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A formula for the volume of a hyperbolic tetrahedon

D. A. Derevnin and A. D. Mednykh

Introduction. Calculating the volume of a polyhedron in three-dimensional space is a very old

and difficult problem. The first known result in this direction is due to Tartaglia (1494), who found
the volume of a Euclidean tetrahedron, a result now known as the Cayley–Menger formula. It has

recently been shown [1], [2] that the volume of any Euclidean polyhedron is a root of an algebraic
equation whose coefficients depend on the lengths of the edges and are completely determined by

the combinatorial type of the polyhedron.

In hyperbolic and spherical spaces the situation is more complicated. Formulae for the volume

of a biorthogonal tetrahedron in these spaces have been known since the time of Lobachevskii
and Schläfli [3]. The volume of a regular tetrahedron in hyperbolic space was found in [4], and

the case of a hyperbolic tetrahedron with some ideal vertices was studied in [3]. A formula for the
volume of an arbitrary tetrahedron remained unknown for a long time. A general algorithm for

finding such a formula was outlined in [5]. A complete solution of the problem was obtained fairly
recently by several authors [6]–[8]. All the results are expressed in terms of a combination of

16 dilogarithmic or Lobachevskii functions depending on the dihedral angles of the tetrahedron
and certain auxiliary parameters that are roots of a rather complicated quadratic equation with

complex coefficients. A geometric interpretation of the Murakami–Yano formula [7] is explained
in [9] from the point of view of the so-called Regge symmetry. An excellent account of these ideas

and a full geometric proof of the formula can be found in [10].

We remark that the formula for the volume is much simpler in the case of a symmetric tetra-

hedron, that is, one with opposite dihedral angles equal. This was first discovered by Milnor [11]
for an ideal tetrahedron. It was later shown [12] that a fairly simple formula for the volume also

exists for an arbitrary symmetric tetrahedron with proper vertices.

In this paper we present an elementary integral formula for the volume of a hyperbolic tetra-
hedron, expressed in terms of simple geometric quantities depending on the dihedral angles. The

formula is suitable for implementation on a computer, and the results of [6]–[8] are obtained as a
corollary.

The volume of a hyperbolic tetrahedron. Let T (A,B,C,D,E,F ) be a compact hyperbolic

tetrahedron with dihedral angles A, B, C, D, E, F chosen in such a way that A, B, C lie at one
vertex and D, E, F are opposite to A, B, C, respectively.

Theorem 1. The volume of the hyperbolic tetrahedron T = T (A,B,C,D,E,F ) is equal to

Vol(T ) = −1
4
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where z1 and z2 are the roots of the integrand, given by

z1 = tan
−1 k2
k1
− tan−1 k4

k3
, z2 = tan
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,
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with

k1 = −(cosS + cos(A+D) + cos(B +E) + cos(C + F ) + cos(D+ E + F )
+ cos(D +B +C) + cos(A+E +C) + cos(A+B + F )),

k2 = sinS + sin(A+D) + sin(B +E) + sin(C + F ) + sin(D +E + F ) + sin(D +B +C)

+ sin(A+ E +C) + sin(A+B + F ),

k3 = 2 (sinA sinD + sinB sinE + sinC sinF ),

k4 =
√
k21 + k

2
2 − k23,

and S = A+B + C +D +E + F .

Remark 1. The sums V1 = A + B + C, V2 = A + E + F , V3 = B +D + F , V4 = C + D + E
in the numerator and H1 = A + B + D + E, H2 = A + C + D + F , H3 = B + C + E + F in

the denominator have a simple geometric interpretation: the former are the sums of the dihedral
angles at the vertices of T , while the latter are the angle-sums along the Hamiltonian cycles of T .

Remark 2. The limits z1 and z2 of integration satisfy the equation k1 cos z + k2 sin z = k3, and

k24 = −4 det(G), where G is the Gram matrix of T . A geometric interpretation of the quantities z1
and z2 can be extracted from the results of [10]. They occur as parameters of the partition of an

ideal octahedron into four ideal tetrahedra with a common edge. The octahedron is canonically
determined by T and its dihedral angles are linear combinations of those of T .

Consider the dilogarithmic function

Li2(x) = −
∫ x
0

log(1− t)
t

dt,

where x ∈ C \ [1,∞), and the continuous branch log ξ = log |ξ| + i arg ξ is determined by the
conditions −π < arg ξ < π. Put l(z) = Li2(eiz).
An immediate consequence of Theorem 1 is the following result, obtained earlier in [7], [8].

Corollary 1. The hyperbolic volume of the tetrahedron T is equal to Im(U(z1, T )−U(z2, T ))/2,
where

U(z, T ) = (l(z) + l(A+B +D+ E + z) + l(A+C +D + F + z) + l(B +C +E + F + z)

− l(π +A +B +C + z)− l(π+ A+E + F + z)
− l(π +B +D+ F + z)− l(π +C +D+ E + z))/2.

For the simplification of the Murakami–Yano formula, we note that Im(l(z)) = Im(Li2(e
iz)) =

2Λ(z/2), where Λ(z) is the Lobachevskii function given by

Λ(z) = −
∫ z
0
log |2 sin t| dt.

The volume of the tetrahedron can thus be written as a linear combination of 16 Lobachevskii

functions.
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