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A polyhedral group G is defined to be the orientation-preserving subgroup of a discrete reflection 

group acting on hyperbolic 3-space W3, and having a fundamental polyhedron of finite volume. 

A special presentation for G is obtained from the geometry of the polyhedron. This gives G the 

structure of a graph amalgamation product, and which, in some cases, splits as a free product 

with amalgamation. The simplest examples of polyhedral groups are the so-called tetrahedral 

groups. Other examples are given amongst the the groups PGL(2, O,), where 0,, is the ring of 

algebraic integers in the quadratic imaginary field Q(J-m), m > 0. 
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1. Introduction 

We are concerned with the orientation-preserving subgroups of discrete reflection 

groups which act on hyperbolic 3-space W3. This paper explores the connection 

between the combinatorial structure of a fundamental polyhedron for the discrete 

reflection group, and the way in which this subgroup can be decomposed with 

respect to free products with amalgamation. Our main result deals with graph 

amalgamation products (Theorem 3). The simplest groups of this type are tetrahedral 

groups, and these are studied in Section 4. We then conclude with more complicated, 

and, perhaps, more characteristic examples amongst the projective general linear 

groups over discrete rings of algebraic integers. The algebraic structure of some of 

these Bianchi groups has been studied by Fine [8]. Recently, Fine’s work has been 

extended by Fliige [9], who has also related the presentation to the geometry of a 

fundamental polyhedron. 

A graph amalgamation product is a factor group of the graph product of a graph 

of groups. The latter construction has been investigated by many authors, e.g. Bass 

and Serre. Graph amalgamation products appear to be of independent interest. 

Many of the discrete groups studied by Bianchi [5] have such a structure in an 

obvious way. We have illustrated the use of this structure in producing hyperbolic 
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3-manifolds whose fundamental groups are subgroups of polyhedral groups [6]. 

Frequently the homology of these groups can be readily computed via the Mayer- 

Vietoris sequence. 

2. Polyhedral groups 

A convexpolyhedron in W’ is a set with non-empty interior, which is the intersection 

of finitely many closed half-spaces. By a Coxeter polyhedron we mean a convex 

polyhedron of finite volume in W’, each of whose interior dihedral angles is an 

integer submultiple of n. 

Let P be a Coxeter polyhedron with specified dihedral angles 7~/rn,~ where the 

ith face meets the jth face. Let G* denote the group generated by the reflections 

R,, . . . , R, in the faces of P. Then G* has a presentation 

(R,, . . . , R,; R:=.. . = R; =(R;R,)“~J = 1). (*) 

It is well known that G* is discrete in its action on W3. Conversely, if G” is a 

discrete group of isometries of U-I3 which is generated by a finite number of reflections, 

then the fixed hyperplanes of the reflections in G* partition W3 into congruent 

polyhedra. Coxeter polyhedra in W3 are described in the work of Vinberg [19] and 

Andreev [2,3]. We also refer to Thurston [18, Chapter 131, where, in addition, he 

introduces the connection with structures called orbifolds. Given a group G which 

is discrete in its action on W3, but not necessarily torsion-free, the quotient space 

W3/G is an orbifold. 

We call the subgroup of orientation-preserving isometries in the discrete reflection 

group the polyhedral group associated with a Coxeter polyhedron l? Below, we will 

obtain a special presentation for a polyhedral group which takes into account the 

combinatorial structure of P. 

P may be described more exactly. A vertex of P will be called an interior or ideal 

vertex, depending on whether it lies in W3 or Z-U3 = @ u {co}. 

ap (including ideal vertices) is topologically a sphere. The edges and vertices of 

I’ (including ideal vertices) form a finite graph on ai! This graph partitions the 

sphere into polygons, the faces of P. In fact, each fact of P is a finite-sided hyperbolic 

polygon. 

