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KNOT SPINNING
Greg Friedman

1 Introduction

This exposition is intended to provide some introduction to higher-dimensional
knots - embeddings of Sn−2 in Sn - through spinning constructions. Once our
shoe laces, those archetypal hand tools of knot theory, have been turned into
spheres, how can we construct and visualize concrete examples of such knots?

There are many important ways to construct higher-dimensional knots. If
we are interested in algebraic knots, we can look at the links of singularities of
complex algebraic varieties in Cn (see, e.g., [31, 7]). We can also construct knots
by surgery theory (see [29] for a recent survey). There are powerful and complex
tools for studying the knots that arise in these manners, but such construction
methods frequently do not allow one to “see” the knot. Often these knots
can be described only in terms of their algebraic invariants. We want to be
able to visualize our knots, at least as far as it is possible to do so with our
three-dimensional brains. This brings us to a series of constructions known as
knot spinnings. Many extensions have been made to Artin’s original spinning
technique, which dates back to 1925, but the various spinning constructions
all have the appeal of being completely geometric in nature and thus highly
visual. On top of providing a myriad of examples of importance in knot theory,
these constructions provide an excellent introduction to thinking about higher-
dimensional knots and higher-dimensional topology in general.

Unfortunately, there do not seem to be many general references for knot
theory in high dimensions, but we list a few sources that might be of interest
for a beginner to the subject. More advanced references can be found in these
sources.

Colin Adams’s popular treatment of knot theory in The Knot Book [1]
contains a chapter on visualizing high-dimensional knots. Dale Rolfsen’s clas-
sic introduction to knot theory, Knots and Links [33], touches on the high-
dimensional theory throughout, including spinning constructions on pages 85-87
and 96-99 and a “Higher Dimensional Sampler” in Chapter 11. The paper “A
survey of multidimensional knots” by M. Kervaire and C. Weber in [25] provides
a survey through 1977. Andrew Ranicki’s book High-dimensional Knot Theory:

Algebraic Surgery in Codimension 2 [32] provides a more modern and extensive
look at the theory from the point of view of algebraic surgery theory, while the
article by Jerome Levine and Kent Orr [29] provides a more compact survey of
high-dimensional knot theory via surgery.

In addition, three recent books deal exclusively with knotted 2-spheres (and
other surfaces) in R4 and S4. These are Braid and Knot Theory in Dimension

Four [20] by Seiichi Kamada, Knotted Surface and Their Diagrams [5] by J.
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Scott Carter and Masahico Saito, and Surfaces in 4-Space [6] by Carter, Ka-
mada, and Saito. All three of these books have a strong pictorial flavor, and
each mentions knot spinning, the first book dealing with it more extensively in
its Chapter 10 and the third book in Chapter 2.

I thank Joan Doran for drawing the included figures.

2 Some basics

2.1 What is a knot?

We begin with the precise definition of a knot.
Let Sn be the n-dimensional sphere, which we will be free to think of in

several ways: as an abstract manifold, as the set of points in Rn+1 unit distance
from the origin, or as Rn compactified by adding a point at infinity. More gener-
ally, we will use Sn to denote any object piecewise linearly (PL) homeomorphic
to the sphere. Similarly, we will use Bn to denote any object PL homeomorphic
to the unit ball in Rn, the set of points with distance ≤ 1 from the origin. The
boundary of Bn, denoted ∂Bn, is PL homeomorphic to Sn−1.

With these conventions, a knot of dimension n is a PL locally-flat embedding
K : Sn−2 →֒ Sn or K : Sn−2 →֒ Rn. Recall that the piecewise linear (PL)
condition simply means that there exist triangulations of Sn−2 and Sn (or Rn)
with respect to which K is simplicial, while K is locally-flat if each point K(x)
in the image of K has a neighborhood U such that (U,U ∩ K(Sn−2)) is PL
homeomorphic to the standard coordinate pair (Rn,Rn−2). There is no real
theoretical difference between letting Sn or Rn serve as the codomain of the
knot since we are free to rechoose the point at infinity of Sn so that the image
of the knot will lie in R

n ⊂ Sn (technically, we are replacing the knot with an
equivalent one; see below). Sticking with spheres has some technical advantages,
and we will principally use spheres as the ambient space, though occasionally it
will suit us to use Rn instead.

Figure 1: Some smooth knots S1 ⊂ R3. A smooth knot can always be given a
PL structure by employing a suitable triangulation of R3 that contains the knot
as a subcomplex.

The requirement that a knot be PL locally-flat is a common restriction, de-
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signed to avoid singularities of the embedding. For example, if we only required
the embedding to be continuous, “infinite knottedness” might occur (Figure 2).
Requiring the knot to be piecewise linear prevents this level of unpleasantness,
but the local-flatness is also necessary to prevent other kinds of pathologies, such
as local knotting, that may occur when one is not working with differentiable
maps - note that local-flatness certainly holds for differentiable embeddings by
the Tubular Neighborhood Theorem. See [15] for a discussion of non-locally-flat
knots.

Figure 2: A “wild” knot that is not locally-flat at the point of infinite “knot-
tedness”.

In the classical dimension, S1 →֒ S3, PL knots and smooth knots are equiv-
alent. In fact, for any n, any codimension two PL locally-flat embedding can be
made differentiable (see [36, Corollary 6.8]). However, in high dimensions the
smooth structure on the embedded sphere may not be the standard one. By
working in the PL category, we allow these knots but do not concern ourselves
with any eccentricities in their smooth structures. All this being said, most of
the constructions we will discuss work equally well in the differentiable category
and generate knots with the standard smooth structure provided we start with
a knot with the standard smooth structure. Knot spinning can also be done on
non-locally-flat PL knots provided some minor extra care is employed (see [15,
§4.3]) or with topological non-locally-flat knots provided that the embedding is
flat at some point. In the sequel, we will stick with PL locally-flat knots for
convenience and consistency.

