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1 Introduction

Knot and link complements enjoy a geometry of crystalline beauty, rigid
enough that simple cut-and-paste techniques meet geometrical as well as
topological needs, yet surprisingly complex in their inexhaustible variety.
The cut-and-paste approach makes computer exploration of their geometry
easy: link complements become finite unions of tetrahedra, handled in a
purely combinatorial way, with no need for the messy machinery of differ-
ential geometry.

The present article begins with the geometry of 2-dimensional link com-
plements in Section 2 to provide an overview of all the main ideas. Section 3
explains an efficient algorithm for triangulating 3-dimensional link comple-
ments, Section 4 shows how to compute the hyperbolic structure, and finally
Section 5 shows how the hyperbolic structure deforms to yield hyperbolic
structures on closed manifolds obtained by Dehn filling.

Readers may consult other chapters in this volume for richer discussions
of hyperbolic knots and links [1] and Dehn fillings [2]. Hyperbolic structures
have found applications in knot tabulation [3] and more generally provide
a fast and effective way to test hyperbolic knots and links for equivalence
[4] and to compute their symmetry groups [5, 6] and other invariants [7].
The computer program SnapPea [8] implements these applications based on
the foundation described in the present article. The SnapPea source code
contains detailed explanations of all algorithms used.

Even though the exposition in the present article is original, most of the
mathematics was born in the work of Bill Thurston. Thurston’s informal
1979 notes (see also [9, 10]) contained the theory of hyperbolic knots and
links, hyperbolic Dehn filling, and in particular his simple and elegant system
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etc.

Figure 1: Topological classification of 2-dimensional links. An n-component
link consists of n 0-spheres on a 2-sphere.

etc.

Figure 2: Geometric structures on 2-dimensional link complements. The
0-component link complement has spherical geometry and the 1-component
link complement admits Euclidean geometry. All the rest admit hyperbolic
geometry.

(explained here in Sections 4 and 5) for finding hyperbolic structures in terms
of complex edge angles.

2 Two-dimensional preview

Before tackling 3-dimensional knots and links, let us review the the 2-
dimensional ones. Their topology and geometry is far simpler, yet the in-
sights they provide will serve us well in the 3-dimensional case.

Just as a 3-dimensional link is a collection of 1-spheres (circles) in a
3-sphere, a 2-dimensional link is a collection of 0-spheres (pairs of points)
in a 2-sphere. The classification of 2-dimensional links is easy: two links
are equivalent if and only if they have the same number of components
(Figure 1).

Each link complement admits a constant curvature geometry. The 0-
component link complement, which is simply an unpunctured 2-sphere, al-
ready has spherical geometry. At first glance the remaining n-component
link complements, which are punctured 2-spheres, also seem to have spher-
ical geometry, but these geometric structures are disallowed because they
are incomplete. Many formal definitions of completeness appear in the lit-
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Figure 3: The complement of a 2-component link splits into four ideal tri-
angles. The small symbols show how to re-glue the edges in pair to recover
the original manifold.

erature, but intuitively a surface is incomplete if a traveller starting at some
point on the surface can reach an “edge” (either a ragged edge or a bound-
ary) within a finite distance. Conversely a surface is complete if a traveller
starting at any point on the surface can travel any finite distance in any
direction without hitting an edge. In the case of a punctured 2-sphere, a
traveller easily reaches a puncture, so the surface is incomplete.

To construct a complete geometric structure on the 1-component link
complement, pull the link itself (the pair of points) to infinity, dragging the
link complement along with it (Figure 2, second frame). The link comple-
ment becomes an infinite cylinder, which has locally Euclidean geometry
(constant zero curvature) and is complete.

Following the same technique, take the 2-component link and pull the
link itself (two pairs of points) to infinity. Intuitively the stretched out
link complement looks hyperbolic (Figure 2, third frame). To make this
rigorous, cut the link complement into four ideal triangles (Figure 3, left)
and then define the hyperbolic structure on the link complement to be the
union of four hyperbolic ideal triangles with edges identified (“glued”) in
the appropriate way (Figure 3, right).

More generally, for every n > 1 the n-component link complement splits
into a union of ideal triangles which then defines a hyperbolic structure
on the link complement. The hyperbolic structure is never unique, but a
simple Euler number argument shows that the number of ideal triangles
must be exactly 4(n − 1). An ideal triangle has area π, so the total area of
the n-component link complement is 4π(n − 1) no matter what hyperbolic
structure is chosen.

