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Introduction 

The problem of calculating volumes of convex polytopes in euclidean, spherical 
or hyperbolic space is a very difficult one. However, every convex polytope admits 
a simplical subdivision, and for n-simplices S (n > 3) the above problem is 
considerably simpler. In the euclidean case the volume is explicitly given by 

Voln (S) = l ldet (Po . . . . .  Pn) l, 

where the vectors Po . . . . .  pn "generate" the simplex S. 
In the non-euclidean case we do not have such an elementary formula for the 

volume of S. Nevertheless, in 1852, Schl/ifli gave a simple description for the volume 
differential d Voln (S) as a function of the dihedral angles Wjk (0 < j < k < n) formed 
by the faces Sj, S~, o r s  (see 1-16, p. 227ff]): 

d V o l n ( S ) = - - I  ~ VjkdWjk, (1) 
n 1 j.k=o 

j<k 

where V1k is the volume Vol~_ 2 (Sj~) of the apex Sjk:= Sj c~ S~ to wjk. Schl~ifli proved 
this formula for spherical simplices. In 1936, H. Kneser gave a second, very skilful 
proof of(l)  (see I l l ]  and [4, Sect. 5.1]) for both the spherical and hyperbolic cases 
(up to a change of sign in the latter case). 

But even for a three-dimensional non-euclidean simplex, the integration of this 
Schl~li differential is practically impossible. In fact, the most basic objects in 
polyhedral geometry are orthoschemes (or orthogonal-simplices) first introduced 
by Schl~fli: An n-orthoscheme R is an n-simplex with vertices Po . . . . .  Pn such that 

span(Po . . . . .  Pi)• . . . . .  P~) for i =  1 , . . . , n -  1. 

The two vertices Po, P~ will play a special role (see 1.2); they are called the principal 
vertices of R. Further it can be shown that R has at most n dihedral angles 
Wo . . . . .  wn_ 1, which are not right angles; they are called the essential angles of R. 
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In the non-euclidean case they determine R uniquely up to isometry, and form a 
system of independent parameters for R, i.e., R = R(wo . . . . .  w,_ ~). 

For three-dimensional spherical orthoschemes, Schliifli was able to integrate 
the volume differential (1). Independently of him, in 1836, Lobachevsky found a 
volume formula for three-dimensional hyperbolic orthoschemes R = R(wo, wl, w2) 
[13]; as a function of three essential angles and a further angle 0, which is related 
to We, w 1, w 2 by trigonometric relations, he obtained the following expression for 
the volume of R: 

where 

~t 

L(0t):= - S log 12 sin tldt 
0 

denotes the Lobachevsky function and 

0 < 0:= arctan n/c~ wl - sin 2 w0 sin 2 w2 
COS w o c o s  w 2 2 

About 1935 Coxeter revived interest in the work of these two mathematicians 
by developing an integration method for non-euclidean orthoschemes of dimension 
three [6], which led to the combination of their results. In Coxeter's method, 0- the 
so-called principal parameter of R-plays a fundamental role, because 0 relates the 
measures of the dihedral angles to the corresponding apices in Schliifli's differential. 
This relation was discovered by W. Maier in the year 1954 [14]. Then, considering 
the essential angles w o, wl, w2 and the principal parameter 0 as four independent 
parameters, Coxeter extends Schliifli's differential by dO such that a complete 
differential form arises which reduces to the volume differential for 0 = O(wo, wl, w2). 
This integration method for orthoschemes of dimension three was generalized by 
BShm in 1962 [4] to spaces of constant nonvanishing curvature of arbitrary 
dimension. 

The purpose of this paper is to derive a volume formula for a new class of 
hyperbolic polytopes, the complete orthoschemes [9], by generalizing the method 
of Coxeter-Brhm appropriately. Complete orthoschemes arise by taking ordinary 
orthoschemes and allowing one or both of the principal vertices (and with them 
possibly further vertices) to lie outside the absolute quadric in real projective 
n-space defining hyperbolic space/-P' as its interior. By cutting off the ideal vertices 
along the polar hyperplanes corresponding to the principal vertices {inasmuch as 
they lie outside the quadric), we obtain convex polytopes in H" which in general 
are no longer simplices, but have metrical properties analogous to those of ordinary 
orthoschemes. 

Every convex polytope with acute dihedral angles, in particular complete 
ortkoschernes, admits a subdivision into finitely many ordinary orthoschemes (see 
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[4, p. 80-81] and [17, Proposition 3.1], or see [16, p. 246]). Since the volume 
functional Vol, operates additively, with (2) one immediately obtains a volume 
formula for every three-dimensional complete orthoscheme/1 as a function of the 

and principal parameters 0' of the subdividing orthoschemes essential angles w k 
R~ (0 < k < 2, 0 < l < N). Using hyperbolic trigonometry, we can reduce this volume 
formula to a relation which depends only on the essential angles of/1, but which 
is very complicated in view of (2). 

Our aim is to show that (2) holds even in the more general context of truncated 
orthoschemes/~ (after a small modification in one particular case). At the end we 
shall evaluate (2) for complete Coxeter orthoschemes, i.e., for the complete 

orthoschemes with natural dihedral angles -~, p E N, p > 2 (see Appendix). Complete 
P 

Coxeter orthoschemes were classified by Im Hofin 1983 [9]; they are the fundamental 
polytopes of a particular class of hyperbolic Coxeter groups, i.e., of certain discrete 
groups generated by the reflections in finitely many hyperplanes of H *. 

1. Complete orthoschemes 

1.1 Hyperbolic space 

Let H n denote the real n-dimensional hyperbolic space. There are various models 
for H n. Here we shall use the following descriptions: 

Let R l'n be the (n + 1)-dimensional real vector space R ~+ 1, together with the 
following bilinear form of signature (1, n) 

(x ,  y ) :=  - x o y  o + x l y l  + "" + xny~, 

Vx = (Xo . . . . .  x~), y = (Yo . . . . .  y~)eR~+ 1. 

Then we can identify 

H ~ = { x e R l " ~ l ( x , x )  = - 1, x o >0} 

{x~R~+l t 2 2 2 _  1,Xo >0}.  = - X o + X  1 + . . .  + x  n - -  _ 

If we interpret this in real projective n-space p n  we see that H ~ is the interior of 
P~ with respect to the quadric 

QI.,:= { [ x ] ~ P ~ I ( x , x )  = 0}: 

n ~ =:IQ1,, = { [ x ] ~ P * l ( x , x )  < 0}. 

The closure H n of H n in P~ represents the natural compactification of H ~. Points 

of the boundary gH ~ = H n - H" are called points at infinity of H ~. We shall also 
consider points [ x ] e P  ~ with ( x , x ) >  0 which lie outside the absolute quadric. 
These points are called ideal points of H n relative to QI.~, and the set of all such 
points is denoted by AQI,~. A projective k-plane is a k-dimensional projective 
subspace of Pn. For  k = n - 2 or n - 1 we use the terms hyperlines or hyperplanes. 
A hyperbolic k-plane E k is the intersection of a projective k-plane F k with H ~. We 
call F k the projectively closed or hyperbolic k-plane in P~ corresponding to E ~ 
and use the notation Fk=/~k.  
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To every point in P" corresponds a hyperplane in P" and vice versa: Let 
P=[x]~P", A point [y]~P~ is said to be con]u~Tate to [x] relative to QI,. iff 
( x , y )=O holds. The set of all points which are conjugate to P =  Ix] form a 
projective hyperplane 

Fj.:= { [y]eP"l  ( x , y )  = 0}, 

the polar hyperplane to P. P is called the pole to Fe. 