2.2 Knot equivalence

Now, if you have a knotted string lying on your desk and you pick it up and move
it someplace else, we would like to think of it as the same knot. Thus we should
really consider equivalence classes of knots. We call two knots K0,K1 : Sn−2 →
Sn equivalent if there is an orientation-preserving PL homeomorphism f : Sn →
Sn such that fK0(S

n−2) = K1(S
n−2). In other words, f should take the image

of K0 to the image of K1. In particular, this will be true if there is a PL ambient
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isotopy of Sn taking K0(S
n−2) to K1(S

n−2). In fact, this stronger condition
is sometimes used as the definition of knot equivalence. Since we work in the
PL-locally-flat category, these two conditions are equivalent (see [3, Proposition
1.10]), but the analogous equivalence does not hold in the smooth category due
to the failure of the Alexander trick.

It is a standard abuse, in which we shall engage freely, to use the word “knot”
and the same symbol, K, to refer to the equivalence class of the knot K or even
to the image of K.

We refer to K : Sn−2 →֒ Sn as n-dimensional or an n-knot. This is not a
universal notation; it is perhaps more standard to refer to such a knot as an
n− 2 knot. We also refer to the knots K : S1 →֒ S3 as classical knots.

One also sometimes speaks of oriented equivalence for which Sn−2 is given
a fixed orientation and it is required that the orientation-preserving PL homeo-
morphism f : Sn → Sn taking K0(S

n−2) to K1(S
n−2) also preserves the orien-

tation of these subspaces. However, we will not impose this stricter condition
except when stated explicitly.

2.3 The unknot and toroidal decompositions of Sn

The unknot in dimension n is the equivalence class of the “standard embedding”
Sn−2 ⊂ Sn. In other words, if Sn = {~x ∈ Rn+1 | |~x| = 1}, then the unknot
can be represented as {~x ∈ Rn+1 | |~x| = 1, xn+1 = xn = 0}. The classical
3-dimensional unknot is equivalent to the unit circle in the x-y plane in (the
compactified) R3.

By setting more coordinates equal to 0, we can define standard embeddings of
any sphere into any other sphere of higher dimension. This leads to nice decom-
positions of Sn into two generalized solid tori: The standard embedding of Sm

into Sn, m < n, has a tubular neighborhood PL homeomorphic to Sm×Bn−m,
and the complement of the interior of this neighborhood is PL homeomorphic
to Bm+1×Sn−m−1. Thus Sn can be decomposed as a union of Sm×Bn−m and
Bm+1 × Sn−m−1, identified in the obvious way along their common boundary
Sm × Sn−m−1.

Sn = Sm ×Bn−m
⋃

Sm×Sn−m−1

Bm+1 × Sn−m−1

This follows, e.g., from the fact that Sn can be written as the join of Sm ∗
Sn−m−1. The most familiar case is the standard genus one Heegard decompo-
sition of S3, in which a neighborhood of the unknot S1 ⊂ S3 is the solid torus
S1 ×B2, whose complement is another solid torus, B2 × S1.

2.4 A useful excision

We conclude this introductory section with one other construction that will
be used repeatedly. Consider an n-dimensional knot K, and choose any point
x ∈ K ⊂ Sn (here - by our standard notational abuse - we use “K” to represent
the image of the knot). Since K is PL locally-flat, there is a neighborhood
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Figure 3: The decomposition of S3 (thought of as R3 plus a “point at infinity”)
into two solid tori S1×B2 and B2×S1. The lefthand picture shows the circular
cores of the tori (the vertical line becomes a circle as it wraps through the point
at infinity). The righthand picture shows a slice along the y-z plane: The two
disks are a slice of one solid torus (cut a donut in half and then view it on end),
while the arcs represent slices of the meridional disks of the other solid torus.

Bn
−

of x in Sn such that (Bn
−
, Bn−2

−
) := (Bn

−
, Bn

−
∩K) is PL homeomorphic to

an unknotted ball pair, i.e. it is PL homeomorphic to the standard ball pair
(Bn, Bn ∩ Rn−2) in Rn. Since the closure of the complement of a PL n-ball in
Sn is also an n-ball, the closures of the complements Sn − Bn

−
and K − Bn−2

−

will each be balls, and we label this complementary pair by (BnK , B
n−2
K ). The

ball Bn−2
K may be knotted in BnK (Figure 4).

We also observe that the common boundary of the pairs (Bn
−
, Bn−2

−
) and

(BnK , B
n−2
K ) is the unknotted pair of spheres (Sn−1, Sn−3) (since it is PL home-

omorphic to the boundary of the standard ball pair). In what follows, it will
often be convenient to identify this with the standard unknot, which we have
already discussed.

What if we choose the neighborhood of a different point to remove in this
construction? It turns out that we get the same pair (BnK , B

n−2
K ) up to PL

homeomorphism. To see this, consider the ball neighborhoods of two different
points. We can simply slide one ball to the other along the knot, which comple-
mentarily takes the complement of one neighborhood to the complement of the
other. Note that while this idea has nice intuitive appeal, it does require some
technical checking to ensure that such sliding is always allowed. However, this
theory is well-established, and we avoid going too far afield to visit the details
here (see, e.g., Chapter 6 of Hudson [19]).
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Figure 4: Removing a trivial neighborhood from a knotted circle to obtain a
knotted arc.

