may expand the logarithm 
ill powers of z, obtaining the Taylor series expansion for the dilogarithm. valid for 
121 < 1, 

Howel-er. the principal braiich of the dilogarithm is defined by the integrals in (2.1) 
and (2.2) as a single-valued analytic function in the entire z-plane, with the exception 
of the points on the cut along the real axis from 1 to +m. The integrals (2.1) 
and (2.2) rriay therefore be used to  obtain analytic continuations of the dilogarithm 
for argunlerlts outside the unit circle. These trailsformations are given below. 

(a)  Transformation formulae 

(i) Linear transformations 

The linear transforlnatioils of the dilogarithm are 
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2809 The  dilogarithm function for complex argument 

The transformation (3.3) provides directly the expansion of the dilogarithm about 
the point z = 1,namely, 

As noted in equations (3.2)-(3.6) and (3.11), each of these transformations is valid 
for z in the entire cut plane apart from real numbers that  lie on the cut of either of 
the dilogarithm functions. (Note that this restriction also precludes the argument of 
any of the logarithms from being on the cut of the logarithm.) These transformations 
may be obtained as follows. Making the substitution of variables t = I - s in (2.1) 
and then integrating by parts gives 

Equation (3.3) then follows using (6.2). Next. using (2.1) to write Lz(z/(z  - 1))and 
making the substitution of variables t = s / ( s  - I ) ,  we have 

' ln(1 - S) 
ds. 

Splitting the denominator in partial fractions and integrating then gives (3.4). hlak- 
ing the substitution z -+ I - z in (3.4). we have z / (z  - 1)-+ (z - l ) / z ,  giving 

This equation, together with (3.3), then gives (3.5). Next. adding the left- and right- 
lland sides of (3.4) and (3.5) and making the sllbstitutiori u! = z / (z  - 1) then 
gives (3.2). Finally, setting z = 1 - u in (3.2), together with (3.3), then gives (3.6). 

(ii) Quadratac transformataons 

The quadratic trarisforrnation of the dilogarithm follows directly from (2.2). 

L2(z)+ L2(-Z) = iL ~ ( z ~ ) .z $ (-K, -11 U [ I .33). (3.11) 

Alore generally, 

ns-1 1 
~~(i")= -L2 (zrrL), where = e2"""'. 1r1 = 1.2.3. . . . . (3.12)

rrl 

A simple proof of this gerieralizatiorl is given in A~ldrcws et al. (1999). 

(6 )  Analytic cor~tinuatior~ arourld the brunch points 

We have thus far considered only the principal brarich of the dilogarithrn. which 
is a single-valued analytic function in the cut plane. If, however. we permit the 
variable of ~ntegration t to  wander around the cornplex plane without restriction, we 
then create the  general branch of the function L2(z) .  and. in the integrand of (2.1). 
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ln(l - t )  may no longer have its principal value at t = 0, but instead equals 2k7ri 
with a non-zero value of the integer k .  The dilogarithm defined by (2.1) is then 
a multivalucd analytic function in the complex plane. Thus, if we begin with the 
principal branch of Lz(z) at any point z in the plane and integrate along a closed 
contour that goes in a continuous manner once around the branch point at a = 1 
in the positive rotational sense. then the value of the functioii on returning to z is 
L2(z)- 27riln z. For this branch and. more generally, for all of the branches of the 
dilogarithm other than the principal branch, the point z = 0 is a 'hidden' branch 
point. again of the logarithmic type. Thus. a t  a point z, the value of the dilogarithm 
on a general branch of the function is given in terms of its value on the principal 
branch, Ll(z) .  by 

L2(z) = L; (z) + 2m7ri In z + 4k7i2, (3.13) 

in which m = 0, *I. &2, . . . , k = 0.*I, *2. . . . . It is to  be noted here that the 
values of m and k depend critically on the path of integration. Specifically, they 
depend not only on how many times and in which direction each of the two branch 
points is encircled, which is usual, but also on the order in which the branch points 
are encircled. which is unusual. For further references, see Erdklyi (1953, 5 1.11.1, 
pp. 31, 32) and Holder (1928). 