Notations 

pol (P):= polar hyperplane Fe to P, 
pol(Fp):= pole P to Fe. 

The quadric QI,, induces a bijection from the points of P" onto its hyperplanes, 
the polar hyperplanes to the points of P" relative to  Ql,w This map pole~-~ polar 
hyperplane realizes the duality principle of the projective space P" (see [8, Sect. 4E] ). 

Properties (see [8, Sect. 4]) 

(a) The polar hyperplane/~e to PeP" respectively intersects, touches or avoids 
the quadric QI,., iff PeAQI.., PeQt,. or P~IQI... 
(b) If two lines g, h in p2 intersect at S:= g c~ h, then pol (S) is the line determined by 
pol (g), pol (h). 
(c) If a line g in P :  contains the point pol (h) of the line h, then g Z h holds. 

The hyperbolic distance d(P, Q) between two points P = [x] and Q = [y ]~H ~ with 
( x , x )  = (y,  y )  = - 1 is given by 

coshd(P,Q)=i(x,y)[, O<d(P,Q)< oo, 

Let He, H I be two hyperplanes in H" represented in the form (see [16] and 
[8, Sect. 14B] ) 

n,={[x]~H"l(x ,e)=O},  ( e , e ) = l ,  

H: = {[x]eH"[(x, f)  =0},  <f,f> = 1. 

Then the corresponding hyperplanes He,/-I:  in P" intersect in a hyperline 

0~:=/~enB s . 

If ~nIQl,.  ~ 0 ,  then the hyperbolic angle tp(He, H :) is determined by 

cosg(H,,H.t) = I<e,f>l ,  0 __< ~ = 2" 

If a n IQ 1., = 0 ,  then the hyperbolic length p(He, H r) of the common perpendicular 
is given by 

coshp(He, H$)=[(e, f ) l ,  O = p < ~ .  

The formulas of  hyperbolic trigonometry can be derived from these definitions. 
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Those relations which we shatl need later can be found in I4, Sect. 4.6-4.7], or in 
[15, Sect. 4]. 

1.20rthoschemes 

We denote by X n either the n-dimensional euclidean space E", the n-dimensional 
sphere S n or the hyperbolic space H". 

A convex polytope (or simply a polytope) in X" is the convex hull of finitely 

many points in E n, S" or H". Usually, a three-dimensional polytope is called a 
polyhedron. In particular, a polytope in X" is called a k-simplex (2 < k < n) if it is 

the convex hull of k + 1 points of E", S" or H" not lying in a single (k - l)-plane. 
Combinatoricalty, simplices are the most basic objects, since every polytope in 

X" admits a simplicial subdivision (see [4,p. 36]). However, the geometrically 
simplest polytopes are the orthoschemes (see [4, Sect. 4], as reference for this 
paragraph): 

Definition. A k-simplex R in X" (2 < k < n) is a k-orthoscheme iff the k + 1 vertices 
of R can be labelled by Po . . . .  , P~ in such a way that 

span (Po . . . . .  Pi) 3_ span (Pi,. . . ,  P~) for 1 < i < k - 1. 

Remarks 

The pairwise orthogonal edges P~P~+ I of a k-orthoscheme R (0 < i < k -  1) form 
an orthogonal edge-path. The initial point Po and the final point Pk are distinguished 
in the following way: Apart from certain spherical degenerations there are no right 
planar angles at Po and Pk; at all the other vertices P~, l oe 0, k, there are always 
right angles in a prescribed manner. Po and Pk are called principal vertices of R. 
In the hyperbolic case, at most the principal vertices may be points at infinity. In 
this case, R is called simply or doubly asymptotic. 

Every/-face (2 < l < k - 1) of R is itself an orthoscheme. In particular we denote 
the (k -- l)-face opposite to the Vertex Pi by Ri (0 < i < k). If two/-faces (1 < l < k - 1) 
intersect in a ( l -  D-face F, then the dihedral angle between them is said to be of 
order l with apex F. An orthoscheme R has at most k dihedral angles of order 
k -  1 which are not right angles. Let w~j:=/_(R~,R~) denote the dihedral angle of 
order k -  1 of R between the faces R~ and Rj. Then we have 

7~ 
wi,j=~, if O < i < j - l < k .  

The k remaining dihedral angles w i i+ 1( 0 < i < k - 1) are called the essential angles 
of R. As an abbreviation we write w~:= w~,i+ 1 for i =  0 . . . . .  k - 1 .  Apart from the 
spherical case, the essential angles are always acute: 

/t 
w i < -  for i = O , . . . , k - 1 .  

2 
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Every dihedral angle of order k - 1 of R can be reduced to an angle of first or 
second order with the same measure. Moreover, let us consider a sufficiently small 
ball with center at each vertex Pl, 0 < I < k, such that its surface can be interpreted 
as spherical space of curvature + 1. Then, the intersection of this sphere with the 
cone cn(P,, R~), the vertex figure of Pl, is a spherical (k - 1)-orthoscheme, which is 
called the vertex orthoscheme of P~. Every dihedral angle of order k -  1 with P~ 
belonging to its apex appears as dihedral angle of order k - 2  of the vertex 
orthoscheme of Pt- 

In the non-euclidean case, the essential angles determine the orthoscheme R 
up to a motion and form a complete system of invariants for R. In the euclidean case, 
the essential angles determine the orthoscheme only up to similarity. 

Knowing the measures of the essential angles Wk (O<k<n--1)  of an 
n-orthoscheme R in X", we can decide whether R lies in E ", S" or H". In particular, 
the following theorem holds for n = 3 {see [4, p. 166]): 

Theorem. Let R be a 3-orthoscheme with acute essential angles w o, w a, w 2. Then 

! O, if R spherical, 
cos wl - sin wo sin w2 O, if R euclidean, 

O, if R hyperbolic. 

1.3 Complete orthoschemes 

From now on let R be a hyperbolic n-orthoscheme with vertices Po . . . . .  P,. We 
denote by hi, i = 0 . . . .  , n, the n + 1 supporting hyperplanes of the faces R~ of R in 
H ". Then one has 

h~Zhj for j ~ i - l , i , i + 2  (O<i,j<n). 

Every such hyperplane hi can be written as 

h, = he,:= {[x]eH"l(x,e,) = 0}, 

where e~ is a vector in R 1" with (ei, et) > 0 (see 1.1). Let 

h~ := { [x]eH"l(x, e,) ~ 0} 

denote the two dosed half-spaces bounded by hi. After a suitable choice of 
orientation of the vectors et, it follows that 

R= h: 
i=0 

According to 1.2, only the principal vertices may be points at infinity. Now we 
extend the class of orthosehemes by allowing one or both of the principal vertices 
Po, P,  (and with them possibly further vertices) to lie outside the absolute quadric 
QI,~, and by cutting off the ideal vertices by means of the polar hyperplanes pol(Po) 
and poI(P~) to Po and P,  (inasmuch as they lie outside the quadric): 

Let eo .. . . .  en+2eR 1"~ be n + 3 non-isotropic vectors with 

(et, e ~ ) = 0  for j + i - l , i , i + l  (Indices mod .n+3) ,  (3) 
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and such that 

C:= {xeRl'"l(x,e~> >O,O< i < n + 2} 

contains a non-empty open subset of H A. 
For the projectively dosed hyperplanes Hi:=He,={[x]ePnl(x, el)=O} 

belonging to e~, we find that 

HiZHj for h ~ : i - l , i , i + l  (Indicesmod.n+3).  