Suppose now that P has faces F,, . . . , F,,. Each edge of P is formed by the 

intersection of two faces, say F, ?nd F,: let aq = R,R, where Ri and Rj are reflections 

in F, and F,, respectively. The isometry aii is a rotation through an angle 27r/mti 

along this edge, where nTT/ mIj is the interior dihedral angle at this edge. The direction 

of rotation is from F, to Fi. 

The following proposition gives a presentation for a polyhedral group G which 

takes into account the combinatorial structure. Clearly, a presentation can be 

obtained from (*) by using the Reidemeister-Schreier subgroup theorem with any 

{ 1, Ri} as a set of coset representatives. However, the reader can easily satisfy himself 
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that, in general, it is hard to obtain the presentation in the proposition from the 

one so obtained. Instead we use a geometric argument based on the Poincare theorem. 

Proposition 1. Let G be a polyhedral group with Coxeter polyhedron P. Then G is 

generated by the rotations a,. The dejining relations consist in power relations a;cI = 1, 

together with a loop relation at each vertex of P. A loop relation at a vertex says that 

the product of the rotations on consecutive edges crossed by a simple loop around the 

vertex is 1, where either ai; or ai, = ari is used, as appropriate. 

Proof. The relations a;cI = ( R,R,)“~J = 1 follow directly from the relations for the 

reflection group G”. Also, at each vertex v of p we have the following. Let F,, 

F,, . . . , F,,, be the (consecutive) faces which meet at v (relabel if necessary). Since 

a,7 = R, R,, az3 = R,R,, and so on, we clearly obtain a loop relation a12a23 . . . a,,,, = 1. 

To show that these relations are sufficient to define G, Poincare’s Theorem on 

fundamental polyhedra will be used. We refer to Maskit [15] for a statement and 

proof of Poincare’s Theorem. 

Let * be a point in the interior of P, and let C, be the cone of the face F, with 

respect to * using geodesics. Then P = U, C,. We double the polyhedron by defining 

DP = P ui Ri( Ci). 

The faces of DP are { R,( F,,), R,( Fi,)}, where Fzj is the cone with respect to * of 

an edge of P where F, and F, intersect. Since 

we see that the faces of DP are identified in pairs by the a,. From the construction 

of DP we see that the set of ideal vertices of DP is the set of ideal vertices of ?? 

Near an ideal vertex, DP looks like the Cartesian product of a euclidean polygon 

with a ray through the ideal vertex. 

Now each edge of DP has a vertex of P for at least one endpoint. An edge of 

DP which is not an edge of P we call a new edge. Let v be a vertex of P which 

lies on the faces F,, . . . , F,, of P, where the faces are enumerated in order around 

a simple loop around v. Let E be the geodesic segment from v to *. There are n 

new edges {R,(E)} at v with a,+,,,(R;(E)) = R,+,R,(R,(E)) = Ri+,(E). 

The edges of DP fall into cycles under the action of G. Each old edge is a cycle 

by itself, with dihedral angle 2rr/m,. The n new edges at v form a cycle with angle 

sum 27~. Using the Poincare Theorem, we obtain as defining relations for G, the 

relations a Tri = 1 corresponding to the old edges, and for each vertex of P, a loop 

relation a,2a23 . . . a,, = 1. 0 

3. Graph amalgamation products 

Recently, Karrass, Pietrowski and Solitar [ 1 l] have introduced a product of groups 

defined in terms of free products with amalgamation. They have established subgroup 
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theorems for these which are in the same spirit as their theorems on subgroups of 

amalgamated free products and HNN-extensions [12, 131. 

Suppose that a graph is given where the vertices are groups and on the edges are 

written groups which are isomorphic to subgroups of the adjacent vertices. The 

graph amalgamation product of this graph of groups is the group given with the 

generators and relations of the vertex groups, together with relations which come 

from amalgamating the indicated edge groups between adjacent vertex groups. 

An alternative description may be given using the Bass-Serre graph product of 

such a graph of groups. In this graph product a maximal tree is chosen, free products 

with indicated edge amalgamations are formed in this tree, and then an HNN- 

extension is formed using the remaining edges. The graph amalgamation product 

is the factor group obtained by setting the stable letters in the HNN-extension equal 

to 1. 

