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Abstract Geometrical properties of cone-manifolds obtained by orbifold and spon- 
taneous Dehn surgeries of knots and links are investigated. Explicit 
hyperbolic volume formulae for the Figure-eight knot, Whitehead link, 
and Borromean rings link cone-manifolds are obtained. 

1. Introduction 
In 1975 R. Riley ( [16]) discovered the existence of complete hyperbolic 

structure on some knots and links complements in the 3-sphere. Later 
W. P. Thurston showed that a complement of a simple knot (except 
torical and spherical) admits a hyperbolic structure. It  follows from 
this result ( [17]) that almost all Dehn surgeries on a hyperbolic knot 
complement produce a hyperbolic manifold. 

A number of works in the last 20 years has been devoted to precise 
descriptions of manifolds, orbifolds, and cone-manifolds obtained in this 
manner (see for example [2, 3, 4, 6, 11, 181). 

This paper is a review of recent results pertaining to the geometrical 
properties of cone-manifolds obtained by spontaneous Dehn surgeries on 
knots and links. This work is part of a talk given by the first named 
author on the "JBnos Bolyai Conference on Hyperbolic Geometry" held 
in Budapest on 8-12 July, 2002. Mostly, it contains a survey of results 
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obtained by the authors and their collaborators, but some new results 
are also given. 

We remind the reader of some basic definitions: 

Definition 1.1. A 3-dimensional hyperbolic cone-manifold is a Rie- 
mannian 3-dimensional manifold of constant negative sectional curva- 
ture with cone-type singularity along simple closed geodesics. To each 
component of a singular set we associate a real number n > 1 such that 
the cone-angle around the component is a = 2nln. The concept of the 
hyperbolic cone-manifold generalizes the hyperbolic manifold which ap- 
pears in the partial case when all cone-angles are 2n. The hyperbolic 
cone-manifold is also a generalization of the hyperbolic 3-orbifold which 
arises when all associated numbers n are integers. Euclidean and spher- 
ical cone-manifolds are defined similarly. 

We identify the group of orientation preserving isometries of 113 with 
the group PSL(2, @) consisting of linear fractional transformations 

By the canonical procedure the linear transformation A can be uniquely 
extended to the isometry of YI3. We prefer to deal with the matrix 

rather than the element A E PSL(2, @). The matrix is uniquely 
determined by the element A up to a sign. If there is no confusion we 
shall use the same letter A for both A and A. 

Let C be a hyperbolic conemanifold with singular set C = C1 U 
- C2 U - U Ck being a link consisting of components Cj = Caj, j - 

1,2 , .  . . , k with cone-angles al, . . . , a,+ respectively. Then C defines a 
nonsingular but incomplete hyperbolic manifold N = C - C. Denote by 
Qi the fundamental group of the manifold N. 

The hyperbolic structure of N defines, up to conjugation in 
PSL(2, C), a holonomy homomorphism 

iL : Qi --t PSL(2, C). 

It is shown in [19] that the monodromy homomorphism of an orientable 
cone-orbifold can be lifted to SL(2,C) if all cone angles are less than 
n. Denote by h : Qi -t SL(2, @) this lifting homomorphism. Choose 
an orientation on the link C = C1 U C2 U . U Ck and fix a meridian- 
longitude pair {mi, l j )  for each component Cj  = Caj. Then the matrices 
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Mj  = h(mj) and L j  = h(lj) satisfy the following properties: 

Definition 1.2. Cone-manifold C is said to be obtained by orbifold Dehn 
surgery with cone angle aj = (or with a slope 7) on  the component 
Cj if tr(Mj) = 2 cos (3 ) .  

Definition 1.3. Cone-manifold C is said to be obtained by spontaneous 
0 Dehn surgery with cone angle aj = (or with a slope rn)  on the com- 

ponent Cj i f  tr(Lj) = ~ c o s ( ~ ) .  

See [3] for details. 

Definition 1.4. A complex length yj of the singular component Cj of 
the cone-manifold C is defined as displacement of the isometry Lj  of W3,  
where L j  = h(lj) is represented by the longitude l j  of Cj. 

Immediately from the definition we get [I, p.461 

2 cosh y, = t r ( ~ 7 ) .  

We note that the meridian-longitude pair [mj, l j ]  is uniquely determined 
up to a common conjugating element of the group Q.  Hence the complex 
length y j  = l j  + i& is uniquely determined up to sign and (mod 274 by 
the above definition. Since t r ( ~ j ~ )  = t r 2 ( ~ j )  - 2 we have also tr2(Lj) = 
4 cosh2 (%) 

The main tool for volume calculation is the following Schlafli formula 
141. 