Relative to the quadric Ql,n there are the following possibilities [9]: 

1. One hyperplane, say Hn+ 2, lies outside the quadric QLn. 
2. Two successive hyperplanes, say H~+ 1, Hn+2, lie outside the quadric QI.,. 
3. All hyperplanes intersect Q1,, and are hyperbolic. 

Other cases do not occur, since out of two perpendicular hyperplanes at least one 
must intersect the quadric QI.,. 

Now, the hyperbolic hyperplanes H o . . . . .  Hn+d, 0 < d < 2, in the cases 1.-3. bound 
a convex polytope in H ~ (see [17, Sect. 2, Proposition 2.2]). Choosing a suitable 
orientation of their normal vectors e~, (e~, e~ > > 0, we define: 

Definition. The hyperbolic potytope 
n + d  

(3 n?, O_<d_2, 
i=O 

is called a complete (hyperbolic) orthoscheme of dimension n and degree d. 

Remark. For d = 0 the notions of ordinary and complete orthoscheme coincide. 

For d > 0, i.e., for truncated orthoschemes, we define (also [17, Sect. 4]): 

Definition. The convex polytope in P" 

R:= ~ H; ~= N {[x]~e*l<x,e,>~O} 
i=0  t=0  

is called the ideal orthoscheme to/~. 

Remarks 

(a) A complete orthoscheme /~ of degree 2 can be interpreted as an ideal 
orthoscheme/~ with two ideal principal verticesPo, Pn which is truncated by the 
polar hyperplanes pol (Po), pol (P,). Therefore, R is also called doubly truncated 
with continuation R. 

(b) A complete orthoscheme /~ of degree 1 can be interpreted as an ideal 
orthoscheme R with one ideal principal vertex, say P0, which is truncated by 
pol (P0)./~ is called simply truncated with ideal vertex Po and continuation R. 

(c) The notions "dihedral angle of order k", "apex", etc. translate to complete 
orthoschemes according to 1.2. 

(d) Every l-face (2 < l ___ n - 1) of a complete orthoscherne is itself a complete 
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orthoscheme. This follows easily from the above definition using the corresponding 
properties of the associated ideal orthoscheme according to 1.2. 

(e) Let ff - ~ +a o + be a complete orthoscheme of degree d, 0 < d < 2. Then, ~ . ~  ( ~ i = O ~ i  
for two non-orthogonal bounding hyperplanes Hi, Hi+ 1 one has one of the 
following cases (see (3) and [17, Sect. 1]): 

(intersect on/~ at an angle < re/2. 

In H" , H~ and Hi+ 1 ~are parallel. 

admit a common perpendicular. 

Since the dihedral angles of order n - 1 of an orthoscheme are reducable to angles 
of second order at edges (see 1.2), for the ideal orthoscheme/~ corresponding to 
/~ we make the following 

Definition. /~ has finite edges (and/~ is of type A) iff every edge emanating from 
the principal vertices Po, P,  intersects the absolute quadric QI.,, hence contains a 
hyperbolic segment. In the other case,/~ is said to be of type B. 

Remark. If /~ is a complete orthoscheme of dimension n and of type B (no 
continuation with finite edges), then, for n ~ 4, /~ has m essential angles with 
n < m < n + 3. For n = 3, however, we have m = n = 3, since the Euler equation for 
compact polyhedrons implies that the number of degrees of freedom equals the 
number of dihedral angles. Furthermore, it is easy to show that for 
three-dimensional complete orthoschemes/~ only three configurations of type A 
and one configuration of type B can occur (see also [1]): 

A1. /~ = R is an ordinary orthoscheme. 
A2. /~ is a simple frustum with ideal vertex Po, i.e.,/~ is simply truncated with ideal 
vertex Po and with continuation/~ that has finite edges. 
A3. /~ is a double frustum, i.e., /~ is doubly truncated with continuation/~ that 
has finite edges. 
B. /~ is a Lambert cube, i.e.,/~ is doubly truncated with continuation/~ whose 
hypotenuse (edge connecting the two principal vertices) lies outside the quadric 
Q~,a. Hence, R is a polyhedron with six Lambert quadrilaterals (i.e. quadrilaterals 
with one acute and three right angles) as bounding faces and with three essential 
angles at prescribed edges (opposite faces are congruent). 

Hence, to calculate volumes of three-dimensional complete orthoschemes, it suffices 
to consider the above four types A1-A3 and B. 

1.4 Complete Coxeter orthoschemes 

Let X" be E ", S ~ or H ~. A polytope in X ~ is called a Coxeter polytope iff it has 
/z 

natural dihedral angles, i.e., angles of the form - ,  pEN, p ~ 2. 
P 

To every Coxeter polytope Pc corresponds a Coxeter graph ,F,(Pc) 
([17, Sect. 5]). In particular, a complete Coxeter orthoscheme/~c of dimension n 
and degree d can be characterized as follows [9]: 
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1. If/~c is an ordinary orthoscheme, the graph -~(Rc) consists of a linear chain of 
length n + 1. 
2. If/~c is of degree 1, ~(/~c) consists of a linear chain of length n + 2. 
3. If/~c is of degree 2, 2~(/~c) consists of a cycle of length n + 3. 

2. The Scldiifli differential formula 

Let ~ (n => 3) denote the set of all convex, compact n-polytopes in H" of 
7~ 

combinatorial type x (see I-l,l) and dihedral angles not exceeding ~. In particular, 

let ~n denote the set of all compact n-simplices in H n. 
It is known that the congruence class of an element of ~ is uniquely determined 

by its dihedral angles ([1,l, Sect. 3, Uniqueness Theorem). Therefore the volume 
function Voln = V o l n l ~  on ~ is a function of the dihedral angles. 

On the set of spherical n-simplices, Schl/ifli established a formula for the 
differential of the volume depending on the dihedral angles 116]. Kneser proved 
the validity of this formula also in the case of hyperbolic n-simplices [1 l-l: 

Theorem (Schl~ifli's differential formula). Let S e ~  ~ (n >= 2) have vertices Po . . . . .  P~ 
and dihedral angles Wjk= /_(Sj, Sk), 0 < j <  k < n, of order n - 1  with apex 
Sjk:=SjC~Sk. Then the differential of the volume function Vol n on cfn can be 
represented by 

dVol~(S)= 1 ~ Voln_2(Sjk)dWjk (Volo(Sjk):= 1). 
1 - nj, k=o 

j<k 

Now, this theorem holds even on the set ~ ,  i.e., if P e ~  is a polytope with 
dihedral angles wj, jeJ,  and corresponding apices Fj, jeJ,  then the differential of 
the volume function Vol~ on ~ can be written as 

d Voln(P) = ~ ~ Voln_ 2(F~)dwj. (4) 
1 - -  n j~j 

Schl~ifli stated this general proposition for spherical polytopes in [16, p. 272-273]. 
He there gives a sketch of the proof which is elementary, but very extensive. 
Schl~ifli's main idea consists in choosing a rule to subdivide (in the sense of 
elementary geometry) polytopes P e ~  into finitely many simplices. Then, taking 
the volume differential he applies the Theorem to the dissecting simplices 
separately. Finally, distinguishing the two cases of dimension n = 3 (here, apices 
are simplices) and n > 3, one can show that the differential expressions in the 
representation of d Vol,(P) can be collected in such a way that they sum up to the 
desired formula. 