If the graph of groups is a polygon then we call the graph amalgamation product 

a polygonal product. For a polygonal product, the case of most interest is when the 

edge groups surrounding a vertex intersect trivially. It is not hard, then, to see that 

for a polygon with four or more sides, the polygonal product can be split (in general 

in several ways) as a free product with amalgamation. It can then be shown that 

the polygonal product contains isomorphic copies of each of the vertices. For a 

triangular product the situation is more complicated. 

In addition, when the vertex groups are finite (and in other special cases) the 

Karrass, Pietrowski and Solitar subgroup theorem gives an efficient way to find 

presentations for all the torsion free subgroups of finite index. This was used by 

Brunner, Frame, Lee and Wielenberg [6] when investigating subgroups of the Picard 

group. The Picard group is a quadrangular product of finite groups. 

Consider now a polyhedral group G as discussed in Proposition 1, and let P be 

the Coxeter polyhedron for G*. No vertex of P is equivalent to another vertex of 

P under the action of G. If u is an interior vertex then a sufficiently small sphere 

S centered at v can be chosen so that DP n S is a fundamental polygon for the 

action of the stabilizer G, of u on S. Thus G, is a discrete 2-dimensional spherical 

group. Likewise, if v is an ideal vertex then a horosphere S centered at v can be 

chosen so that DP n S is a fundamental polygon for the action of G, on S, and G, 

is a discrete 2-dimensional euclidean group. 

Orientation preserving discrete 2-dimensional spherical groups are well known 

to be the finite triangle groups. The orientation preserving discrete 2-dimensional 

euclidean groups which occur are the triangle groups (3,3,3), (2,3,6) and (2,4,4), 

and in addition the ‘rectangular pillow’ group, 

R = (x, y, z; x2 = y* = z2 = (xyz)‘= 1). 

(This is given the notation p2 in [7]. A classification of discrete 2-dimensional 

spherical and euclidean groups is given in [7].) 

It follows that a vertex u of P has either (i) exactly 3 edges incident (see Fig. 1) 

with G, = (a,,, a,2, a,3; ay,J = 1, a,1a,2a,3 = l), a spherical or euclidean triangle 



A.M. Bmnner et al. / Polyhedral groups 293 

all 

Fig. 1. 

group; or (ii) exactly 4 edges incident (see Fig. 2) with G, = 

(a,,, a127 a139 a14; u’, = l, a11u12u13u14= l), the rectangular pillow group R. 

It is clear now how we may visualize the presentation for G given in Proposition 

1 with reference to the Coxeter polyhedron P. At each vertex ZJ is the group G, 

which is the stabilizer of v ; on edges are rotations uij of order m,j which are the 

common subgroups between adjacent vertices used in the amalgamations. This gives 

G as a graph amalgamation product. We state this as a theorem. 

Fig. 2. 

Theorem 2. If G is a polyhedral group, then G is a graph amalgamation product where 

the graph consists of vertices and edges of a Coxeter polyhedron for G; at each vertex 

is the stabilizer of that vertex, on the edges are the cyclic groups generated by the 

rotation on that edge. 

This graph amalgamation product is redundant, in the sense that at least one 

vertex group may be omitted. In fact, G is a graph amalgamation product of a 
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planar graph. To see this, let u be a vertex of the graph. Then G is generated by 

all G,, ZI # w, since G, is generated by its edge groups and these are amalgamated 

with edge groups in the other G,. The power relations amongst these generators for 

G, are a consequence of defining relations for the G,, u f w. Lastly, the loop relation 

at G, is also a consequence of the other relations. The boundary of p is topologically 

a sphere. A closed loop on ap is homotopic to a product of simple loops around 

single vertices. The product of the rotations on the consecutive edges crossed by 

the loop (again with appropriate orientation) is a word which represents 1 in G. In 

particular, the loop relation at any single vertex u is a consequence of the loop 

relations at the other vertices. 