4. Series expansions for the dilogarithm 

The Taylor series (3.1) converges for Izj 6 1. Although this condition can always be 
obtained using the transformation (3.2) if l z  > 1. this series is clearly very slowly 
convergent for It/near unity. A more satisfactory series has been given in 't Hooft k 
Veltman (1979). in which the dilogarithiii is written in terms of the Debye function. 
D(z) (see Abramowitz & Stegun 1972, 5 27.1.1. p. 998), defined by 

1' U
D ( i )  = -du. 

eu - 1 

Substituting t = 1- e-" in the integrand in (2.1). we have 

Here. the integrand of the Debye function can be expanded in terms of the Bernoulli 
numbers, B,,(see Erdklyi 1953. 5 1.13. pp. 35, 36). giving 

Since, for n = 1.2 .3 , .. . : 

i t  follows that the series in (4.3) converges for I - ln(1 - z)l < 27r 
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2811 The dilogarithm function for complex argument 

5. Functional relations involving two variables 

A number of relations between dilogarithms involving t8wo variables have been studied 
extensively. One, given by Abel (1881), is 

- L2(x) - Ls(y) - ln(1 - x) ln(1 - y), x ,  y, x + y < 1. (5.1) 

Alaking the substitutions x / ( l  - y) + x.  y / ( l  - x) + y in (5.1) and using (3.4) 
to transform the last two dilogarithms on the right-hand side, one obtains a similar 
five-term relation, due to Hill (1830, p. 9, eqn X). 

(5.2) 
A number of other functional relations involving five dilogarithm functions are 

given in Lewin (1981, $ 1.5. pp. 7-11) and Kirillov (1995. $ 1.6, pp. 88, 89). As shown 
in Lewin (1981). any one of these five-term relations niay be derived from any of the 
others by use of the transformations given above as well as redefining the variables 
in the arguments of the functions. Moreover. any number of single-variable relations 
may be obtained by taking y as some suitable function of x (satisfying the conditions 
given above in (5.1) and (5.2)). A number of such relations are given in Lewin (1981. 
$ 1.5.4, pp. 10. 11), in Nielsen (1909) and in Kirillov (1995, f j  1.2, pp. 70-74). Func-
tional relations involving six dilogarithm functions are given in Lewin (1981. 5 1.6. 
pp. 11-16) and relations involving nine dilogarithm functions are given in Kirillov 
(1995. $ 1 . 3 , ~ .  84, $ 1 . 6 , ~ .  89). 

6. Numerical values for special arguments 

For special arguments. the numerical value of the dilogarithm function may be 
expressed directly in terms of simpler functions, in closed form. The only known 
results (see Lewin 1991, ch. 1, 13) are 

L2(0) = 0,  

L2(l)  = ,;.r 
1 2  , 

1 2L2(-1) = -127r . 
1L2(T) = &7r2 - !j ln2 2, 

~ ~ ( i ( 3A))= 15 4 In2 (3(3 - h ) ) ,- L7r2- 1 

~ 2 ( i ( &- 1))= &7r2 - 1 n 2 ( i ( h- I ) ) ,  

~ 2 ( i ( l-h))= -&r2+i l n 2 ( $ ( h -  I ) ) ?  

Lz(-$(I + A))-&;.r2 l n 2 ( i ( h+ I)).= + 
For similar equations containing the sum of dilogarithms of different arguments, see 
Lewin (1991, ch. 1. 2) and Kirillov (1995, f j  1.2, pp. 69, 70, 74). 
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7. Relation to hypergeometric and generalized 
hypergeometric functions 

From (2.1) and the integral representation of the hypergeonletric function, it fol- 
lows that the dilogarithm may be expressed as the derivative of the hypergeometric 
function witl-1 respect to one of the parameters, 

iim (-1azFl(a ,b: b + 1: z) 
L2('I = n i o  b d ab i ~ .  