The detailed proof can be carried out and translated for hyperbolic polytopes 
of arbitrary dimension. In the special case of complete orthoschemes of dimension 
three, we obtain the following result: 

Theorem L Let ~ be the set of compact complete orthoschemes R in H a of 
combinatorial type ~c with essential anflles w~ and correspondin# apices of lenoth 
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Vj, j = 0,1,2. Further, let Vol a denote the volume function restricted on ~1~. Then 

1 2 

- ~o Vflwj. d Vo13 (/() = ~j= 

This formula for the differential of the volume function on ~K will play an important 
role when calculating the volume of a three-dimensional complete orthoscheme. 

3. The volume of three-dimensional complete orthosehemes 

3.1 The principal parameter 

To extend the notion of principal parameter to complete orthoschemes, we 
distinguish complete orthoschemes of type A and B (see 1.3). 

A. Let R be of type A, i.e. with continuation/~ having finite edges, and with 

_ <-~ k =  O, 1,2. essential angles Wk, 0 <-- Wk = 2' 

Definition A. The principal parameter 0 of/~ is given by 

tan 2 0:= c~ wl - sin 2 wo sin 2 w2, 
COS 2 W 0 COS 2 W 2 

and it is uniquely determined by 0 < 0 < - .  
2 

Remark. We have to check whether the definition of 0"makes sense, i.e. whether 

cos w~ > sin Wo sin w 2. (5) 

In the following we shall analyse this point and deduce further properties of 0. 

Properties of 0 

(a) From Definition A one derives the equations 

COS 2 0 --  COS2 wO COS2 w2 

cos 2 w 0 - sin 2 w 1 + cos 2 W 2 

and 

(6) 

(COS 2 0 - -  COS 2 W0)(COS 2 0 - -  COS 214/2) ~--- COS 2 0(COS 2 0 - -  s in  2 wl) .  (7) 

(b) 0 describes the combinatorial character of/~ as follows: Let /~  be the ideal 
orthoscheme associated to/~ and denote the principal vertices of/~ by Po, P3 and 
the essential angles by wo, wl, w2. If the principal vertex Pk, k = 0 and/or 3, is a 
finite point of H 3, then the vertex figure to Pk (see 1.2) is a spherical 2-orthoscheme. 
If P~ is an ideal vertex (beyond infinity), then pol(Pk)c~/~ is a hyperbolic 
2-orthoscheme (see 1.1). E.g. for k = 0 we have the following picture: 
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wl 

wO 

/ _ ~  p. Po <=.=: 2 

w 2 

P1 
Fig. 1. Simple frustum with ideal vertex Po 

From the known area formulas for non-euclidean triangles we deduce (5), and 
using the notation 

I Wk, k = 1 

l'~k : :  /t ~--Wk, k = 0,2, 

(8) 

7Z 
we obtain the following results for 0 < Wo, wl, w2 < ~ (see [10, Sect. 3.1] ): 

A1. For an ordinary orthoscheme/~: 

7~ 7~ 
wl+w~> ~, k=0,2;  0 < 0 + f f k < ~ ,  k=0,1,2.  (9) 

A2. For a simple frustum/~ with ideal vertex Po: 

w~+w2<~,  O<O+~VO<~<O+CVk<n, k = l , 2 .  (10) 

A3. For a double frustum/~: 

7~ O<O+Wl<--<O+ffk<n, k =0,2. (11) 
2 

B. Let /~ be of type B, i.e., /~ is a Lambert cube (see 1.3). Denote by /~ the 
continuation of R with vertices Po .. . . .  P3. Then the principal vertices Po, P3 are 
ideal points such that the polar planes pol (Po), pol (P3) intersect at an angle, say 
~, on a edge of/~ of length I. This edge is the common perpendicular of the faces 
R~ and/~2 (see 1.1). The angle tr and its apex of length I replace the ideal hypotenuse 
PoP 3 and the purely imaginary dihedral angle w~ as follows (see Fig. 2 and Remark 
(c)): 
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/ / 
J 

1 / 
f / / 

/ ! 
J / / 

/ 
f 

Fig. 2. Lambert cube 

For  a Lambert  cube/~ with essential angles 0 < Wo, ~r, w 2 "~ 7~ - as above we now 
= 2  define: 

Definition B. The principal parameter 0 of a Lambert  cube _R is given by 

7~ tan 2 0:= c~ l -  sin 2 Wo sin 2 w2 with 0 < 0 < ~, 
cos 2 Wo cos z w2 

where I denotes the length of the apex belonging to a. 

Remarks 

(a) The use of the same symbols and names for 0 in the cases A and B is legitimate, 
since hyperbolic geometry admits a complex continuation to the space AQI,. of 
ideal points of H" relative to QI,. ([15, Sect. 5]). Using this concept the dihedral 
angle w~ of/~ at the hypotenuse PoP3 is purely imaginary and corresponds to the 
perpendicular of length I according to 

iWl=l or cosw l = c o s h l .  

(b) Since cosh I > sin wo sin w 2, the quantity 0 is well-defined and satisfies the 
inequalities 

0 > w o, w 2. (12) 

We shall show later, that 0 > a. 
(c) Analogously to (6) we have 

COS 2 0 = COS2 wO COS2 W2 

cos 2 Wo - s inh  2 ! + cos 2 w2" 
(13) 
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3.2 The principal parameter in the asymptotic case 

The asymptotic complete orthoschemes (see 1.2) form the limiting cases between 
the different types A1-A3, B of complete orthoschemes, as will now be seen. 

A. Let/~ be simply or doubly asymptotic. Then the vertex figure to the principal 
vertex Pk, k = 0 or 2, at infinity is a euclidean 2-orthoscheme ([4, p. 190]). Hence 
it follows: 

7~ 
/~ simply asymptotic<~0 = w~ = ~ - wl, k = 0 or 2. (14) 

/~ doubly asymptotic<:~O = Wo = w2 = ~ - 1'71. (15) 

B. The transition from a double frustum (type A3) to a Lambert cube (type B) is 
characterized by w 1 = l = 0. 

3.3 The fundamental relations 

7~ 
The principal parameter 0 relates the essential angles Wk, 0 < W k < ~, to the lengths 

of the corresponding apices as follows: 
A. Suppose/~ is a complete orthoscheme of type A, i.e., the ideal orthoscheme 
/~ with vertices Po . . . . .  P 3  has finiteedges. The following cases can occur: 
A1. For ordinary orthoschemes R = R  the relationship mentioned above is 
already known in the form (see [4, p. 229, (11)]) 

tanhVk=tanO'tan~k o r  Vk=�89 cOs(O-ffk) k=0 ,1 ,2 ,  (16) 
cos (0 + ~k)' 

with the standard notation (8) for ~k" 
A2. Let /~ be a simple frustum with ideal vertex Po. Then, for 1 < i <  3, the 
faces/~/of/~ opposite to Pi are Lambert quadrilaterals. Furthermore, let Uk and 
Vk (l = 1, 2) denote the lengths of the edges of the hyperbolic polar orthoscheme 
pol(Po)c~/~ to Po, and of the spherical vertex orthoscheme, according to the 
following figure: 

v1 Vo 

f i t '  
PO < " ~ . , . - - ~  P2 

V 2 
P1 

Fig. 3 
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By means 
equalities: 

as well as 

of  non-euclidean t r igonometry,  we deduce the following 

COS V 1 = - -  coswl  and cosy2 = cot WoCOt wl, 
sin w0 

COS W 2 - - ,  cosh V o = sin vl 

coshu  t coswl  
sin w2 

COS W 2 
c o s h  u 2 = . 

s i n  w t 

Hence it follows that  

tanh Vo = tan 0-cot Wo, 

Put t ing 

and  sinh V2 = cos Wo 
sinh u 1' 

cot v 2 
and  sinh V 1 = 

tanh u 2 

V o = �89 cos (0 - fro) 
cos (0 + ~o)'  

coth Vk = tan O-tan ~k resp. 