Theorem 3. Let G be a polyhedral group and P an associated Coxeter polyhedron. Let 

v be a vertex of P. Then G is a graph amalgamation product of a planar graph of 

groups: vertex groups are the stabilizers G,., w # v, and the edge groups are cyclic 

groups generated by rotations on the edges of P connecting the vertices w, w f v. 

Remark 4. The inclusion mapping of the polygonal product represented by a face 

of P into a graph amalgamation product need not be injective. Likewise, the inclusion 

mapping of the free product with amalgamation of two adjacent vertex groups along 

their common edge group need not be injective. However, in many cases these 

inclusions are injective. The matter can be decided, from the presentations, by 

building up the graph amalgamation product inductively from the presentations of 

the polygonal products which represent the faces. 

Remark 5. The torsion elements of G are exactly the rotations on an edge of P, 

together with the conjugates in G of these rotations. If H is a subgroup of G, then 

G acts transitively by right multiplication on the right cosets of H. A subgroup H 

of index n corresponds to a homomorphism 4 of G into the symmetric group S,, 

where 4(H) is a transitive subgroup of S, and H = {gE G: 4(g)(l) = l}. The 

subgroup H is torsion-free if and only if 4(g) has no fixed point for each torsion 

element g of G. By the above, the only elements to be checked are the rotations on 

an edge of P Furthermore, if H is torsion-free, then the quotient of W3 by H is a 

3-manifold with a hyperbolic structure. In principle, all such hyperbolic manifolds 

can be produced from the presentation of G as a graph amalgamation product. 

4. Tetrahedral groups 

The Coxeter polyhedra which are tetrahedra have been classified by LannCr [ 141, 

Vinberg [19] and Thurston [18]. These give the simplest illustration of the sort of 

presentations discussed above; the tetrahedral groups are triangular products. In 

general, these do not decompose as free products with amalgamation, although 

often they have subgroups of finite index which do so. 
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Consider now a tetrahedron 1234 with dihedral angles r/h,, T/P, (see Fig. 3) (A,, 

I*, are written on the appropriate opposite edges in the diagram). The vertex groups 

are the triangle groups G, = (A,, AZ, 1-4, G, = (AX, A,, pLz), G, = (pi, A3, AZ), G.+= 
(p,, pz, pJ); these are spherical or euclidean depending on whether the vertex is 

an interior or ideal vertex of W’. Here (I, m, n) =(x, y; x’ = y” = (xy)” = 1). 

Fig. 3. 

If we now choose a, b, c to be rotations of order A,, AZ, A3 on the indicated edges, 

then, by using loop relations, we see that the tetrahedral group 

T(A,, A?, AX; p,, pLz, pj) is generated by a, b, c. In fact, 

T=(a, b, ,-; o*l = b”z= &=(bc)@l =(ca)“z=(bfi)+= l), 

With this selection of generators T is a triangular product. It is clear that this 

presentation favors face 123, and G, is omitted. (See Fig. 4.) Omitting any one of 

G,, G, or G, would result in T being written differently as a triangular product. 

This illustrates Theorem 3. 

There are 9 tetrahedra with vertices all interior in W’, and there are 23 tetrahedra 

with some ideal vertices. 

It is convenient to list the groups as follows (they are listed using Coxeter diagrams 

in [16]): 

T,(2,2,3; 3,5,2), T,(2,2,3; 2, 5,3), T,(2,2,4; 2,3,5). 

T,(2,2,5; 293, 5), Ts(2,3,3; 2,3,4), T-,(2,3,4; 2,3,4), 

T,(2,3,3: 233, 5), T,(2,3,4; 293, 5), T&2,3,5; 2,3,5), 
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and 

T’(3,2,2; 6,2,3), 

T4(4, 2,2; 6,2,3), 

T’(4,2,2; 4,2,4), 

T”(6,2,3; 5,2,3), 

T’3(4,2,3; 4,2,4), 

T16(3,2, 2; 2,4,4), 

T19(3, 2,2; 3,3, 3), 

T**(6,2,2; 3,3,3), 

2X3 =<c> 

Fig. 4. 