Assuming we identify the ideal triangles’ edges midpoint-to-midpoint
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Figure 4: Ideal triangles are rigid; any two are congruent. Proof: Given
any two ideal triangles, move one so that one of its edges coincides with
the corresponding edge of the other, and then slide it along until the third
vertex coincides as well (left panel). The gluing between ideal triangles is
flexible — two neighboring triangles may slide along each other like the two
sides of the San Andreas fault (right panel).

(the midpoint of an edge being the edge’s intersection with an orthogo-
nal line of mirror symmetry), the hyperbolic structure is complete, and is
therefore called a complete hyperbolic structure. The parts stretching off to
infinity are called cusps.

On the one hand, ideal triangles are rigid (Figure 4 left). On the other
hand, the gluing between two ideal triangles is flexible: each edge is infinitely
long so the neighboring triangles may slide past one another (Figure 4 right).
These 2-dimensional facts are exactly the opposite of the situation in 3 di-
mensions, where ideal tetrahedra are flexible but the gluings between them
are rigid. Nevertheless, deforming the hyperbolic structure produces analo-
gous results in both 2 and 3 dimensions, and so examining the 2-dimensional
case in this Section will provide insight into the analogous 3-dimensional re-
sults in Section 5.

To deform a hyperbolic structure, start with one of the cusps. Slice the
cusp open (Figure 5). Gluing opposite edges of the sliced-open cusp straight
across (Figure 5 top) would restore the cusp to its original condition, but
gluing opposite edges with a shift (Figure 5 bottom) yields a different result.
If you physically construct a paper model1 of the sliced-open cusp and wrap
it around so that each point on one edge glues to a point on the opposite

1The paper model is of course only an approximation. The real cusp is intrinsically

hyperbolic while your paper model is intrinsically flat. Nevertheless the paper model

suffices for the demonstration at hand. Remember that the width of your paper strip

must shrink exponentially fast as you move along it lengthwise.

5



A B

A’ B’

A B

A’ B’

Figure 5: A sliced open cusp. Glue the edges straight across (top) and the
cusp is complete. Glue the edges with a shift (bottom) and the result is
incomplete.

A
B

A’ B’

Figure 6: Physical realization of a cut-open cusp whose edges are identified
with a shift (Figure 5 bottom). The strip wraps around like a cylinder,
approaching a limiting circle.
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Figure 7: For each 0-sphere (pair of points) in an n-component 2-dimensional
link, shear along an edge connecting the two cusps belonging to that 0-
sphere. Locally the result is as in Figure 6. Globally the result is a closed
hyperbolic surface of genus n with n geodesic circles missing.

edge that’s shifted by, say, 4 cm, you obtain a cylinder (Figure 6). Your
paper strip, if infinitely long, would wrap around the cylinder infinitely
many times, approaching but never reaching a limiting circle.

Globally, for each 0-sphere in an n-component link, pick a geodesic edge
connecting the two cusps belonging to that 0-sphere. Cut, shift and reglue
along each such edge (Figure 7 left). Locally the result at each cusp looks
like Figure 6. Globally the result looks like Figure 7 right. That is, the result
is a surface of genus n with n circles missing (namely the limiting circles of
the former cusps). With foresight we may arrange for the geodesic edges
(along which we cut, shifted and reglued) to be edges of the triangulation.
That is, our original cusped surface was the union of 4(n − 1) hyperbolic
ideal triangles, and we cut, shifted and reglued along edges of that ideal
triangulation. Thus the result (Figure 7 right) is also the union of 4(n −
1) hyperbolic ideal triangles and therefore enjoys a hyperbolic structure,
albeit an incomplete one. The missing circles are geodesics. Adding those n
missing geodesic circles yields a complete hyperbolic structure on the closed
surface of genus n.

In two dimensions most link complements admit a complete hyperbolic
structure. Deforming a complete hyperbolic structure yields a hyperbolic
structure (with missing geodesics) for a closed surface. Both these results
generalize readily to three dimensions.
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3 Triangulation of knot and link complements

Just as every 2-dimensional link complement splits into ideal triangles (Fig-
ure 3), every 3-dimensional link complement splits into ideal tetrahedra. For
now we will work with “topological ideal tetrahedra” — that is, we will vi-
sualize them as ideal tetrahedra but won’t worry about the exact hyperbolic
geometry they carry. The latter will be the subject of Section 4.