Vk=�89 Cos(O--Wk) for  k =  1,2. 
- cos (0 + ~k) 

~ : =  

vk +i  2 

we finally obtain,  for k = O, I, 2, 

tanh F'k = tan O-tan #k or  

for k = 0  

for k =  1,2, 

Vk= �89 ~ .  

A3. Le t /~  be a double  frustum. Here,  we derive the relations [ t0 ,p .  24] 

tanh 1"1 = tanO. tanwl ,  coth Vk = t a n 0 . t a n ~ k  resp. 

1- ____c~ (0 - ~q) V~ = �89 cos (0 -- ffk) for k = O, 2. 1,'1 
: l ~  cos (0 + ~1)' - cos(0 + ~0 

Put t ing  

( Vk + i g  k = !  

~'k= V k + i  ~- k = O , 2 ,  
2 

we have again, for k = 0, 1, 2, 

tanh Pk = tan O-tan ~k or Vk -- �89 ~ .  
Icos (0 + Wk)l 

it7) 

B. Let  /~ be a L a m b e r t  cube  with essential angles 

(18) 

It 
O < W o , ~ r , W  2 < -  a n d  

2 
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corresponding apices of  length V o, l, V 2 (see Fig. 2.). Then we obta in  the relations 
D0, p. 25]): 

where 

tan a = tan 0" tanh I 

coth Vk = tan O.cot w k for k = O, 2, 

tan 0 = v / ~ s h 2 1  - s i n  2 w o s i n  2 w 2 

COS W o COS W 2 

The first relation leads to the inequality a < 0 asserted in 3.1, B, (b). 
Put t ing 

w~:=a ,  V 1:=1, 

we find that  

(0 ~k) c o s  
tanh Vk = cot  0"tan Wk resp. Vk = �89 

-- cos (0 + ~k)' 

More  conveniently, using the nota t ions  (k = 0,1, 2) 

k = 0 , 1 , 2 .  

7~ 
vk+i2: 

t a n h V k = t a n 0 . t a n ~ k ,  resp. Vk=�89 , (19) 

where 

tan 0 = x/c~ - sin z Wo sin 2 w2 

COS W o COS W 2 

We summar ize  these fundamenta l  relations between the measures  of essential 
angles, apices and principal parameters  of  complete  or thoschemes of dimension 
three as follows: 

L e m m a  1. Let R be a three-dimensional complete hyperbolic orthoscheme. I f  the 

essential angles wk, 0 < Wk < ~, and the lengths ~'k(k = O, 1, 2) of the apices belonging 

to w k are determined according to the formulas appropriate to the type A1-A3 or 
B of R, then 

1~ I c o s ( 0 - ~ k )  I 
tanhVk=tanO'tanff  k resp. V k = ~ l o g - - - - 7 = - - : - : ,  k = 0 , 1 , 2 .  + w )l cos~v 

Remarks 

(a) In  the case of classical or thoschemes  the invariance proper ty  

tanO=tanhl/k.COt~k, k = 0, 1,2, 

of 0 led to the not ion of principal parameter or invariant of the orthoscheme. 
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(b) From Lemma 1 we deduce the following relation which will be of importance 
later 

dVk= sinffkCOSff~ for k=0 ,1 ,2 ,  (20) 
d0 cos 2 0 - sin z ff'k 

where wk is again determined according to the actual type A1-A3 or B of/~. 

7g 
3.4 The cases 0 = 0 and 0 = -  

2 

The values 0 =0  and -~ describe degenerated complete orthoschemes of zero 
2 

3-volume: 

Lemma 2. Let R denote a complete orthoscheme of dimension three with principal 
parameter O. 

A. I f  R is of type A, then 0 = 0 implies Vol3(/~ ) = O. 

B. l f  .~ is of type B, then O= ~- implies Vol3(/~ ) = O. 
2 

Proof. AI. If /~ is an ordinary orthoscheme with vertices Po . . . .  ,P3, it follows 

from Lemma 1 (see 3.3) for 0 < w~ < ~, k --- 0, 1,2, that: 

O=O~Vk=O and coswl=sinwosinw2. (21) 

In this case,/~ degenerates to a point-shaped orthoseheme in H a with edges of 
length zero and euclidean angle configurations (see 1.2, Theorem). In the limiting 

~t 
case v~ k = ~, k = 0, 1,2, the dimension decreases (and therefore Vo13(/~)= 0), since 

then the vertices Po, P1 resp. P2, P3 coincide. 
A2. If/~ is a simple frustum with ideal vertex Po, we derive from 3.1, (10), and 
3.2: 

O < - - w l ,  w2 <O<wo <- .  
- 2  2 

It follows that 

7Z 

O=O=,~r-wt=w2=O, O=<wo < - .  (22) 
2 2 

Moreover,/_,emma 1 shows that 

0=0, o < wo < Vo = o.  23) 

When 0 = 0 and We = 0 the claim follows from case A1. 
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A3. If/~ is a double frustum, we have, according to 3.1, (6) and (11): 

7[ 
0 = 0 =~ ffk = ~ (k = 0, 1,2). (24) 

Hence 0 = 0 again implies a decrease in the dimension of/~ (see A1). 

<~- by 3.2, (13), B. Finally, if/~ is a Lambert cube with essential angles 0 < w k = 2' 

we see that 0 = z iff at least one essential angle, say Wo, is equal to -.7[ But in this 
2 2 

7[ 
case, the two opposite faces of/~ being Lambert quadrilaterals with angle w o = - 

2 
degenerate to a point. Hence, we have again decrease in the dimension of/~. 

QED 

3.5 The Lobachevsky function 

We shall see that the volume formula for a complete orthoscheme of dimension 
three is an expression involving the Lobachevsky function or related functions 
([12, Sect. 4]). 

Let c,~R: 

D e f i n i t i o n .  The function 

~ (2) L(co):= 2n=l =~1 sin n 2(2m~ oS log 12 sin t idt = - e) log 2 + oS log I cos t ldt 

is called Lobachevsky function. 

The Lobachevsky function L(og) is closely related to the Clausen function 
[12, Sect. 4] 

CI(0):= ~ sin(n0) i t 
n = 1 n 2 --'-- - -  log sin ~ dt 

according to 

L(~o) = �89 

and has the following properties: 

V~ER, 

Properties 1-12, Sect. 4]. 

(a) L(co) is well-defined and continuous for all coeR. L(co) is odd and 7j-periodic. 
7Z 

It assumes its maximum value at ogk = ~ + krc, k~Z. 

(b) L(og) satisfies the following functional equation: 
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In particular for n = 2, this relation yields 

7Z 

(c) For actual computation we use the following representation of L(co) for lot < - :  
2 

( ~ 2n(2nB"'(2c~ " ~ - t -  1)!f' L(~o) = o~ 1 - log12o l  + _ 
n = l  

where B,, n ~ 1, denote the Bernoulli numbers. 

3.6 The volume in case A 

Let /~ be a complete orthoscheme of type A with essential angles w k and 
corresponding apices of length Vk (0 < k < 2). Then, the Schlhfli differential formula 
for the volume Vol3(R ) of R yields (see Theorem I, 2): 

1 2 
dVol3(/~ ) = -- ~k~=O Vkdwk" 

Here, the coefficients Vk are given by (see Lemma 1, 3.3): 

Vk = �89 , k =  0, 1,2. 