Theorem 1.5. Suppose that Ct is a smooth 1-parameter family of (cur- 
vature K )  cone-manifold strmctures on  an n-manifold, with singular lo- 
cus C of a fixed topological type. Then the derivative of volume of Ct 
satisfies 

(n - l)KdV(Ct) = V,-2(o)dO(a) 
u 

where the sum is over all components a of the singular locus C and O(a) 
is the cone angle along a. 

In the present paper we will deal with three-dimensional cone- 
manifolds of negative constant curvature K = -1. The Schlafli formula 
in this case reduces to 

where the sum is taken over all components of the singular set C with 
lengths lai and cone angles ai. 
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2. Figure-eight knot 

2.1 Orbifold surgery on the figure-eight knot 
Denote by E the compliment to the figure-eight knot in a 3-sphere 

(see Figure 1). 

Figure 1. The figure-eight cone-manifold E ( F ) .  

The following theorem was obtained by Mednykh and Rasskazov in 
[91. 

Theorem 2.1. Let E ( 7 )  be a cone-manifold obtained by orbifold 
surgery o n  the figure-eight knot with cone angle a = %. Then  E(7) 
is  hyperbolic for 0 5 a < 9, Euclidean for a = T ,  and spherical for 
9 < a < F. The hyperbolic volume of the cone-manifold is  given by 
the formula: 

27T - 
V O ~ ( E ( ~ ) )  = / arcosh(1 + cost - cos 2t) dt  . 

0 cr 

2.2 Spontaneous surgery on the figure-eight 
knot 

Recall that the first example of a complete hyperbolic 3-manifold of 
finite volume was constructed by Gieseking in 1912. This manifold can 
be obtained by identification of faces of regular ideal tetrahedra by ori- 
entation reversing isometries of IH13 (see [12] for details). 

Spontaneous Dehn surgery on a Gieseking manifold was considered 
in [13] by E. Moln&r, I. Prok, and J. Szirmai with obvious and easily 
recoverable mistakes, noticed also by the second named author. In the 
improvements to the paper [14], sent to the reviewer J. Bohm (see Zbl 
pre01604732), it was proven that G($) is hyperbolic if 0 5 a < 27r, 
a = and the fundamental polyhedron was constructed in IH13. Also 
the hyperbolic volume was obtained as a sum of three Lobachevsky func- 
tions. We give a more simple hyperbolic volume formula in the following: 
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Theorem 2.2. Let G($) be a hyperbolic cone-manifold obtained by 
spontaneous surgery on the Gieselcing manifold with cone angle a = g. 
Then the volume of G($) is given by the formula: 

Proof. Denote by V = Vol(G(a)) the hyperbolic volume of G(a) .  Then 
by virtue of the Schlafli formula [4] we have 

where I ,  is the length of a singular geodesic corresponding to cone angle 
a. Moreover, by [3] we note that 

V + O  as a + 2 ~ .  

We set 

and show that V satisfies conditions ( I )  and (2). Then = V and the 
theorem is proven. 

To verify (1) we note that 1, can be found from the following equation 
(see [13] and [14] for a geometric basis): 

where (z - 1) is derived from the equation ( [14]) 

Hence I ,  is represented by the expression 

1, = log le arcosh((- g)e*) 1 ,  
Keeping in mind that leCl = eR(C) we get after simplifying 
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aV 1, 
hence - = - - . 

aa 2 
The boundary condition 

as a --+ 27r follows from the convergence of the integral. 0 

We recall that a double sheeted covering of the Gieseking manifold is a 
complement to the figure-eight knot (see [12]). Hence E($) obtained by 
spontaneous surgery on the figure-eight knot is a double sheeted covering 
over the cone-manifold G($)  obtained by spontaneous surgery on the 
Gieseking manifold with cone angle a = E. 

Hilden, Lozano, and Montesinos-Amilibia have shown (see [3]) that 
the cone-manifold E($) is hyperbolic for 0 5 a < 2x, a = 2. Some 
complicated formula for the hyperbolic volume was also obtained. We 
found a very simple version of this formula as a consequence of Theo- 
rem 2.2. 

Theorem 2.3. Let E ( $ )  be a hyperbolic cone-manifold obtained by 
spontaneous surgery o n  the figure-eight knot manifold with cone angle 
a = g. T h e n  the volume of E ( $ )  i s  given by the formula: 

0 n 1 +  d17-8cosx  
Vol(E(-)) = 1 arcosh( 

4 
) dx. 

m nlm 

3. Whitehead link cone-manifold 

3.1 Orbifold surgery on the Whitehead link 
We denote by W the Whitehead link shown on Figure 2. Recall ( [17]) 

that S3 \ W is a hyperbolic manifold. Denote by h : = nl(S3 \ W )  -+ 
SL(2, C) the lifting of its holonomy homomorphism. 