The goal in triangulating a link complement is to produce a triangulation
that quickly simplifies down to as few tetrahedra as possible. Minimizing the
number of tetrahedra saves space and computational time, but more impor-
tantly it vastly improves the chances that all tetrahedra will be “positively
oriented”, a condition needed to rigorously guarantee that the subsequent
hyperbolic structure is correct. The triangulation algorithm used in the com-
puter program SnapPea has proven more effective than several alternatives
the author tested, so that is the algorithm presented here.

Technical Note (which the reader may ignore): SnapPea’s algorithm re-
quires a connected link projection. If a given link projection consists of
more than one component, SnapPea does Type II Reidemeister moves to
make the projection connected. In the same spirit, to each obviously un-
knotted component SnapPea does a Type I Reidemeister move to add a
nugatory crossing. Link projections requiring these moves never have hy-
perbolic complements; the moves are needed only for non-hyperbolic knots
and links.

The link complement will have one cusp for each component of the link.
For visual convenience we chop off the cusps. That is, rather than triangu-
lating the complement of the link using ideal tetrahedra, we’ll triangulate
the complement of a tubular neighborhood of the link using truncated ideal
tetrahedra. Once such a truncated ideal triangulation is found, the extension
to true ideal tetrahedra is easy and obvious.

Imagine the tubular neighborhood of the link lying near the equatorial 2-
sphere of the 3-sphere S3. To keep the construction simple and natural, the
triangulation must adhere closely to the link projection itself. To accomplish
this, let us triangulate it in S2 × I rather than in S3 (Figure 8). The two
missing solid balls — one lying to either side of S2×I in S3 — will be added
back later.

To triangulate the link complement in S2×I, cut straight down through
it just as you would cut cookie dough with a cookie cutter. Figure 9 shows
the pattern of the cuts: cut along the centerline of each link component and

8



Figure 8: Imagine the link projection lying near the equatorial 2-sphere of
S3. For convenience we will triangulate the link complement in a regular
neighborhood of the equatorial 2-sphere (topologically S2 × I) and worry
later about the neglected solid balls lying above and below it.

Figure 9: View from above the complement of the link in S2 × I (cf. Fig-
ure 8). Cut straight down through the link complement, with one set of
cuts following the centerlines of the link projection itself while a second set
of cuts follows the dual graph. The resulting pieces are all homeomorphic
(up to reflection).
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Figure 10: The pieces in the decomposition of Figure 9 are all identical.
Each has a square truncated vertex touching the upper surface of S2 × I,
another square truncated vertex touching the lower surface of S2 × I, and
two hemi-cylindrical truncated vertices running along the boundary of the
(excised) tubular neighborhood of the link (far left panel). In addition, each
piece has six regular faces: two squares and four hexagons. Deforming the
two square faces to become narrow rectangles does not change the topology
(center left panel). Collapsing those two narrow rectangles to become lines
(center right panel) yields a polyhedron that is combinatorially a truncated
tetrahedron (far right panel), with four truncated vertices (all triangles) and
six faces (all hexagons).
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also along the dual graph. The resulting pieces are all identical. Figure 10
(first panel) shows one piece. It’s not yet a truncated tetrahedron. It has
four truncated vertices, two of which border the tubular neighborhood of
the knot and two of which border the upper and lower surfaces of S2 × I,
along with six ordinary faces, four of which are combinatorial hexagons and
two of which are combinatorial squares.

Now deform each combinatorial square to become a tall narrow rectangle
(Figure 10 second panel) that finally collapses to a vertical line segment
(third panel). The resulting solid (last panel) has four truncated vertices
(all are triangles) and four ordinary faces (all are hexagons), and is in fact
combinatorially a truncated tetrahedron!

Collapsing all square faces to vertical lines does not change the topol-
ogy of the manifold. If some link component had only overcrossings or only
undercrossings, then collapsing the squares would indeed change the man-
ifold’s topology because we’d be collapsing an embedded cylinder, but the
preceding Technical Note excludes this possibility. Collapsing an embedded
square or a series of embedded squares is safe.

A simple indexing system describes the triangulation in a format amenable
to computer use. Label the four truncated vertices of each tetrahedron with
the integers {0, 1, 2, 3} and label each face with the index of its opposite
vertex. To specify how a face of one tetrahedron glues to a face of another,
simply specify the permutation of the vertex index set {0, 1, 2, 3} induced by
reflecting the vertices of the original tetrahedron across the face in question
onto the vertices of the neighboring tetrahedron.