Hence, they are very complicated expressions in the essential angles of R. Extending 
the above volume differential by the differential of 0, we can carry out the 
integration and identify the result as a formula for the volume of/~. For this 
purpose, we interpret the coefficients as functions of the four parameters 
Wo, Wt, W2, w2:= 0, now regarded as independent from each other. With this in 
mind, we define 

._, cos  (w3 - ~) 
~'ktw0,-.., W3).-- ~log ~ + Wk)' k = 0, 1, 2. (25) 

Hence, it follows that 

~'klw3=0~,o.~,,,~m= Vk(wo, wa, w2), k=0,1 ,2 .  (26) 

Consider the region 

G:= (w o . . . . .  w3)~NglO<wo, . . . ,w3  < 2, w3 ~ - - # k , k = 0 , 1 , 2  , 

and On G, the following differential form 
3 

a : =  ~ Wkdw~, 
k = O  

with 

Wk(wo . . . . .  wa): := - �89 ~'k(wo,..., w3), k = 0, 1, 2. (27) 
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We determine WaeC~(G) such that 

(I) the integrability conditions hold: dW~ _ t3Wk 
OWk ~W~ 

(II) W a = 0 for w3 = O(Wo, wl, w2). 

for O<i,k<3, i4k.  

The definitions (25) and (27) imply that Wk(wo,..., w3) depends only on wk and 
w3, i.e.: 

OWk ~w, 
- = 0  for O<__i,k<=2,i~-k. 

~W i W k 

On the other hand, 3.3, (20), yields 

~Wk_ 1 sinv~kCOSWk for k=0 ,1 ,2 .  
~W 3 2 COS2 W3 _ sin 2 Wk 

Hence, 14:3 is given by (see [2] for the case of ordinary orthoschemes) 

_ 1 ( c~ wa - sin2 wl) cos2 w3 
I4:3 - zl~ ( c o s 2 ~ Y - w ~  ~-n2 w2)" (28) 

It is obvious that W3~CI(G), and that W3 satisfies (I), (II) (see 3.1, (7)). 
The differential form ~2 of (26) restricted to the hypersufface 

w3 = O(wo, wl, w2) in •4 

is identical with the Schl/ifli volume differential d Vol a (/~) and is called the extended 
Schli~fli differential form. 

According to (I), the extended Schl~i  differential form satisfies the integrability 
conditions (I). Hence, following the Theorem of Poincar6 [5, Sect. 2]), it is exact 
and path-independent in every connected component of G. We now perform the 
integration for the different types A1-A3 separately. 

AI. An ordinary orthoscheme R is realizable for essential angle 0 < w o, w 1, w 2 < - 
with (see 3.1, (9), and 3.4) 2 

w o + w l > ~ ,  w l + w 2 > ~ ,  i.e.: 0 < 0 < ~ - - f f k < ~ ,  k=0 ,1 ,2 .  

Therefore we assign to R the convex region of (7 

{,. : : GI:= . . . . .  w a ) 6 ( T l W o q - W l ,  W l - l - w 2 > z , O ~ w a < w o ,  W2, - - w l <  . 

Next we integrate the extended Schl~ifli differential form 
3 

= ~ W~dw~ 
k=0 

over G 1. Let P := (w o . . . . .  wa)e G 1 be arbitrary and Po := (Wo, wl, w2, 0) e G1. Then 
the line integral from Po to P 

W3 
f~l(Wo . . . .  , w~):= ~ W~(wo . . . . .  m)dw~  

0 
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is an antidedvative of f l  in G1. From (28) and 3.5, we deduce that 

1 ~rt ~ i  3 (COS2 W3 - -  s in2 vVl) COS2 w3 

= log (c~ 2 w--~ ~ si--n2-ffo)(COS 2 w--------~ -- ~n 2 w2) dw3 

= 1_ ~3 cos (w3 + ~1) cos (w3 - ~1) cos 2 w3 clw3 
4 o log cos (w3 + v~o) cos (wa - wo) cos (w3 + w2) cos (w3 - w2) 

2 _ l )k  rc + L ( ~ +  
=*~0 ( 4  { L ( ~ l - w 3 " l - f f k )  x -  w 3 -  ~ k ) } + � 8 9  (29) 

Restricting to w3 = O(wo, w~, w2), this formula represents the volume Vo13 (R), since: 
(i) For w 3 = O(w o, w x, w2), Leibniz's Rule yields together with (I), (II) and Lemma 
1, 3.3: 

__ 0 
aF', O f Wa(w ~ . . . . .  wa)dw3 
8wk awk o 

= Jo Ow--i 

= i OW~ , W~(wo, w~, w2, 0) - W~(wo, w~, w2, 0) 
o 8w--'-~ aw3 = 

-----Wk(Wo, Wl, W2,0)= --�89 WI, W2)= oVOI3(R) k=0,1 ,2 .  
~W k ' 

(ii) For  w 3 = 0 = 0, both f'l and VoI3(R) vanish according to (29) and Lemma 2, 
3.4. Hence the volume of an ordinary orthoscheme R is given by the formula (see 
(2) in the Introduction) 

Vo13 (R) L(w o + O) - L(w o O) rc + wl _ 0 + L - -  w 1 - 0 

where 

0 -< 0 = arctan ~/c~ wz - sin 2 Wo sin 2 w2 rc 
cos w o COS w 2 2 

A2. A simple frustum/~ with ideal vertex Po is realizable for essential angles Wo, 
wl, w2 with (see 3.1, (10)) 

~t /t 
0_-<w2 < ~ - w l  < 0  < Wo < ~ .  

Hence we consider the convex region 

~ 2  := (W 0 . . . . .  wa)~.GIO~w2<~-w1 <w3<Wo< 

in G and integrate s  Po:= (wo, n,0,0)EOG2 to P:= (Wo,... ,w3)~G2 along the 
A 
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path POP1, P1P2, P2 P, where 

P1 := (Wo, 2'  0, w3), P2 := (Wo, wl, 0, w3). 

Then according to (25)-(28), the function 
w1 w2 

P2:= I Wl(Wo,~.O,w~)dw~ + I w2(~o,W~,W~,W~)dw~ 
n/2 0 

w3 

+ I W~(wo,~, o, w3) dw3 
0 

is well-defined and an antiderivative of ~'/ in G2. We deduce that 

1 ~ cos (w3 - #1) 1 I l o g - -  
4n/2  COS(W3 + wl) - 4 o [cos(w3 + w2)[ 

1 ~ log c~ w3 dw 3 
q- 4 C0S2 W3 -- sin2 #o 

= + - i 7 t  

k=0 4 ( \ ~  w3 

For w3 = O(wo, wl, w2), we have again k'2 = Vola (/~), since: 
(i) According to (29) and (31) F'I = V2. Hence, it follows that 

~P2_ �89 wl,w2)=c3V~ for k=O,  1,2. 
OWk Ow~ 

(ii) It follows from (31) that V2(wo,~,O,O)=O. 

7[ 
3.4, implies that Vol 3 (/~)= 0 for O(wo, ~, O)= O. 

Hence, for w 3 = 0 (31) yields a volume formula for/~. 

A3. For a double frustum/~, we have the angle conditions (see 3.1, (11)): 

< O<w~ <O<2 - w l  = 2  

Therefore we consider in (~ the convex region 

G3:= (Wo . . . . .  w 3 ) ~ a O < w o ,  W 2 < W 3 < - 2 - w ~ <  . 