3 Basic spinnings

3.1 Simple spinning

As we know, there are an infinite number of knots S1 →֒ S3 and myriad examples
can be created by anyone with a piece of string and some time on their hands
(classifying these knots is another matter!). To get knots of higher dimensions
requires a little bit more ingenuity. One method is to get high-dimensional knots
from knots of lower dimension by spinning them.

The earliest spinning construction is due to Emil Artin in 1925 [2]. Artin
used spinning to construct 4-dimensional knots from classical knots, but the
same idea can be used to create an n+1 dimensional knot from any n-dimensional
knot. This construction is generally referred to just as “spinning”, but we will
call it simple spinning to differentiate it from the more general constructions to
follow.

In this section, it will be most convenient to consider knots in Rn instead of
Sn (see Section 2), though of course we can easily transform from one type to
the other by adding or removing a point at infinity.

To see the basic idea, consider the upper half plane H2 = {(x, y) ∈ R2 | y ≥
0} and choose a point (x0, y0) ∈ H2 with y0 > 0. Now rotate H2 around the
x-axis in R3. The point will sweep out a circle (Figure 5). Analytically, the
circle will be parametrized in R

3 by the set of points (x0, y0 cos θ, y0 sin θ), as θ
runs from 0 to 2π (assuming that we rotate counterclockwise as seen from the
positive x-axis looking in the negative x direction).
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Figure 5: Spinning a point in the half-plane around the axis.

To see how this applies to knots, let us consider a knot K in R3. Up to
equivalence, we can arrange for K to lie in the upper half space H3 = {(x, y, z) |
z ≥ 0} except for an unknotted arc that dips below the x-y plane R2 = {(x, y, z) |
z = 0} (Figure 6). Let us remove the interior of this unknotted arc; what
remains is a knotted arc in H3 with its endpoints (and only its endpoints) in
R2. We can now rotate H3 around R2 in R4 just as we rotated H2 around R1 in
R3. Analytically, we parametrize by θ, and each point (x, y, z) in the upper half
space sweeps out the circle (x, y, z cos θ, z sin θ). Note that R

2 remains fixed. By
thinking about how the longitude lines swing around the globe with the north
and south poles remaining fixed, we can imagine how the knotted arc gets spun
into the image of a 2-sphere S2. Thus, by spinning, we obtain a knotted S2 in
R4 (Figures 7 and 8).

Figure 6: Turning a knotted circle into a knotted arc in the upper half space in
order to spin it about the plane.

You might be asking, what if we had chosen a different way to split our
original knot into a knotted arc? It turns out that we get the same spun knot,
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Figure 7: A schematic of knot spinning

Figure 8: A second schematic of knot spinning.
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essentially for the same reason by which we noted in Section 2.4 that BnK is
independent of the choice of Bn

−
. In fact, notice that if we start with our knot

in S3, then our construction to get a knotted arc in the upper half space by
removing an unknotted arc in the lower half space is completely equivalent to
the construction of BnK by removing a small ball neighborhood of a point on the
knot.

This simple spinning construction already has several important ramifica-
tions. For example, it can be shown very easily (see, e.g., [33]) that the fun-
damental group of the complement of this spun knot in R4 (its knot group)
is isomorphic to the knot group of our original knot in R3. Based on known
results about knots in R3, this implies the existence of an infinite number of
inequivalent knots in R4. By contrast, Dennis Roseman showed in [34] that the
spins of two distinct knots may be equivalent. For example, he showed that
spinning the square knot yields the same 4-knot as does spinning the granny
knot. We discuss a much stronger result along these lines at the end of Section
3.2.

The construction for higher dimensions is similar. We begin with a knot
K : Sn−2 → Rn. Again, we can manipulate the knot within its equivalence class
so that it lies mostly in the upper half space Hn = {(x1, . . . , xn) ∈ Rn | xn ≥ 0}
and so that the intersection of the knot with the lower half space is unknotted.
We then remove the interior of this unknotted ball to obtain the complementary
knotted ball Bn−2 in Hn. Its intersection with Rn−1 is an unknotted Sn−3. Now
we spin Hn around Rn−1 into Rn+1 so that each point (x1, · · · , xn) sweeps out
the circle (x1, · · · , xn−1, xn cos θ, xn sin θ).

It is a little harder now to see that our knotted ball in the upper half plane
gets spun into a sphere Sn−1, but the idea of pivoting a longitude around its
poles extends to higher dimensions. To see this, we employ the following coor-
dinate analysis, which will also be useful when we need to describe more general
spinnings, below.

Consider Sn−1 as the unit sphere in Rn, Sn−1 = {~x ∈ Rn | |~x| = 1}, and
consider Rn as Rn−2×R2. Then we can define the latitude for a point y ∈ Sn−1

as its orthogonal projection onto the Rn−2 factor and the longitude of y as the
angular polar coordinate of its projection onto the R2 factor. Hence the latitude
is always well-defined, while the longitude is either undefined or a unique angle,
dependent upon whether or not y lies in Rn−2×0. Notice that in the case where
the longitude is undefined, the point on the sphere is uniquely determined by its
latitude (just as on a globe). To simplify the notation in abstract cases, we will
simply refer to the latitude-longitude coordinates (z, θ), whether θ is defined or
not. Then the point (z, θ) in Sn−1 corresponds to the point in Rn determined by
the rectangular coordinates (z, r cos θ, r sin θ) for z ∈ Rn−2, r ≥ 0, θ ∈ [0, 2π),
and such that |z|2 + r2 = 1 (note that this determines r, given z).