In general the vertex indices may be assigned arbitrarily, but in the case
of a triangulated link complement we make the convention that vertex 0 is
the truncated vertex at the south pole of S3 (on the bottom of the polyhe-
dron in Figure 10 left), vertex 1 is the truncated vertex at the north pole of
S3 (on the top of the polyhedron in Figure 10 left), and vertices 2 and 3 are
the truncated vertices touching the link ( the left and right hemi-cylindrical
truncated vertices, respectively, in Figure 10 left). With this convention the
symmetry of the decomposition guarantees that all gluing permutations are
the same throughout the triangulation, namely 0123 → 0132.

We now have a nicely triangulated manifold, but we constructed it in
S2×I rather than S3, so in S3 it’s the complement of the link plus two solid
balls. To remedy this problem, drill out a tube connecting the thickened link
to the solid ball at the north pole (thus “cancelling” that solid ball) and a
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Figure 11: A triangular pillow with a pre-drilled tube running through it
provides a tunnel joining two of its truncated vertices.

second tube connecting the thickened link to the solid ball at the south
pole. The easiest way to drill out a tube is to splice into the triangulation a
triangular pillow that already contains a pre-drilled tube (Figure 11). That
is, let F be any 2-cell of the triangulation incident to both the northern
spherical boundary of S2 × I and one of the torus boundary components
of the link complement. If we cut along F , insert an ordinary (un-drilled)
triangular pillow, and reglue, then the topology of the manifold does not
change. But if we instead insert a triangular pillow with a pre-drilled tube
(Figure 11) then the boundary component at one end of the tube gets joined
to the boundary component at the other end of the tube. In the present case
this joins the spherical boundary component at the north pole (resp. south
pole) to the torus boundary of the link, thereby neutralizing the former.

A triangular pillow with a pre-drilled tube can be constructed from two
truncated (or ideal) tetrahedra. Face 0 of the first tetrahedron glues to face
0 of the second tetrahedron via the gluing 0123 → 0213. Face 3 of the
first tetrahedron glues to face 3 of the second tetrahedron via the gluing
0123 → 1023. Faces 1 and 2 of the second tetrahedron glue to each other
via the gluing 0123 → 0213. Faces 1 and 2 of the first tetrahedron remain
unglued and provide the two external boundary faces of the pillow.

Once the two triangular pillows are installed we have a valid triangula-
tion of the link complement. The triangulation contains 4n + 4 tetrahedra,
but the number of tetrahedra decreases substantially when the triangulation
is simplified. Two elementary operations serve to simplify the triangulation:
the first operation replaces three tetrahedra surrounding a common edge
with two tetrahedra sharing a common face, while the second operation

12



cancels two ”flattened” tetrahedra that share two adjacent faces. For an ex-
planation of an effective high-level algorithm governing the application of the
two elementary operations, please see the file simplify triangulation.c in
the SnapPea source code [8]. Note that the high-level algorithm sometimes
requires the inverse of the first operation, which temporarily increases the
number of tetrahedra – by replacing two tetrahedra sharing a face with three
tetrahedra surrounding an edge – but ultimately leads to simplifications.

4 The complete hyperbolic structure

If the link complement admits a hyperbolic structure [1], then the “topolog-
ical ideal tetrahedra” of the previous section may be replaced with honest
hyperbolic ideal tetrahedra.

In principle this is easy: just imagine the topological ideal triangulation
sitting in the hyperbolic manifold in some wiggly way, and pull all its 1-
dimensional edges taut, so that the edges become geodesics running from
infinity in one cusp, though the fat part of the manifold, and back to infinity
either in the same cusp or in a different cusp. Each 2-dimensional face is now
defined by its three geodesic edges, and each 3-dimensional ideal tetrahedron
is defined by its faces.2

In practice we solve for the shapes of the honest hyperbolic ideal tetra-
hedra analytically. The shape of an ideal tetrahedron is determined by
its dihedral angles. By symmetry (Figure 12) opposite dihedral angles are
equal, so three of the angles determine the opposite three. Furthermore,
if we examine a horospherical cross section of a cusp (Figure 13), we may
replace the real dihedral angle with a complex dihedral angle (Figure 14).
The three complex dihedral angles depend on each other: any one of them
determines the other two (Figure 15). Thus a single complex dihedral angle
completely parameterizes the shape of an ideal tetrahedron.