An alternative expression for the dilogarithni in t'erms of t'he hypergeometric func- 
tion is 

1 
Lz(z)= lim -{2F1(~,  E: 1+ E ;  Z ) - 1). (7.2)

t i 0  ~2 

This expression has been used in Andrews et al. (1999) to derive the transformation 
of the dilogarithm (equation (3.3)) using the transformation of the hgpergeometric 
function. From (2.I), it follows that the dilogarit hin satisfies a second-order linear 
inhomogeneous differential equation 

From (3.1). the dilogarithm may be written as a generalized hypergeometric func- 
tion S F 2 ,  

Lz(z) = z3F2(1, 1.1: 2,2; z ) .  (7.4) 

For further relations between the dilogarithrn and hypergeometric functions, see 
Andrews et al. (1999. 5 2.6, pp. 102-107 and ex. 38, 39, p. 131). The relation between 
the dilogarithm and Appell's function F3 is examined in Sanchis-Lozano (1997). The 
main result given in that reference is 

! j u 0 ~ ~ ( 1 . 1 . 1 , 1 , 3 :U .  1 ' )  = L2(u)+ L2(u)- L2(u+ (i - uu). (7.5) 

in which larg(1 - Z L ) ~< T .  /arg(l- T I )  < T ant1 larg(1 - u ) ( l  - v)1 < T .  

8. Functions closely related to the dilogarithm 

There are t ~ o  functions that are directly related to  the dilogarithm: the inverse tan- 
gent integral and Clausen's integral. We give here only the relation of these functions 
to the dilogarithrn: for additional details. we give references below. 

( a )  Inverse tangent integral 

The inverse tangent integral is the imaginary part of the dilogarithm of purely 
imaginary argument. For -1 < y 6 1. me haw. from (3.1). 

The real part of L2(iy) is, from (3.11). 
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The imaginary part of L2(iy) is called the inverse tangent integral, 

Since, for y < 1, 

we can define the inverse tangent integral by 

arctan(u) 
du. 

The integral (8.5) then defines Ti2(y) for all real y: the arctangent function is taken 
to lie in the range - i n  < arctanjy) < +T. For Tiz(y),  the relation similar to that 
given for the dilogarithm in (3.2), valid for all real values of y. is 

For more complicated relations arid generalizations of the inverse tangent integral, 
see Lewi11 (1981, ch. 2, 3).  

( b )  Cla~usen's integral 

Clausen's integral, C12(8). is the imaginary part of the dilogarithrn with arglirrlent 
on the unit circle. 

cos nQ sin 720 
~ ~ ( 2 ' )= C

X 

--+ i C
cx. 

-
n n2

1 1 

- L n 2  -
- 6 i ( Q / ( 2 ~ - ( Q / ) + i C 1 2 ( 8 ) .(0(<271.. (8.7) 

From (2.1). with the change of integration variable t = eld. the integral for C12(Q) 
is obtained (for details, see Lewin 1981, ch. 4). 

0 

C12(Q)= - In 2 sin i d  do. 

(i) Periodic properties 

(ii) 	Duplication formula 

Clp(6') - C12(T  -Q)= $ C12 (28) 
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9. Generalizations of the dilogarithm function 

( a )  Polylogarithm 

The polylogarithm function, L,,(z). may be defined by 

where n = 1,2 ,3 ,. . . . In particular, it follows t,hat 

Ll(z)  = - In( l  - z). (9.2) 

Corresponding to  (2.1); we have the integral representation for the polylogarithm, 
valid for all z not on the cut, 

d t ,  n = 0 ,1 ,2 . .  

Corresponding to  (3.1), we have. for z /  < 1 and n = 2.3 , .  . . ( / z< 1for n = 0, l), 

MTe note that the function L,,(z) is denoted by C,(z) in Grobncr & Hofreiter 
(1975). by S,(z) in IIignaco & Remiddi (1969). Kolbig et  al .  (1970) and Barbieri et  
al .  (1971. 1972a. b )  and by Li,(z) in Lewin (1981). 

(i) Analy t ic  contin,71,ation 

Corresponding to  (3.2) for the dilogarithm, we have 

where B,(z) is the Bernoulli polynomial of order n (see Erdklyi 1953. 3 1.13. pp. 35- 
39). 