Now, consider the closure of the set of points in Sn−1 with fixed longitude
θ = 0. These points can be written in rectangular coordinates as (z, r, 0), with
|z|2 + r2 = 1 and r ≥ 0. This set is homeomorphic to a ball Bn−2 (in fact, it is
the graph of r =

√

1 − |z|2). Its boundary is the n− 3 sphere with |z|2 = 1 and
r = 0, and we call this boundary the generalized pole of Sn−1. Now for each
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point (z, r, 0) in rectangular coordinates, we can spin to get the set of points
(z, r cos θ, r sin θ) as θ runs from 0 to 2π. The points (z, 0, 0) of the generalized
pole remain fixed, and the rest of the 0 longitude sweeps out the rest of the
sphere. Analogously, as we spin a knot, the knotted ball sweeps out a knotted
sphere. We leave it to the reader to formulate a precise analytic description.

Preservation of knot groups under simple spinning continues to hold in this
higher-dimensional setting, and by iterating the spin construction, we establish
the existence of an infinite number of inequivalent knots in any dimension n ≥ 3.

3.2 Superspinning

Having spun knots in circles, how about spinning around higher dimensional
spheres? Superspinning of classical knots was introduced by E.C. Zeeman [41]
and D.B.A. Epstein [8] separately in 1960. Zeeman used the spinning of classical
knots about spheres to show that it is possible to embed two n − 2 spheres in
Sn such that each sphere in unknotted but the pair is linked, i.e. there is no
homeomorphism of Sn sending one knot to the “northern hemisphere” and the
other knot to the “southern hemisphere”. Epstein strengthened these results to
show that two n−2 spheres can be embedded in euclidean n-space in each of the
following ways: (i) neither can be shrunk to a point in the complement of the
other; (ii) one can and one cannot be shrunk to a point in the complement of
the other. In 1970, Sylvain Cappell [4] generalized this construction as a way to
construct an n+ p dimensional knot from any n-dimensional knot by spinning
it around a p-sphere Sp, p ≥ 1. He called this method “superspinning”, though
it is sometimes referred to in the literature as p-spinning. Cappell utilized
superspinning to demonstrate the existence of knots whose complements are
homotopy equivalent but not homeomorphic.

This time let us jump straight to the general construction, p-spinning for a
knot K : Sn−2 →֒ Sn.

Imagine Sp×Bn embedded in our standard unknotted way in Sp+n so that
we can write

Sp+n = [Sp ×Bn]
⋃

Sp×Sn−1

[Bp+1 × Sn−1]

(see Section 2). Here
⋃

Sp×Sn−1 indicates that we are gluing the two spaces along
their common boundary Sp × Sn−1. We can decompose the unknot Sp+n−2 in
Sp+n by its intersections with the pieces of this decomposition as

[Sp ×Bn−2]
⋃

Sp×Sn−3

[Bp+1 × Sn−3].

Sp ×Bn−2 ∪Bp+1 × Sn−3

Sp ×Bn
?

∩

∪Bp+1 × Sn−1
?

∩

11



(Here we think of Bn−2 as the unknotted subset of Bn given by setting the last
two coordinates to 0.) This is one of our standard decompositions of Sp+n−2,
but now we see it lying within a decomposition of the larger sphere Sp+n. We
can write the pair of spaces more compactly as

Sp × (Bn, Bn−2) ∪Bp+1 × (Sn−1, Sn−3),

and we should think of this as the product of Sp with a trivial (unknotted) ball
pair, “capped off” by another standard piece.

Try to picture this decomposition of the unknotted S2 in S4, taking p = 1,
n = 3 and recalling that S0 is a pair of points. In this case, S2 decomposes into
a neighborhood of the equator and neighborhoods of the north and south poles.
The decomposition of S4 consists of a neighborhood in S4 of the equator of S2

and its complement, which is B2 ×S2. So, written as pairs, we have the unknot
(S4, S2) decomposed into S1 × (B3, B1), which will play the important role in
our spinning construction, and B2 × (S2, S0), “the rest”.

Now, within this construction, we can replace each trivial pair (Bn, Bn−2) in
the product Sp × (Bn, Bn−2) with the knotted ball pair (BnK , B

n−2
K ), obtained

from K as in Section 2.4. In other words, we construct

Sp × (BnK , B
n−2
K )

⋃

Bp+1 × (Sn−1, Sn−3),

and we define the superspun knot K∗ to be the subset given by

[Sp ×Bn−2
K ]

⋃

Sp×Sn−3

[Bp+1 × Sn−3].

As K∗ is PL homeomorphic to the standard decomposition of Sn+p−2, we see
that K∗ is a sphere of dimension n+ p− 2 knotted in Sn+p.

If p = 1, superspinning K gives us the same simple spun knot that we
obtained in the Section 3.1. Can you see why? Try thinking about 1-spinning
classical knots.

It turns out that the knot group of a superspun knot is also the same as the
knot group of the original knot, but in general, superspinning does not create
the same knots as does iterated simple spinning.

Also as for simple spinning, p > 1 superspinning may take inequivalent
knots to equivalent knots: Cameron Gordon showed in [17] that all superspun
knots are amphicheiral, i.e., they are oriented equivalent to the knot obtained
by reversing the orientation of both Sn+p and K∗ (this is sometimes called (−)-
amphicheirality). As a corollary, this generalizes Roseman’s result, cited above,
on the equivalence of the spun granny knot with the spun square knot, and
it implies that the p > 1 superspins of inequivalent knots may be equivalent.
Another result along these lines was obtained by Cherry Kearton, who showed
in [24] that the superspins of two classical knots K1,K2 ⊂ S3 are equivalent
if and only if their knot groups are isomorphic. This is false, however, for the
superspins of knots of higher dimension (see, e.g., [23]).