The real dihedral angles surrounding a single edge in a hyperbolic ideal
triangulation sum to 2π. Analogously, the complex dihedral angles sur-
rounding an edge multiply to 1. Figure 16 illustrates how the complex angles
provide more information than the real angles do. In practice one replaces

2If the triangulation is inefficient, with more than a minimal number of tetrahedra, then

there is some danger that one or more of the tetrahedra will become negatively oriented

— in effect the triangulation folds over on itself and then double back at those places,

leaving some points in the manifold covered three times, twice by ordinary positively

oriented tetrahedra and once by a negatively oriented tetrahedron. But we needn’t worry

about this problem here.
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Figure 12: Every ideal tetrahedron has three mutually perpendicular sym-
metry axes. To construct a symmetry axis, pick a pair of opposite edges and
find the shortest geodesic γ connecting them. Because γ is the shortest path
between those two edges, it must meet both the edges at right angles. A
half-turn about γ therefore preserves each edge setwise while interchanging
its endpoints-at-infinity. In other words, a half-turn about γ permutes the
tetrahedron’s ideal vertices and thus defines a symmetry of the tetrahedron.
Elementary symmetry considerations then imply that the three symmetry
axes — corresponding to the tetrahedron’s three pairs of opposite edges —
must meet orthogonally at the tetrahedron’s center.
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Figure 13: In an ordinary tetrahedron (left) the cross section near a vertex
— defined to be the intersection of the tetrahedron with a sphere centered
at the vertex itself — is a spherical triangle. If we move the vertices outward
(center), while keeping the cross section close to the tetrahedron’s center,
then the radius of the sphere must increase, making the cross section flatter.
In the limit as the vertices go to infinity (right) the cross section becomes
completely flat. Such a limiting sphere is called a horosphere and is in fact
a 2-dimensional Euclidean plane sitting in 3-dimensional hyperbolic space.
Even though it is intrinsically flat, the horosphere remains extrinsically con-
vex to compensate for the ambient negative curvature of hyperbolic 3-space.

a

bc

z

Figure 14: Consider more carefully the horospherical cross section (defined
in Figure 13) of the cusp of an ideal tetrahedron. The cross section is a
Euclidean triangle whose three angles are simply the (real) dihedral angles
of the tetrahedron. It turns out to be more convenient to replace each real
dihedral angle θ with a complex dihedral angle z whose argument arg z is
the real dihedral angle θ and whose modulus |z| is the ratio of the lengths
of the adjacent sides (in the example shown, |z| = c/a). In other words, z is
the complex number that rotates one side of the triangle counterclockwise
to an adjacent side, as viewed from the cusp.
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p0

p1

p2

z0

z1

z2

Figure 15: Any one of the three complex dihedral angles z0, z1 and z2

determines the other two. Proof: Position the cusp cross section arbitrarily
in the complex plane and let its vertices be the complex numbers p0, p1 and
p2. The definition of the complex dihedral angle (recall Figure 14) implies
z0 = p2−p0

p1−p0
, z1 = p0−p1

p2−p1
= 1

1−z0
and z2 = p1−p2

p0−p2
= 1

1−z1
= 1 − 1

z0
.

Figure 16: Look at a cusp cross section to see how the dihedral angles meet
near an edge. In a failed attempt at a hyperbolic ideal triangulation (left) the
real dihedral angles do not sum to 2π. In a second failed attempt (center)
the problem is more subtle: the real dihedral angles sum to 2π but the
complex dihedral angles do not multiply to 1 (the sum of their arguments is
correct but the product of their moduli is not). In a valid hyperbolic ideal
triangulation (right) the product of the complex dihedral angles is 1.
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z1

-1
z2

z3

-1
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z6
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z1

-1

z2

z3

-1 z4

-1 z5

z6

-1
z7

Figure 17: The cross section of each cusp is a torus whose fundamental do-
main — viewed in the universal cover — is combinatorially a quadrilateral.
In the special case that the quadrilateral is effectively a parallelogram (left)
the covering transformations are pure translations. In the general case, by
contrast, the quadrilateral is arbitrary (right) and the covering transforma-
tions are similarities, not isometries, of the Euclidean plane. Algebraically,
the rotational-dilational part of a covering transformation may be computed
as a product of complex dihedral angles; the product will be exactly 1 if and
only if the covering transformation is a pure translation.

the product
∏

zi = 1 with its more powerful logarithmic form
∑

log zi = 2πi
to insure that the arguments sum to 2π rather than, say, to 4π or 0. Geo-
metrically this ensures that the sequence of tetrahedra wraps exactly once
around the edge.