Figure 2. The Whitehead link cone-manifold W(a,P) .  
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By slight modification of arguments from [8] we obtain the following 
two propositions: 

Proposition 3.1. Up to  conjugation i n  SL(2, @) the matrices Ma = 
h(ma) and Mp = h(mp) can be represented in the following form: 

M a =  ( i e - f  sin $ cos y 

B where & and ,8 satisfg relations tr(Ma) = 2 cos 9, tr(Mp) = 2 cos 3, 
and p is  a complex distance between axes of Ma and MP. Moreover, 
u = cosh(p) is  a complex root of equation 

B where A = cot and B = cot . 

AB 
Setting z = - and multiplying the obtained polynomial equation 

U 
by (z + 1) we have (see also [lo]) 

Proposition 3.2. Let W(S, T) = STS-~T-~ST-~S-~T, Ma and Mp 
be the same matrices as in Proposition 9.1, La = W(Ma, Mp), Lp = 
W (Mp, Ma), and the condition MaLa = LaMa be satisfied. Then  

where z is  a root of Equation (9), $(z) > 0 and fa and ip can be derived 
from 2 cosh(fa) = t r ( ~ , ~ )  and 2 cosh(h) = t r ( ~ p ~ )  . 

The following result was obtained in [7] and [lo]. 

Theorem 3.3. Let W ( F ,  :) be a hyperbolic cone-manifold obtained by 
orbifold surgeries o n  the components of the Whitehead link with cone 

27T angles a = m and ,f3 = g. Then 

m n ~2 2(<2 + A2) (C2 + B2) ]L 
VO~(W(-, -1) = i J log [ (  

0 0 
C1 

1 + A2)(1 + B ~ ) ( c ~  - 53) C2 - 1 
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where A  = cot 5 , B = cot g, (1 = Z, (2 = 2, O ( z )  > 0 and z is a root 
of the cubic equation 

3.2 Spontaneous surgery on the Whitehead link 
Proposition 3.4. Let w($,  :) be a hyperbolic cone-manifold obtained 
by spontaneous surgery on the components of the Whitehead link with 
cone angles equal to and % respectively. Denote by 1, and l p  the 
complex lengths of singular geodesics of w(;, :) with cone angles a = 

a m and p = % respectively. Then 

1 coth $ - coth $ - -_-- ip ' 9  coth coth ;i- 

where S(x) > 0, and x is a root of the equation 

P A =  tan:, B = t anz  

Proof. The result follows from Proposition 3.2 for 1, = i&, 1, = ia, 
lp = i p ,  and lp = i p .  0 

Theorem 3.5. Let w(;, i) be a hyperbolic cone-manifold obtained by 
spontaneous surgery on  the components of the Whitehead link with cone 
angles cu = and p = %. Then 

Proof. Denote by V = Vol(W (a, P)) the hyperbolic volume of W (a,  p) .  
Then by virtue of the Schlafli formula [4] we have 

where 1, and l p  are complex lengths of singular geodesics corresponding 
to cone angles a and ,B respectively. Moreover, by [lo] we note that 
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V -+ Vol(W(0,O)) as a -+ 0 and P -+ 0, 

where 

is the hyperbolic volume of the Whitehead link complement W(0,O) = 
S3 \ W. 

5 

and show that 

V satisfies conditions (5) and (6). Then V = V and the theorem is 
proven. 

To verify (5) we introduce the function 

Then by the Leibniz formula we get 

We note that F(C1, A, B) = F((2,  A, B) = 0 if (1, (2, A, and B are 
as stated in the theorem. Moreover, since a = 4 arctan A we have 
a~ - i + A 2  

4 
and aa 

Hence, by Proposition 3.4 we obtain from Equation (7) 

aV 
The equation - = -- 

dB 
'(lp) can be obtained in the same way. 

2 
Given 8(2) > 0 we have z -+ 1 + i, as a -+ 0 and ,B -+ 0. Then 

the boundary condition (6) for the function V follows from the integral 
formula. 0 
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Remark 3.6. There is exactly one root of Equation 4 such that 3 ( z )  > 
0.  Indeed, Equation 4 is equivalent to 

Let 
P ( z )  = z4 - 2z3 + (a2 + B2 + 2)z2  + 2A2B2z  - A ~ B ,  

then by Mathematica we have 

R = Resultant [ p 1 ( z ) / 2 ,  P ( z ) ,  z ]  = -a2(l + a2) B 2 ( 1  + ~ ~ ) ( 8  + 12A2 

+ 6 a 4  + as + 1 2 ~ ~  + 39a2 B2 + 6 B 4  + 30a2B4  + 2 7 ~ ~ ~ ~  + B6) 
= - a 2 B 2 ( 1  + A 2 ) ( 1  + B 2 ) ~ ,  

where Q 1 8. 
Since R < 0 for all nonzero A and B one can easily deduce that equa- 

tion P ( x )  = 0 always has a pair of real and a pair of complex conjugate 
roots for all A and B. 