12



3.3 Frame spinning

Even more general than superspinning is frame spinning: why limit ourselves to
spinning about spheres? How about other manifolds? Frame spinning was in-
troduced by Dennis Roseman in 1989 [35], though the name is due to Alexander
Suciu [37], who used frame spinning to construct new examples of inequivalent
knots that have the same complement (this is a phenomenon that occurs only
for knots above the classical dimension, though at most two higher-dimensional
knots can share a given complement; see, e.g., [28]).

To describe frame spinning, let us once again begin with an n-dimensional
knot K. This time, however, our additional data comes in the form of an m-
dimensional manifoldMm embedded in Sn+m−2 with a framing φ. This last con-
dition means that we in fact consider an embedding φ : Mm×Bn−2 →֒ Sn+m−2.
Furthermore, we assume that Sn+m−2 is embedded in the standard, unknotted
way into Sn+m with the standard framing as in the generalized torus decompo-
sition. Putting these framings together, we get a pair of tubular neighborhoods
of Mm in (Sn+m, Sn+m−2) of the form N = Mm × (Bn, Bn−2), where each
(Bn, Bn−2) is an unknotted ball pair (although the exact embedding of N into
Sn+m depends on our choice of framing φ).

Figure 9: The trefoil knot spun about the manifoldM consisting of three disjoint
points in S1. Note that the framing at each point (indicated by an arrow that
depicts the orientation of the framing) determines how to attach the knot.

The idea now is to take all of those unknotted ball pair fibers inN and replace
them with our knotted ball pair (BnK , B

n−2
K ) as we did for superspinning. In

other words, having used the framing to identify the neighborhood pair N as
Mm × (Bn, Bn−2), we remove it, and then replace it with Mm × (BnK , B

n−2
K ),

13



glued in along the same framing. Thus, our frame spun knot will be

(Sn+m−2 −Mm ×Bn−2)
⋃

Mm×Sn−3

Mm ×Bn−2
K

sitting inside the n+m sphere

(Sn+m −Mm ×Bn)
⋃

Mm×Sn−1

Mm ×BnK .

In the special case where Mm is the sphere Sm embedded in the standard way
and with standard framing in Sn+m−2, we recover m-superspinning (why?).

If the manifold M has multiple components, or even components of different
dimensions, then we can spin different knots (also possibly of different dimen-
sions) around each component. It is possible to generalize this construction even
further, but first we should study some other types of spinning.

4 Spinning with a twist

4.1 Twist spinning

Twist spinning, introduced by E.C. Zeeman in 1965 [42], was an early gen-
eralization of Artin’s simple spinning construction. Again, we begin with an
n-dimensional knot and obtain an n + 1 dimensional knot, but the difference
between simple spinning and twist spinning can be illustrated celestially: As
the moon orbits the Earth, it always keeps the same face towards the Earth.
This is analogous to simple spinning in which the knot is rotated around the
plane but always keeps “the same face” towards the plane serving as the axis of
rotation. By comparison, twist spinning is like the Earth orbiting the sun: as
the earth orbits, it also rotates around its own axis.

Before giving a general formula, let us consider heuristically the case of twist
spinning a classical knot. As in the simple spinning construction, we replace
the knot with a knotted arc in the upper half space whose endpoints lie in the
x-y plane. We can also assume that the knotted part of the arc is contained
within a ball whose intersection with the arc is its north and south poles (Figure
10). Now, as we rotate half-space around the plane as in simple spinning, we
simultaneous spin this ball on its axis (Figure 11). It is only necessary that the
end result lines up with the starting position, so we are free to spin the ball on
its axis any integral number k times as we rotate H3.

Let us be more specific. Given an n-knot K, then just as for superspinning
about S1 (which is equivalent to simple spinning), we decompose the n+ 1 di-
mensional unknot as the two space pairs S1×(Bn, Bn−2) and B2×(Sn−1, Sn−3).
To superspin, we simply removed S1×(Bn, Bn−2) and glued in S1×(BnK , B

n−2
K ),

reattaching along the original boundary S1 × (Sn−1, Sn−3). In order to create
the k-twist spin, however, we glue in the following way: we represent points
in the common boundary S1 × Sn−1 by (η, z, θ), where η ∈ S1 and (z, θ) are

14



Figure 10: We rotate a ball around the knotted arc.

Figure 11: A 180 degree twist of the trefoil knot (thickened for improved visu-
alization).

latitude-longitude coordinates for Sn−1 such that the unknotted Sn−3 ⊂ Sn−1

is the generalized pole (see Section 3.1). If (η, z, θ) is such a point in the
boundary of B2 × Sn−1, we attach that point to the boundary of S1 × BnK
by (η, z, θ) → (η, z, θ+ kη). The addition here is standard angle addition in the
circle, which we can think of as R/2πZ. In this way, as we glue the pieces to-
gether, we introduce a k-fold twisting by rotations of the longitude coordinate.
You should convince yourself that this procedure corresponds to our earlier
heuristic description.

If your first instinct is to think that the twisting doesn’t add anything to the
spinning since the knotted arc lands back where it started, you should consider
the following toy example. Recall from Section 3.1 our original toy example of
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simple spinning in which we rotated a point in the upper half plane around the
x-axis. This time, however, imagine two points in the upper half plane. As we
sweep the half plane around the x-axis, let these two points rotate around each
other in the plane k times, where k is any integer. At the end of the process,
we have two curves in space that link each other k times (Figure 12. This isn’t
quite the same procedure as twist spinning, but it should illustrate the idea that
interesting things can happen if we deform as we spin.