Our goal, in geometrical terms, is to take the topological ideal triangu-
lation of a knot or link complement produced in Section 3 and realize each
topological ideal tetrahedron as an honest hyperbolic ideal tetrahedron in
such as way that they fit together correctly around their common edges.
Algebraically, this means we must find complex dihedral angles z for the
tetrahedra such that the edge equations

∑
log zi = 2πi are satisfied. But we

are not quite ready to solve those equations. Even though a simple Euler
characteristic argument guarantees that the number of equations equals the
number of variables, the equations are not independent. Rather the solution
space contains one complex degree of freedom for each cusp (i.e. for each
component of the original link). For now we will resolve this ambiguity by
insisting that each cusp be complete, i.e. that its cross section be effec-
tively a parallelogram (Figure 17 left) rather than some other quadrilateral
(Figure 17 right). Section 5 will explore the more general case in detail.

In summary, to the set of edge equations we add a set of cusp equations
ensuring that each cusp is complete. We then solve the equations using
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Newton’s method and obtain the solution.
In practice the situation is somewhat delicate. When applied blindly,

Newton’s method usually fails. That is, if one begins with, say, regular ideal
tetrahedra (all complex dihedral angles z equal to the sixth root of unity
1
2 +

√
3

2 i) and applies the standard Newton’s method, often the shapes of
the tetrahedra will diverge to infinity or other nonsense values. To avoid
this, one must take two precautions. First, one re-selects the coordinate
system at each iteration of Newton’s method in order to minimize exposure
to singularities and keep the entries in the derivative matrix small. Second,
one trusts the direction of the gradient in Newton’s method but distrusts
its magnitude. Let us consider each of these two precautions in detail.

Choice of coordinates. Complex dihedral angles of z = 0, 1, or ∞ correspond
to degenerate tetrahedra. Near those values, bad things happen. The two
main problems are that (1) some of the entries in the derivative matrix (used
in Newton’s method) approach infinity, and (2) incrementing the solution
can move it too close to a singularity, resulting in wild swings in the real
dihedral angles. Switching the coordinates from the complex dihedral angle
z to its logarithm log z helps a bit. Rather than having two singularities (at
z = 0 and z = 1) embedded in the parameter space, you have only one. The
singularity that used to be at z = 1 is now at log z = 0, but the singularity
that used to be at z = 0 has been happily pushed out to infinity.

This strategy can be further improved by choosing the (logarithmic)
coordinate system based on the current shape of the tetrahedron. The co-
ordinate system is chosen so that the current shape of the tetrahedron stays
as far away as possible from the one remaining singularity in the parameter
space. Specifically, let the three complex dihedral angles be

z0 = z, z1 =
1

1 − z
, z2 = 1 −

1

z
(1)

(note that those expressions are taken directly from the formulas in the
caption of Figure 15) and divide the complex plane into three regions

Region A: |z − 1| > 1 and Re z < 1/2
Region B: |z| > 1 and Re z > 1/2
Region C: |z − 1| < 1 and |z| < 1

Viewed on the Riemann sphere, the singularities at 0, 1 and ∞ are equally
spaced points on the equator, and the Regions A, B and C are separated by
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meridians spaced 2π/3 apart. Points lying on the separating meridians may
be arbitrarily assigned to either neighboring region.

When z lies in Region A (resp. Region B, Region C), let log z0 (resp.
log z1, log z2) parameterize the shape of the tetrahedron.

Proposition. If one chooses coordinates as in the preceding sentence, then
the entries in the derivative matrix remain bounded.

Proof. Each entry in the derivative matrix used in Newton’s method is a
fixed linear combination of the derivatives of log z0, log z1 and log z2 for sev-
eral tetrahedra, so it suffices to show that each such derivative has modulus
less than or equal to one. First compute

d(log z0)

dz
=

1

z
,

d(log z1)

dz
=

1

1 − z
,

d(log z2)

dz
=

1

z(z − 1)
(2)

and then take ratios of the above to obtain

d(log z0)
d(log z0) = 1 d(log z0)

d(log z1)
= 1−z

z

d(log z0)
d(log z2)

= z − 1
d(log z1)
d(log z0) = z

1−z

d(log z1)
d(log z1)

= 1 d(log z1)
d(log z2)

= −z
d(log z2)
d(log z0) = 1

z−1
d(log z2)
d(log z1)

= −1
z

d(log z2)
d(log z2)

= 1.