Proposition 3.7. Let w($,  g) be a hyperbolic cone-manifold obtained 
by a spontaneous surgery on the first component of the Whitehead link 
and an orbifold surgery on the second component with cone angles equal 
to 2 and % respectively. Denote by 1, and lp  complex lengths of singular 
geodesics of w($,  $) with cone angles a = % and ,B = % respectively. 
Then 

coth h coth 2 - .- 2 - - z ,  
coth 7 coth 2 

where 3 ( z )  > 0 and z is a root of the equation 

P A = cot % and B = cot 

Proof. The result follows from Proposition 3.2 for I ,  = i&, 1, = ia, 
,B = P, and l p  = - I p .  0 

Following the plot of the proof of Theorem 3.5 and applying Proposi- 
tion 3.7 we obtain the following: 

Theorem 3.8. Let w(:, $) be a cone-manifold obtained by sponta- 
neous surgery on  the first component and orbifold surgery on  the second 
component of the Whitehead link with cone angles a = % and ,B = % 
respectively. Then 
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P where A = cot f, B = cot 3, = 7, c2 = z, 5 (z)  > 0, and 

4. Boromean rings cone-manifold 

4.1 Orbifold surgery on the Boromean rings 

In this subsection we study the geometrical properties of cone- 
manifolds B(a ,  P, y) obtained by orbifold Dehn surgery on three compo- 
nents of the Borromean rings with cone angles a, P, and y (see Figure 
3). 

Figure 3. The Borromean cone-manifold B(a,  P, y). 

The following result was essentially obtained by R. Kellerhals [5] (see 
[7] for details of the proof): 

Theorem 4.1. Let ~ ( 6 ,  A ,  v) be a cone-manifold obtained by orbifold 
surgery on the components of the Borromean rings with cone angles a = 

31 k J P = and y = $. Then B($, 6,  v )  is hyperbolic for 0 < a, P, y < 
n and its volume is given by the formula: 

k l m  (t2 - A2)(t2 - B2)(t2 - C2) dt 
Vol(B(- - -)) = 2 

0 '  0 '  0 1 + B2)(1 + C2)t2 1 m' 
where T is a positive root of the equation 

T * - ( A ~ + B ~ + c ~ + ~ ) T ~ - A ~ B ~ c ~  = 0 ,  

4.2 Spontaneous surgery on the Boromean rings 

The following three results were proved by M. Pashkevich in [15]: 

Theorem 4.2. Let B(!, A, F )  be a hyperbolic cone-manifold obtained 
by a spontaneous surgery with cone angle a = on one component of 
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the Borromean rings and an orbifold surgery with cone angles ,8 = F, 
y = % on the other two components. Then 

where T is a positive root of the equation 

(1  + A ~ ) T ~  - (1 + B~ + c2 - A~BV) = 0 ,  

O l m  LW log I ( 1  + A2)( t2  - B 2 ) ( t 2  - C 2 )  
Vol (B( -  - -)) = 2 

k '  0 '  0 ( 1  - t2A2) (1  + B 2 ) ( 1  + C 2 )  

Theorem 4.3. Let B(!, q,?)  be a hyperbolic cone-manifold obtained by 
spontaneous surgery with cone angles ru = F, ,8 = on two components 
of the Borromean rings and an orbifold surgery with cone angle y = 2 
on the third component. Then 

dt 
t2 ' 

O O m  
Vol (B( -  - -)) = -2 

(1  + A2)(1  + B2)(t2 - C2) t2  dt 
k ' 1 '  0 ( 1  - t2A2) (1  - t 2 B 2 ) ( 1  + C 2 )  1 -  t 2  + 1 

where T is a positive root of the equation 

A = tan B = tan ' C = tan '. 2k7 21 ' m 

Theorem 4.4. Let B(!, 7, $) be a hyperbolic cone-manifold obtained 
by spontaneous surgery with cone angles a = F, ,8 = Y, y = % on 
three components of the Borromean rings. Then 

0 0  0 
V o l ( B ( -  - -)) = -2 iT log l ( 1  + A2)(1  + B 2 ) ( 1  + C2) t4  dt 

k ' l ' m  ( 1  - t2A2) (1  - t 2 B 2 ) ( 1  - t2C2)  1 -  t2 + 1 

where T is a positive root of the equation 
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