Figure 12: A low-dimensional schematic of twist-spinning.

Zeeman showed in [42] that a twist spun knot depends only on K and |k|,
i.e. k-twist spinning and −k-twist spinning yield the same knot. Furthermore,
he proved the slightly surprising fact that any 1-twist spun knot (and hence
also any −1-twist spun knot) is unknotted! This is actually a corollary of the
much stronger theorem in the same paper stating that any k-twist spun knot is
a fibered knot with fiber the punctured k-fold branched cover of Sn determined
by the knot being spun. It has also been shown, by Cameron Gordon in his
thesis [18], that if k and l are coprime, then a k-twist spin followed by an l-
twist spin yields the unknot; this was generalized by Tristram (unpublished),
who showed that any sequence of ki twist spins, where the ki are coprime, is
unknotted. A short proof of both statements can be found in [22]. Deborah
Goldsmith and Louis Kauffman found another generalization by showing in [16]
that, if Lk,l(K) indicates the l-twist spin of the k-twist spin of K, then Lk,l(K)
is equivalent to one of L0,g(K) or Lg,g(K), where g = g.c.d.(k, l).

Unlike the constructions of Section 3, twist spinning does not preserve knot
groups. In fact, if G is the knot group of K, then the group of the k-twist spin
of K is isomorphic to (Z ×G)/〈t−1gk〉, where t is a generator of Z and g ∈ G
represents a meridian of the knot K (see, e.g., [14]). Note that if k = 0, i.e. we
simple spin, this group is just G. It is less easy to see, though it must be true
by Zeeman’s theorem, that if k = ±1, then this group is Z, the knot group of
the unknot! Actually, this is not hard to show algebraically, using the fact that
any knot group is the normal closure of any element representing a meridian.

4.2 Frame twist spinning

Now that we have seen how to add twisting to Artin’s basic spinning construc-
tion, can we add some kind of twisting to our other spins? For superspinning
about spheres of dimension greater than 1, the answer is no! This is because
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πn(S
1) = 0 for all n > 1, which implies that we cannot use higher dimensional

spheres to parametrize spinning. Any attempt at twisting can be deformed to
give back ordinary superspinning. On the other hand, since π1(S

1) = Z, there
are countably many maps S1 → S1 that cannot be so deformed, and the element
k in π1(S

1) corresponds to k-twist spinning.
However, where superspinning fails to be twistable, frame spinning does

allow a twist if the manifold Mm admits a map Mm → S1 that cannot be
deformed into the trivial map to a point. Just as for twist spinning, this map
provides us with enough data to alter the gluing map of the construction by
twisting the longitude coordinate of BnK as we glue. The gluing of the latitude
coordinates is once again controlled by the framing φ of M .

So let us be specific. Recall that, in frame spinning, we used the framing of
Mm in Sn+m−2 along with the trivial framing of Sn+m−2 in Sn+m to identify a
neighborhoodN ofMm in (Sn+m, Sn+m−2) with the productMm×(Bn, Bn−2).
Then we replaced M × (Bn, Bn−2) with M × (BnK , B

n−2
K ) and glued it back in

along the same framing. Suppose, however, that we are given a map τ : Mm →
S1. Then we can use this map to augment the gluing with a twist along the
longitude. This is done as follows: we use the framings to assign coordinates
(x, z, θ) to the boundary M×(Sn−1, Sn−3) of the neighborhood N . Here x ∈M
and (z, θ) are latitude/longitude coordinates on Sn−1 such that the unknotted
Sn−3 is the generalized pole. The boundary of the complement of N in Sn+m

possesses the same coordinates, as these two boundaries agree. Again, we cut
out N and replace it with Mm×(BnK , B

n−2
K ), which we glue back in, but instead

of gluing the point (x, z, θ) in ∂(Sn+m−N) right back to its counterpart in ∂N ,
we glue it by the attaching map f : (x, z, θ) → (x, z, θ + τ(x)), where again the
addition in S1 is standard angle addition.

In other words, we form

[(Sn+m, Sn+m−2) −Mm × (Bn, Bn−2)]
⋃

f

[Mm × (BnK , B
n−2
K )],

where
⋃

f indicates a gluing via the attaching map given above.
This construction was introduced by the author in his dissertation. He goes

on to calculate various algebraic invariants of frame twist-spun knots, including
Alexander polynomials in [15] and the knot groups in [14]. If the map τ is
homotopic to the trivial map, we recover Roseman’s frame spinning. If M = S1

and τ is the map that wraps the circle around itself k times, we recover Zeeman’s
k-twist spinning.

5 More general spinnings

5.1 Deform spinning

An even more general class of spinning constructions is known to exist. The
first example, roll spinning, was introduced in a short paper by Ralph Fox in
1966 [13]. Unfortunately, Fox provided only one example and did not include
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specific details of the construction, which has led to some contention over the
exact definition of roll spinning. In 1979, R.A. Litherland [30] provided a formal
definition and a generalization, deform spinning, of which both roll spinning and
twist spinning are special cases. According to Masakazu Teragaito [38], Fox’s
original construction is actually an example of what Litherland calls symmetry

spinning, but by now Litherland’s definition of roll-spinning is the one that has
caught on.