(3)

If z lies in Region A and we have chosen log z0 coordinates as required, then
the derivatives in the first column of (3) have modulus less than or equal
to 1. This is obvious for the first entry in the column. For the third entry
it’s an immediate consequence of the condition |z − 1| > 1. For the second
entry, note that

|Im z| = |Im (1 − z)|

and
|Re z| < |Re (1 − z)| iff Re z < 1/2

so |z| < |1 − z|.
Similar arguments show that when z lies in Region B (resp. Region C)

the derivatives in the second column (resp. third column) have modulus less
than or equal to 1. Q.E.D.

Theoretical Note #1: The computed dihedral angles, given by the imaginary
parts of log z0, log z1 and log z2, are not a priori limited to the range (0, π).
However, only when they fall in the range (0, π) does the computed solution
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z

10

Figure 18: Do not let Re(log z) or Im(log z) change by more than 1/2 during
a single iteration of Newton’s method. Our choice of coordinates (in Region
A, B or C) guarantees that the parameter z lies in the shaded region relative
to the chosen coordinates, away from the singularity at z = 1 or log z = 0.
More precisely, all points in the shaded region satisfy |Im(log z)| ≥ π/3 > 1,
so the restriction |∆Im(log z)| ≤ 1/2 keeps z safely away from the singularity
at z = 1. Similarly the restriction |∆Re(log z)| ≤ 1/2 keeps the solution from
approaching the singularities at z = 0 or z = ∞ too quickly.

have a direct geometrical interpretation as a union of ideal tetrahedra com-
prising a cusped hyperbolic 3-manifold. When some or all of the angles fall
outside the range (0, π) the situation is more complicated: in most cases the
hyperbolic structure still exists and has the computed volume but in rare
cases spurious non-geometric solutions occur.

Theoretical Note #2: I briefly entertained the idea of finding a single co-
ordinate system that avoids all three singularities. Unfortunately Picard’s
Little Theorem shows that this is not possible for an analytic function. It
might be possible for a nonanalytic function — perhaps a simple function of
z and z̄ — but I haven’t pursued this idea and in any case such a function
wouldn’t be conformal.

Avoiding singularities. When applying Newton’s method to find a hyper-
bolic structure, one trusts the direction of the gradient but distrusts its
magnitude. More precisely, one insists that neither the real part nor the
imaginary part of the parameter log z change by more than 1/2 for any
tetrahedron. This restricts the change to a limited zone (Figure 18) and
in particular keeps the parameter well away from the one singularity that
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remains in the parameter space (at z = 1 or log z = 0). If Newton’s method
calls for a change exceeding those limits, then we rescale the proposed change
(for all the tetrahedra, not just the offending one) so that the largest change
in any Re(log z) or Im(log z) is 1/2.

5 Hyperbolic Dehn filling

Section 2 showed how to construct a hyperbolic structure on the complement
of a k-component link of 0-spheres on a 2-sphere (k ≥ 2) and then went on
to show how deforming the hyperbolic structure (Figures 5 and 6) yields a
hyperbolic structure on a closed surface of genus k with two closed geodesics
missing (Figure 7). That was 2-dimensional hyperbolic Dehn filling. Three-
dimensional hyperbolic Dehn filling is similar: deforming the complete hy-
perbolic structure on a k-component link complement (Section 4) will yield
a hyperbolic structure on a closed manifold with k closed geodesics miss-
ing. In spite of the strong analogy between 2-dimensional and 3-dimensional
hyperbolic Dehn filling, there are nevertheless a few differences. In the 2-
dimensional case the ideal triangles were rigid while the gluings between
them were flexible, whereas in the 3-dimensional case the shapes of the
tetrahedra themselves are flexible while the gluings between them are rigid.
More interestingly, in the 2-dimensional case different deformations all gave
the same topological 2-manifold (namely the closed surface of genus k, once
the k missing geodesics are filled in), whereas in the 3-dimensional case
different deformations give topologically distinct 3-manifolds (filling in the
missing geodesics realizes a Dehn filling on the link complement, with the
Dehn filling coefficients depending on the deformation — more on this be-
low).