(ii) Quadratic  t rar~s format ions  

Corresponding to (3.11) for the dilogarithm, we have 

(see Grobiier & Hofreiter 1975, p. 73 (5a); hlignaco & Remiddi 1969; Kolbig et  al .  
1970, p. 46. eqn (3.15); Barbieri et  al .  1971. 1972a. b ) .  AIore generally. corresponding 
to (3.12) for the dilogarithm, we have 

m-1 
1 

~ , , ( w ~ z )= --Ln(zm) ,  where ul = e2"i/m, rn,n = 1.2.3, . . . 
mn- 1 (9.7) 

k=O 

(see Lewin 1981, p. 197, eqn (7.41); Grobner & Hofreiter 1975. p. 73, eqn (5)). 
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(iii) Numerical values 

We have 

Here, B, are the Bernoulli numbers (Bo = 1, B1 = -1, B2 = i, etc. (see Erd61yi 
1953, 5 1.13, pp. 29; 30)). 

( b) Nielsen's generalized polylogarithms 

Nielsen's generalized polylogarithms, S,., (z), are defined by 

( - l )n+~-I  1nnp1 t lnP(l  - zt) 
Sn,,(z) = S dt ,  n , p = 1 , 2 , 3, . . . .  (9.10)

(n - 1 0 t 

From (9. lo) ,  one may obtain, by differentiation and partial integration, the difference- 
differential equation for S,,p(z), 

which may also be written in the form 

then (9.11) and (9.12) are valid for n.p 2 1. The polylogarithm is a special case of 
Nielsen's generalized polylogarithm, 

L,(z) = Sn-l , l (z) ,  n = 2 , 3 , . . . . (9.14) 

For details on Nielsen's generalized polylogarithms see Nielsen (1909), hlignaco 
& Rerrliddi (1969), Kolbig et al. (1970). Kolbig (1986) and Barbieri et al. (1971. 
1972a,b).  

(c)  Jonquikre 's function 

Joriyuikrc's function, also referred to as a polylogarithm of non-integral order, is 
defined for colrlplex s and z. as in (9.4). by 

The function L,(z) is denoted by <(s,  z) in the original work of Jonquikre (1888, 
1889a-c). by F ( z . s ) in Erd6lyi (1953, 5 1.11, pp. 30. 31). where many of its properties 
are given, arid by Li,(z) in Lewin (1981. 57.12, pp. 236-238) and in Lee (1997). The 
function L,(z) satisfies. in particular. the relations (9.1) and (9.6) for the polyloga- 
rithm on replacing n by s .  
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( d )  Lerch's function 

Lerch's function is defined for complex z. a and s by 

Jonquikre's function is a particular case of L e ~ h ' s  function, obtained when a = 1. 

L, (z) = z@(z,S ;  1).  (9.17) 

For details on Lerch's function. see Erdklyi (1953, fj1.11,pp. 27-32) and Lerch (1887). 

10. Historical notes 

The integral 

has an extensive history that long predates it being named and being referred to  as 
the dilogarithm. We give here some of the outstanding references to its early con- 
sideration. A careful exainination of the original publications has enabled a critical 
appreciation of some of the early work in tlie literature on this function. The inte- 
gral first appears in 1696 in the correspondence of Leibniz in a series of letters that 
are part of an extensive correspondence with Jacob and Johann Bernoulli (Leibniz 
1855).1 Leibniz expresses the integral in the form of a power series and discusses 
recursion relations for integrals of the form 

] tp111" (1 + t )dt. 

noting that the case p = -1 must be excluded. The first study of the properties of 
the integral appears in an article by Landen (1760). He defines a series of functions 
that are identical to  the polylogarithms defined here, giviiig both the recursion rela- 
tion (9.1) and the Taylor series expansion (9.4). The transformations (3.2) and (3.3). 
as well as the transformation (9.5) for arbitrary n. are derived. In a memoir pub- 
lished 20 years later, Landell (1780) derives the values of the dilogarithm given here 
in (6.5) and (6.6). as well as the transformation that follo~vs froin (3.3) and (3.5) on 
elimination of L2(z) between them. All of the published literature credits Euler with 
being the first to study the integral. referring to his work published in 1768j. and 
calling the integral the Euler dilogarithrn, a name given rrluch later by Hill (1828). 
We have found there only the transformatio~~ listed here as (3.3). along with the 
numerical values given in (6.2) and (6.4). all of which were given in the carlier work 
of Landen (1760). 