Deform spinning is another construction that takes n-knots to n+ 1-knots.
The tersest description of deform spinning comes from once again thinking

of a simple spin as a special case of a frame spin, i.e. as

[(Sn+1, Sn−1) − S1 × (Bn, Bn−2)]
⋃

∂

[S1 × (BnK , B
n−2
K )],

where
⋃

∂ indicates gluing along the common boundary in the obvious (un-
twisted) fashion. Suppose now that we have a 1-parameter family fψ of defor-

mations of BnK rel ∂BnK such that f0 is the identity and f2π(B
n−2
K ) = Bn−2

K . The
family fψ should also depend piecewise linearly on the parameter ψ. Litherland
then describes the deform spin of K as

[(Sn+1, Sn−1) − S1 × (Bn, Bn−2)]
⋃

∂

(S1 ×BnK ,
⋃

ψ∈S1

ψ × fψ(Bn−2
K )),

In other words, as we spin, we deform the knotted ball according to fψ. Note
that in this description S1 × BnK is the ordinary undeformed product, but we
equally well could have used the deformation of the pair; Litherland demon-
strates the equivalence of the two approaches and uses it to redefine the deform
spin in terms of crossed products of spaces. However, for our purposes in the
following sections, it is perhaps easier to maintain the original viewpoint. In
this language, it is easy to observe that simple spinning corresponds to setting
fψ equal to the identity for each ψ, while k-twist spinning corresponds to setting
fψ equal to rotation of the longitude coordinate of BnK by kψ (technically, to
get around the fact that we need to keep the boundary of BnK fixed, we rotate a
smaller interior ball allowing the region between the two boundaries to become
stretched around; however, it is clear that so long as the ball being rotated
encompasses the knotted part of Bn−2

K , this does not affect the final construc-
tion of the deform spun knot, and we recover our original description of twist
spinning).

Litherland also shows that, thinking of the collection fψ as a PL map
f : BnK × [0, 2π] → BnK × [0, 2π], the type of the deform spun knot is depen-
dent only upon the pseudo-isotopy class of f rel ∂BnK as a map of pairs (f
and g are pseudo-isotopic rel ∂BnK as maps of pairs if there is a PL homeomor-
phism H : (BnK , B

n−2
K ) × [0, 2π] → (BnK , B

n−2
K ) × [0, 2π] such that H |Bn

K
×0 and

H |∂Bn
K
×[0,2π] are the identity maps and H |Bn

K
×2π = f2πg

−1
2π .)

We can now define roll spinning of a classical knot K : S1 →֒ S3. We present
a new geometric description of Litherland’s construction that we hope will be
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valuable to our readers. This interpretation of role spinning is due independently
to Dennis Roseman.

Recall our definition of (B3
K , B

1
K) by removing an unknotted ball neigh-

borhood of a point of K. Since we are dealing with a classical knot, we can
parametrize S1 by angles ψ and consider (B3

K,ψ, B
1
K,ψ) built as the complement

of the neighborhood of the point K(ψ) of the knot. We have already noted
that for different choices of ψ, the pairs (B3

K,ψ, B
1
K,ψ) are all PL homeomorphic.

Nevertheless, starting from a fixed base, say ψ = 0, we can view the collection of
homeomorphisms fψ : (B3

K,0, B
1
K,0) → (B3

K,ψ, B
1
K,ψ) as a one parameter family

of deformations and use this to deform spin. This construction is roll spinning.
k-roll spinning can be created by rolling the basepoint around the knot k times.
A more technically precise formulation is given in [30] (see also [38]). Note that
this construction depends on a choice of framing of K in order to control the roll
(in the aeronautical sense) of the ball as it traverses the knot; thus one usually
defines rolling with respect to some fixed standard framing ofK, usually the one
in which K and a longitude of the boundary torus of the framed neighborhood
of K do not link. If we use a different framing, we will twist as we roll; this
leads to twist roll-spun knots or, more specifically, l-twist k-roll spun knots.

Figure 13: Rolling the trefoil. The circle in these pictures representsB−. Rather
than moving B−, it is more illustrative to hold it fixed and roll the knot around
it! In fact, this roll of the trefoil is twisted with respect to the unlinked longitude.
Furthermore, due to the symmetries of a torus knot, the rolling part of the
deformation has no effect, only the twisting. Can you see why? Nonetheless,
this diagram illustrates the idea of the procedure.

Litherland treats another example of deform spinning that applies only to
knots which possess symmetries, i.e. periodic homeomorphisms Sn → Sn that
take the knot to itself. This construction is called symmetry spinning. However,
the construction is slightly technical, involving certain branched covers of the
sphere, and so we omit a detailed description. The interested reader is referred
to [30] or [21], in which Taizo Kanenobu utilizes symmetry spinning to obtain
some counterexamples to the 4-dimensional Smith conjecture.

Unfortunately, roll-spinning cannot be generalized to roll spinning of classical
knots about higher dimensional spheres. As for twist-spinning, this is because
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πn(S
1) = 0 for n > 1, so any attempt to parametrize rolling by a sphere of

dimension > 1 will re-create superspinning. Similarly, since the nth homotopy
group πn(S

1 × S1) is trivial for n > 1, super twist-roll spinning is also nothing
new. However, Litherland does discuss generalizations such as roll spinning
higher-dimensional knots about S1. This utilizes an isotopy of Sn−1 just as
classical roll-spinning utilizes the isotopy that rotates S1. Rather than visit the
technical details here, we will jump right to a more general construction.

5.2 Frame deform spinning

Putting together frame spinning and deform spinning, we can introduce a new
knot construction, frame deform spinning (this construction is implicit in a
remark in [35, §3]). By now the method may be obvious: we begin with an
n-knot K and an m-manifold Mm embedded with framing in Sn+m−2, which
itself sits unknotted and with the standard framing in Sn+m. We also posit a
map f from Mm into the space of PL homeomorphisms of BnK rel ∂BnK , taking
x ∈Mm to fx. Then we can define the frame deform spin of K as

[(Sn+m, Sn+m−2)−Mm× (Bn, Bn−2)]
⋃

Mm×Sn−3

(Mm×BnK ,∪x∈Mmfx(B
n−2
K )).