The cut-open 2-dimensional cusps of Figure 5 become, in three dimen-
sions, solid structures resembling the Eiffel tower (Figure 19). If the cusp
cross section is effectively a parallelogram (Figure 17 left) the sides of the
Eiffel tower match straight across (Figure 19 left) in the sense that people
travelling across one face of the tower will re-enter the opposite face on the
same level at which they left. This condition ensures that the hyperbolic
structure is complete. If, on the other hand, the cusp cross section is not
a parallelogram (Figure 17 right), then the sides of the Eiffel tower match
with a vertical offset (Figure 19 right). For example, travellers leaving the
tower at point B on one level will re-enter at point B′ on a lower level. Note
that the width w of the upper quadrilateral’s long side equals the width w′
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Figure 19: A cut-open 3-dimensional cusp looks like an infinitely tall Eiffel
tower. The cross sections are all quadrilaterals, which are similar to one
another and whose size shrinks exponentially fast as you travel upward, in
strong analogy to the cut-open 2-dimensional cusps of Figure 5 whose cross
sections are line segments shrinking exponentially fast. The cusp on the left
has a parallelogram cross section (cf. Figure 17 left), while the cusp on right
has a generic cross section (cf. Figure 17 right).

of the lower quadrilateral’s short side.
Henceforth we will restrict our attention to the case that the offset in

one direction is a rational multiple of the offset in the transverse direction
(Figure 20). Cutting along a consistent set of cross sections (like those
illustrated in Figure 20) splits the cusp into an infinite set of bricks, all of
equal height. Ignore for a moment the bricks’ freshly cut top and bottom
faces, and instead glue them together along their side faces. The result will
be a solid cylinder (Figure 21) with infinitely many progressively narrower
bricks spiraling in towards the center. The vertical geodesic at the exact
center is missing, and indeed plays the role in three dimensions of the missing
geodesics in Figure 7. Restoring the gluings on the bricks’ top and bottom
faces converts the cylinder into a solid torus, still with its central geodesic
missing. Typically the cylinder’s bottom glues to its top with some nonzero
twist.

Filling in the missing geodesic at the center of the solid torus (Figure 21)
realizes a Dehn filling on the link complement. To read off the Dehn filling
coefficients, simply note how a meridian of the solid torus wraps around the
cusp. In the example shown (see Figure 22 for a top view) any topological
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Figure 20: In this example a traveller going to the left and returning from the
right (black arrow) drops down two levels, while a traveller going towards
the front and returning from the back (white arrow) goes up five levels.
Because the offsets are rational multiples of each other (5/2 or 2/5) the
cross-sectional quadrilaterals piece together to form a consistent surface. If
the offsets were not rational multiples of each other, no such consistent set
of equally spaced cross sections would be possible.
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Figure 21: Slice the cusp of Figure 20 into pieces along the illustrated cross
sections and then re-glue the resulting pieces according to the identifica-
tions on their left, right, front and back sides. The result resembles a solid
cylinder, with ever smaller pieces spiraling in towards the center.

Figure 22: View the solid cylinder of Figure 21 from above and note the path
of a meridian encircling the missing central geodesic. That meridian defines
the Dehn filling curve, so expressing it relative to the original (meridian,
longitude) coordinates of the knot or link complement immediately gives
the Dehn filling coefficients, in this case (2, 5).
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meridian will wrap 5 times around the quadrilateral’s “long direction” and 2
times around its “short direction”. Typically the “long direction” is chosen
to be a longitude of the original knot or link while the “short direction”
is chosen to be a meridian of the original link, making this a (2, 5) Dehn
surgery.

In practice, of course, we don’t randomly deform the hyperbolic struc-
ture and then wait to see what Dehn filling coefficients emerge. Instead,
we choose the Dehn filling coefficients (p, q) in advance and ask what defor-
mation of the hyperbolic structure will accommodate them. Recall from Fig-
ure 17 that a product of complex dihedral angles gives the rotational/dilational
factor taking one side of the quadrilateral to the other. In Section 4 we in-
sisted that that product be 1; more precisely we replaced the naive product
equation

∏
zi = 1 with the more powerful logarithmic equation

∑
log zi = 0

to guard against stray multiples of 2πi. Here we apply the same technique,
but focusing on the arbitrary quadrilateral (Figure 17 right) instead of the
parallelogram (Figure 17 left). We now get one expression

∑
log zi for the

rotation/dilation in the meridional (“short”) direction and a different expres-
sion

∑
log z′i for the rotation/dilation in the longitudinal (“long”) direction.

Tracing all the way around the loop in Figure 22 returns us to our starting
point with a 2π rotation. The loop consists of p meridians and q longitudes,
so the analytic condition is

p
∑

log zi + q
∑

log z′i = 2πi. (4)

In Section 4 we had supplemented the edge equations with the cusp
equations to solve for the hyperbolic structure on the cusped manifold. We
now instead supplement the edge equations with the Dehn filling equations
(4) to solve for the hyperbolic structure on the Dehn filled manifold.
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