(31) 

On the other hand, Lemma 2, 

Let (Wo,..., W3)uG 3. Then (see A2) 
w o  w !  

v3 := I Wo(wo, wl, O,w~)dWo + I w,(o,w.o,o),iwl 
0 x12 

W2 W3 

+ I W2(wo,wl,w2,w~)aw2+ I W~(O,w~,O,w~)dw~ 
0 0 
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is a (well-defined) antiderivative of t2 in G3. It follows (see also A1, A2) that 

1-o Icos(w3-, o) dwo_   lo  cos(w3- 2) 
~'= - 4  Jo l o g i c +  ffo)l 4 ~ cos(w3 + w2) dw2 

1 ~-' (cos 2 w3 - sin 2 if1) cos2 w3 
+ -  j log d w  3 

4 0 (cos  2 w3 - 1)(cos 2 w3 - I )  

= k ~ o ~ { L ( 2 + w 3 + f f , ) + L ( 2 + w 3 - - f f k ) } + � 8 9  (32, 

Hence we have f~3 = ~'2 = VI, and for w a = O(wo, wl, WE): 

(i) According to AI: d~'a _ d Vola (/~) for k = 0,1, 2. 
dwk ~WR 

(ii) From 32 we derive that V3(0,~,0,0)=0. But Lemma 2, 3.4, implies that 

Vo13 (/~) = 0 for 0(0,~, 0) = 0. 

Finally we proved the following 

Theorem II. Let R be a complete orthoscheme of type A with essential an#les Wk, 
7t 

0 < w k < ~,for k = O, 1, 2. Then the volume Vo13 (/~) of R is given by 

where 

0 < 0 = arctan x/cos2 wl - sin 2 w0 sin 2 w2 
cos w o cos w 2 2 

Combining Theorem II with the results of 3.2, A, we obtain the following 

Corollary. (1) l f  R is a simply asymptotic complete orthoscheme of type A, then 

Vo13(/~) = �88 + w2) - L(wo - w2) + 2L(w,)}. (34) 

(2) / f /~  is a doubly asymptotic complete orthoscheme of type A, then 

where 
Wk, k = 1 

Wk :=  71: ~-w~, k = 0 , 2  

(35) 

Using Theorem II we can exphcitly calculate volumes of complete Coxeter 
orthoschemes of type A (see 1.4). Results are listed in the Appendix. 
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Remark. It can be shown that every complete orthoscheme of dimension three 
admits a dissection into exactly three ordinary orthoschemes. In this way, we 
obtain volume formulas for complete orthoschemes using the classical volume 
formula derived by Lobachevsky. In the simplest case of an asymptotic simple 
frustum/~ with ideal vertex Po this method leads to the following volume identity 
(see [10], p. 37ff): 

where 

, / 'sin wx'~ (cosZwz-s in2_wl)<~ 
 =arcta. sinw, coswl 

But the above Corollary, (34), yields: 

l 7c 

This procedure can be applied to all three-dimensional complete orthoschemes. 
From the volume-theoretical point of view, the resulting formulas are not 
interesting. However, we obtain in this way functional equations for the 
Lobachevsky function L(~o). Despite the apparent new form (36) of (34), one can 
show in this case that (36) can be reduced to (34) by means of known formulas 
for the Lobachevsky function (see 3.5 and [12, (4.68), (4.69)]).* Although L(co) is a 
very interesting function in itself, we do not pursue this direction of research. 

3.7 The volume in case B 

Let/~ be a complete orthoscheme of type B, i.e.,/~ is a Lambert cube (see 1.3). We 
<rc 

denote by wk, 0 < Wk = ~, and Vk = 0, 1, 2, the measures of the essential angles and 

corresponding apices of/~ according to 3:3, B. Then, Theorem I in 2 and Lemma 1 
in 3.3 yield for the differential of Vol 3 (R): 

1 2 _ l ,  [cos(0-ffk)  k=0 ,1 ,2 .  
dV~ --2k~0 VkdWk' where V k - ~ l o g  co-0-~+~k), 

* The author is grateful to the refvree for this remark 
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The parameter 0 is given by (see Definition B in 3.1) 

tan 2 0 = c~ I:1 - sin 2 Wo sin 2 w2 

cos z Wo cos 2 w2 

with the properties for k = 0,1, 2 (see 2, 3.1 and 3.3): 

1 . 0 < 0 < ~ ,  O=O(Wo, Wt, W2), O>wk, 

2. tanh V~ = tan ( ~ -  0)" tan Wk, 

3. - -  sin wk cos wk 
t30 cos 2 0 - cos 2 wk" 

Interpreting Wo, Wl, w2,w3"= 0 as four independent variables, we introduce the 
functions (see 3.6): 

l:o~ ::',1 ., , k = 0,  1 ,2 .  ~',(wo,.. wa):= �89 + 

Consider the differential form 
3 

O:= ~ W~clw~ 
k=0  

over the region 

G:= (Wo,...,w3)ER* 0=< w k < w  3 < ~ ,  

with (see 3.6) 

wk(Wo . . . . .  w3):= - �89 f'k(wo, wl, w2, w~)~C~(~), 

k012 t 

k=0,1 ,2 .  

'We determine W3eCt(G) such that (see 3.6): 

(I) l'~ satisfies the integrability conditions in G. 
(II) W3[,~=ecwo,~,w2 ~ = 0. 

Since 0 and the partial derivatives of Wj with respect to wk (see 3.) have a different 
form than the corresponding ones in 3.6, the integration of the integrability 
conditions yields a coefficient W 3 which is different from (28). In fact, we get: 

sin z w 3 cos  4 w 3 
Wa = �88 log (c~ 2 w 0 ,  Cos~ z wa)(cos2 wl _ cos2 wa)(cos2 w2 - cos 2 w3i" (37) 

It is obvious that W3~CI(G), and that (I) is satisfied. Furthermore, with 3.1 (13), 
one easily checkes (II). Hence/2  is exact over G. For the integration over G we 
choose a point P:= (Wo . . . . .  wa)~G with w~ > 0, k = 0, 1,2. Then we integrate 12 

from Q:= (wo, wl, w2, ~)e0G to P. Since 

Wh(Wo, Wt, W2,2)=O, k =0 ,  1,2, 
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we obtain the following antiderivative of O in G (see (37) and 3.5): 

W3 

~:= ~ w3(wo, wl, w2,w3)dw3 
x/2 

] w3 s in  2 w3 c o s  4 w3 

= 4 ~!2 log (c~ 2 Wo _ cos2 w3)(cosZ wl -- cos 2 wa)(cos 2 w2 -- COS 2 w3) dwa 

= ~ k~=o {L(wk + w3) -- L(wk-- w3) } + L(  2-- w 3 ) --�89 L(w3). (38) 

Restricting to the hypersurface w3 = O(Wo, Wl, w2) in R 4, we can identify f~ with 
the volume Vol a (/~) of the Lamber t  cube R, since (see 3.6): 
(i) F o r  w3 = 0: 

f' OVo13 (~) 
-- Wk(Wo, Wl, W2,0) = _ ~ V k ( w o ,  w2) - - ,  k - - 0 , 1 , 2 .  

dWk OWk 

n 
(ii) For  w 3 - - -  we have f ' =  0. On  the other hand, Lemma 2 in 3.4 shows that  

2 
0 = _n implies Vol3(/~) = 0. 

2 
Using 3.5, (b), we derive the following 

Theorem III .  Let R be a Lambert cube with essential angles Wk, 0 ~-~ W k ~ ~, k = O, 1, 2. 