If K is a classical knot and there is a non-trivial map g : Mm → S1, we can
compose g with the 1-parameter family of deformations used to define roll-
spinning to create frame roll spinning. We could also use a map M → S1 × S1

to define frame twist-roll spinning.
An example of frame deform spinning due to Roseman provides a higher-

dimensional version of rolling. In classical rolling, we created a 1-parameter
deformation by moving the point at which we cut out (B3

−
, B1

−
) around the

knotted circle K. What if we similarly moved the excision point around a
higher-dimensional knot in order to roll spin a knotted Sp about Sp? The
difficulty is that as we move the point around, we really need a frame on it to
describe precisely how the ball Bn

−
is situated in Sn so that we can say exactly

how the complement is deformed under the motion. For non-deform spinning,
the frame is irrelevant since all are equivalent by a homeomorphism and so yield
the same spun knots. For roll spinning, however, the choice is relevant as our
deformation depends directly on the global movement of the frame. In classic
rolling, this frame was completely determined by our previous considerations -
by the amount of twisting orthogonal to the knot and by the direction of the
rolling (positive or negative). For higher dimensions, our previous considerations
eliminate twisting and allow us to find a trivial normal framing, orthogonal to
the knot, but the framing parallel to the knot will exist at all points only if the
sphere is parallelizable. Thus this type of rolling is only possibly if p equals 1,
3, or 7, yielding knots of dimension 4, 8, or 16. Very little is known as yet about
this construction and the knots it generates.
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6 Other constructions

We close by briefly mentioning two other known constructions of knots related
to spinning.

The first, due to John Klein and Alexander Suciu [27], is called diff-spinning.
It is a modified version of frame spinning in the smooth category in which the
manifold Mm is altered by a diffeomorphism in the process of spinning. Klein
and Suciu used diff-spinning to demonstrate the existence of inequivalent fibered
knots whose homotopy Seifert pairings are isometric. It had been shown by
Michael Farber in [9] that the homotopy Seifert pairing uniquely determines a
fibered knot, provided the knot is sufficiently simple (i.e. its complement has
the homotopy type of S1 in sufficiently many dimensions). The construction of
Klein and Suciu showed that Farber’s result does not extend for all knots.

To define diff-spinning, note that the complement of the frame spin about
Mm is diffeomorphic to the union of Bn+m−1×S1 with Mm×X , where X is the
complement of K (see [27] for a diagram illustrating this). Suppose now that
we are given a self-diffeomorphism Φ of Mm that extends to a diffeomorphism
Φ̄ of Bn+m−1 ⊃ Sn+m−2 ⊃ Mm. Then, roughly speaking, the diff-spin is
formed by removing this complement and replacing it with the twisted product
(Bn+m−1 ×Φ̄ S

1)
⋃

(Mm ×Φ X). If Φ satisfies a certain algebraic condition (see
[27, §5]), this space will also be the complement of a knot, the diff-spun knot.

Spinning in the smooth category is also considered in a low-dimensional con-
text by Ronald Fintushel and Ronald J. Stern in [11]. Their construction, called
rim surgery, begins with a surface Σ embedded in a smooth 4-manifold X . The
procedure then is to spin a classical knot K ⊂ S3 around a certain curve em-
bedded in Σ. The technical details are essentially those we have seen before:
a trivial neighborhood pair of the curve is removed, and it is replaced with a
neighborhood pair whose fibers are (B3

K , B
1
K). The result is a new surface em-

bedding (X,ΣK). Under certain assumptions, (X,ΣK) will be homeomorphic to
(X,Σ), but if the Alexander polynomial of K is nontrivial, (X,ΣK) and (X,Σ)
will not be diffeomorphic! More generally, (X,ΣK1

) and (X,ΣK2
) will be diffeo-

morphic only if the two knots K1 and K2 have the same Alexander polynomial.
This is proven as an application of Seiberg-Witten theory. Generalizations of
this construction and various applications have been considered by a variety
of authors, including Fintushel and Stern [12], Stefano Vidussi [39, 40], Sergey
Finashin [10], and Hee Jung Kim [26], who considers a twist-spinning analogue.

One last type of spinning, also introduced by Roseman in [35], is what he
calls “spinning a knot about a projection”. We shall refer to this as projection

spinning. This clever construction involves many technical details, but, very
roughly, the idea is to spin about an immersed manifold M , rather than an
embedded one as we did for frame spinning. Let Σ denote the singular set
of the embedding, i.e. the image of the points of M for which the immersion
is not 1-1. Let N(Σ) be a neighborhood of Σ in Sn. Outside of N(Σ), the
construction is the same as for frame spinning, i.e. each unknotted fiber pair in
the tubular neighborhood of M −N(Σ) is replaced with (BnK , B

n−2
K ). However,

N(Σ) itself is broken up into sets that are homeomorphic to balls Bn and such
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that the intersection of Bn with the immersed M is a collection of hyperplanes.
These balls with hyperplanes are then used as the data to create multi-knots, in
which some knot K is blended together with itself in multiple directions. These
ball neighborhoods are then replaced with the multi-knots. If M is embedded,
we recover frame-spinning. We refer the reader to [35] both for the technical
definitions of projection spinning and for some nice graphical illustrations of the
process.

In Remark 7 of [35], Roseman notes that it is further possible to deform
projection spin, perhaps the ultimate in knot spinning constructions!
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