iLetter IX. pp 56-62 January 1697. Letter XXXVIII. pp 334 336, Koaeinber 1696, Letter XXXIX 
pp 337-338 Noxernber 1696 Letter XLI pp 317-354 December 1696 

$ Kote that page numbers differ in the various later editions of Euler (1768). though tile content is 
identical. In the 3rd edri (1824). this matcrial is in vol. 1; pp.  110-112. In vol. 11 of Leonardi E'uleri 
operc~ omnia. series I. pub. Lipsiae et Berolini. Typis et in Aedibus B. G. Teuberni (1913). the material 
is in Institutiones Calculz Integralis. vol. 1. pp. 113-114. 
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2817 The dilogarithm function for complex argument 

However, the first corrlprehensive detailed study of the function is the essay of 
Spence (1809), which was generally not referenced on the continent for several 
decades. (This work was, along with other manuscripts left by Spence, re-edited 
by John Herschel.) Spence (1820) defines various orders of logarithmic transcendents 
with the svmbol 

which are essentially the polylogarithms defined here. i.e. 

He derives many of thc transformations given here, among them (3.2). (3.3) 
and (3.11) for the dilogarithm. a number of functional relations involving two vari- 
ables for both the dilogarithm and trilogarithm (n = 3), as well as (9.5). (9.6) and 
the recursion relation (9.1) for arbitrary n .  His work also includes a study of the 
properties of the inverse tangent integral given here in 5 8 a. 

11. Applications in physics and mathematics 

Nurnerous references to the occurrence of dilogarithrns and polylogarithms in physical 
problems are given in Lewiri (1981. ji 1.12, pp. 31--35). An extensive list of references 
in which dilogarthms and polylogaritllms appear in several fields of mathernat>ics. 
arnong them ilunlber theory, geometry, representation theory arid algebraic K-theory, 
are given in Kirillov (1995) and Oest,erld (1993). The paper by Zagier (1989). on t,he 
dilogarit,hrri furictiori in geometry and rlu~nber theory, is worthy of note in being 
accessible to  the non-specialist. In thc field of statistical nleclianics. the chemical 
potential of free Fermi ancl Bosc gases is expressed in terrns of polylogarithnls in 
Lee (1995). We note in addition that tlie appearance of tllc dilogaritl-im is inherent 
to all higher-order calculatiorls in q~iantum electrodynamics. This rrlay he seen in 
the calculation of electron form factors in hlignaco & Remiddi (1969). Barbieri et 
al .  (1971, 1 9 7 2 ~ .  b) and Roskies et al. (1990). and in the calculation of radiative 
corrections in hlo & Tsai (1969). AIaxinion & Tjon (2000) and Passariiio & Veltman 
(1979). The integrals essential to all of these calculat~ions are evaluated in terms of 
dilogarithrns in 't Hooft & Veltmarl (1979) and Passarino & Veltmarl (1979). 

The author thanks Professor Ricliarti Askey for bririgirig Kirillov (1995) to  his attention. It is 
a particular plcasure to  acknowledge the assistalicc given by tlie librarians arid staff of a riurri- 
ber of libraries for rriaking origirial works of the eighteerith arid liirietec.rith ceiituries available. 
SIost especially these iriclude the Natiorial hIuseurri of Natural History Branch Library, the 
Dibner Library of the History of Science and Techiiology of the Sriiithsosiiari Museum of Anier- 
icari History. the America11 University Library Special Collections. the library of the CS Saval 
Ohservatorv and tlie Lurid IJniversity Library. Departrnerit of Cultural Heritage Collections. 
Firially, the author is deeply iridebteti to  Professor Frarik W. J. Olver for incisive and helpful 
coriirnerits coricerriing rnany tietails of this article. in particular his analysis coricerliirig analytic 
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