Then the volume Vol 3 (/~) of R is given by 

(R) = ~ f L(w~ + O)- L(w o - O) + L(wx + O)-  L(wl - O) Vo l  3 

with 

0 < 0 = arctan x/c~ Vi -- sin 2 Wo sin 2 w2 < _~ 

cos Wo cos w2 = 2" 

Remarks. (a) By means of  hyperbolic t r igonometry,  the quant i ty  cosh 2 Vx in the 
definition of 0 can be expressed as a function of  the essential angles w o, wt, w2 as 
follows: 

cosh 2 V1 = 1 + �89 2 + (2B sin wl) 2 - A) 

with 

A = cos 2 Wo + cos 2 w2 - B 2, B = cos Wo cos w 2 (40) 
COS w 1 

(b) In  the limiting case w 1 = V1 = 0 (see 3.2, B), the formulas (33) and (39) for 
Vo13(/~ ) of  Theorems II  and I I I  coincide. Apar t  from this special case, these two 
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formulas are conceptually different, i.e., they cannot be related to each other by 
means of suitable functional equations for L(co). This can be proved by evaluating 

~t 
both abstract formulas for the values Wo = wl = w2 = ~ using (40). 

By means of Theorem III we can explicitly calculate volumes of complete 
Coxeter orthoschemes of type B (see 1.4). Results are listed in the Appendix. 

A p p e n d i x  

A. Let/~c be a three-dimensional complete Coxeter orthoscheme of type A with 

essential angles --, Pk > 2, k = 0, 1, 2. 
P~ 

A1. There are exactly 10 realizations of ordinary Coxeter orthoschemes/~c (see 

[7]) with graphs X(/~c) and volumes V(po, p,,p2): 
N 

I~(Rc) V(po, p,, ~) 

8 v (3 ,3 ,6 )  = l .n (~ )  _.= 0.0423 0 - - 0 - - 0 - - 0  

o o o o v ( 3 , 4 , 4 )  = ~.,'z(~) _~ 0 0763 

5 
o - - o  o - - o  V ( 3 , 5 , 3 )  --~ 0.0391 

6 
O - - O  0 - - 0  

5 
0 ~ 0 - - 0 '  0 

6 
0 ~ 0 - - 0  0 

V(3,6,3) = � 8 9  "~ 0.1692 

V(4,3,5) ~" 0.0359 

V(4,3,6)  = s , ~J l (~-)  _ 0.1057 

V(4,4,4) = ~ 3 I ( ~ )  ~_ 0.2290 

5 5 
, o - - o - - o - - o  V ( 5 , 3 , 5 )  ~ 0 . 0 9 3 3  

5 0 
o . o - - o - - o  V ( 5 , 3 , 6 ) - ~  0 . 1 7 1 5  

6 6 
0 0 ~ 0 - - 0  v(6 ,  3, 6) = �89 _~ 0 .2s37 

A2. The simple Coxeter frustums/~c form an infinite class ofpolyhedra (see [9]): 

Pe p~ p2 1 1 > I  I 1 1 

co P0 I~ oo I I 1 o ~ o - - o ~ o - - o  ~ + ~ > ~  
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The vo l u m e  is maximal  for 

o o o o o V(4, 4, 0) = dt -~ 0.4560 

The vo lume  is minimal  for the asymptot ic  Coxeter frustum 

6 V3 1 . . . . . . .  (,3,6) = ~JI(~) _~ 0.~Z3 . 

A3. The double  Coxeter frustums/~c  form an infinite class of  polyhedra I-9]: 

iO . . . . .  O 
�9 % 

r 4 ~�9 

o r 'o 

~ 
Pl 

1 l I I I I p-~ + ~-~ < ~. g + ~ , <  ~- 

. - " ~  7 *, 
�9 �9 

O" " O  r �9 

o o ,0\ 
L §  1 pa p~ ~,  k = l  or 2. 

OO 
O . . . . .  e o O /\:/\- 

0 

O\o /. .\ /- 
Pl 

Fig.  4 

The maximal  vo l u m e  is attained in the asymptot ic  limit case 
c o  

O' ,.O 

O 'O 

The minimal  v o l u m e  is attained in the asymptot ic  limit case 

O - - 0 - - 0 - - 0  , , ( j /  

B. L e t / ~ c  be a three-dimensional  complete  Coxeter  or thoscheme  of  type B with 

essential angles - - ,  Pk > 2, k = 0, 1, 2. These Coxeter  polyhedra form an infinite 
Pk 
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class (see [9]): 
Pl 

i ? ~ ~  
/ �9 

o 2 < p o ,  P l ,P2< ~ .  

,o\ A 
o o 

We get maximal volume for the asymptotic Coxeter polyhedron 

-/ ) 
0 

0" 0 

We get minimal volume for the compact Coxeter polyhedron 

~ . , ,  o 

/ �9 

\ ? V(3, 3, 3) - 0.3244. 

Acknowled#ements. This paper is the first and main part of my thesis (see [10]), which I completed 
under the direction of Prof. Dr. H.-C. Im Hof. [ would like to thank him for many helpful discussions. 
I am also grateful to the co-referee, Prof. Dr. J. B6hm. 

References 

1. Andreev, E.M.: On convex polyhedra in Loba~evskii spaces. Math. USSR Sbornik 10 Vol. 3, 
413-440 (1970) 

2. B6hm, J.: Inhaltsmessung im R ~ konstanter Kriimmung. Arch. Math. II,  298-309 (1960) 
3. B6hm, J.: Zu Coxeters Integrationsmethode in gekriimmten R/iumen. Math. Nachr. 27, 179-214 

(1964) 
4. B6hm, J., Hertel, E.: Polyedergeometrie in n-dimensionalen R/iumen konstanter Kriimmung. Basel: 

Birkhiiuser 1981 
5. Cartan, H.: Differentialformen. Ziirich: Bibliographisches Institut 1967 
6. Coxeter, H.S.M.: The Functions of Schlfifli and Lobatschefsky. In: Twelve geometric essays. 

Carbondale: Southern Illinois Univ. Press 1968 
7. Coxeter, H.S.M.: Regular honeycombs in elliptic space. Proc. Lond. Math. Soc. (3) 4, 471-501 

(1954) 
8. Giering, O.: Vorlesungen iiber h6here Geometrie. Braunschweig Wiesbaden: Vieweg 1982 
9. Im Hof, H.-C.: A Class of Hyperbolic Coxeter Groups. Expo. Math. 3, 179-186 0985) 

10. KeUerhals, R.: Ueber den Inhalt hyperbolischer Polyeder in den Dimensionen drei und vier. 
Dissertation, Basel 1988 

11. Kneser, H.: Der Simplexinhah in der nichteuklidischen Geometfie. Deutsche Math. 1, 337-340 
(1936) 

12. Lewin, L.; Dilogarithms and associated functions. New York Oxford: North Holland 1981 
13. Lobatschefskij, N.I.: lmagin~ire Geomgtrie und ihre Anwendung auf einige Integrale. Deutsche 

Oborsctzung yon H, Licbmann. Leipzig: Teubner 1904 
14. Maier, W.: Inhaltsm~sung im Ra fester Kriimmung. Arch. Math. 5, 266~273 (1954) 



On the volume of hyperbolic polyhedra 569 

15. Roeser, E.: Die nicht-euklidischen Geometrien und ihre Beziehungen untereinander. Miinchen: 
Oldenburg 1957 

16. Schl~ifli, L.: Theorie der vielfachen Kontinuit/it. In: Gesammelte mathematische Abhandlungen 1. 
Basel: Birkh~iuser 1950 

17. Vinberg, I~.B.: Hyperbolic reflection groups. Russ. Math. Surv. 40, 31-75 (1985) 

Received March 3, 1989; in revised form May 31, 1989 