T*Q, 233; 2,6,3), 

T5(5, 292; 6,2,3), 

Ts(2,3, 3; 2,6,3), 

T”(3,2,6; 3,2,6), 

T14(4, 2,4; 4,2,4), 

T”(4,2,2; 2,4,4), 

T*‘(4,2,2; 3,3,3), 

T23(3, 3,3; 3,3,3). 

T3(3, 2,2; 4,2,4), 

T76,2,2; k&3), 

T9(3, 2,4; 3,2,6), 

T12(2, 3,3; 2,4,4), 

T15(3, 2,2; 2,3,6), 

T”(3,2,3; 3,3,3), 

T*‘(5,2,2; 3,3,3), 

For example, T4(4, 2,2; 6,2,3) has a Coxeter diagram l Q*l*rr*. The group T4 

is then a triangular product of finite groups (see Fig. 5). 

Locating the tetrahedron explicitly in W3, the rotations which generate T” can be 

written down as matrices: 

a=(; -i), b=(y i), c==(i A), 
where w =f(-l+ i&) and q = i&. 

Various subgroup relationships exist amongst the tetrahedral groups. Some of 

these can be seen directly geometrically by combining copies of a given tetrahedron 

along congruent faces, or algebraically, using presentations. 

We note that torsion-free subgroups of minimal index in T4 and T2 have been 

computed in [ 161 and [4]. Al Jubouri [l] has studied torsion-free subgroups of finite 

index in T, and T,. In the next section we mention some results on torsion-free 

subgroups of finite index in T’ and T19. 
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z2 / 

Fig. 5 

5. The Bianchi and related groups 

Leu, denote the ring of integers in the imaginary quadratic number field 

Q(&m), m > 0. By PGL(2, R) we mean the projective general linear group of 2 ~2 

matrices over a ring R; it is the quotient of GL(2, R) by its centre. The Bianchi 

groups include many of the PSL(2, 0,) and PGL(2, 0,). These are discrete groups 

which act discontinuously on W3; PGL(2, 0,) contains PSL(2, 0,) as a subgroup 

of index 2. Fundamental polyhedra for small values of m have been worked out 

by Bianchi [5], and Swan [ 171 has used these to obtain presentations for the groups. 

The results of Fine [8] and Floge [9] on the algebraic structure of the PSL(2, 0,) 

provide an interesting comparison with our results on the PGL(2, 0,) discussed 

below. The reader is also referred to Hatcher [lo] for a discussion of the PGL(2, 0,), 

especially in connection with the link groups which they may contain. 

Some of the PGL(2, 0,) are polyhedral groups and others exhibit related struc- 

tures. A Coxeter polyhedron for PGL can be deduced from those given in [5,17]. 

However, the situation is a bit complicated. Swan describes one-fourth of a funda- 

mental polyhedron for PSL, taking advantage of the symmetry of the region. Bianchi 

describes a polyhedron for PTL, where PTL is PGL with the generator .z + Z adjoined. 

In addition, when rn is 7, 11, 15 or 19, Bianchi’s polyhedron is actually the double 

of a fundamental polyhedron for PTL. The element 

-1 w 

( > 0 1’ 

where 

w=+(l+iJm), 

rotates this region onto itself. 
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These complications are resolved as follows. When m is 1, 2, 3, 5 or 6, Bianchi’s 

polyhedron had dihedral angles which are integer submultiples of n. The group 

generated by rotations of the appropriate order on the edges is a graph amalgamation 

product by Theorem 3. The group PGL contains each of these rotations, hence this 

graph amalgamation product is PGL. (It is a subgroup of PGL of index 1, since 

the volume of a fundamental polyhedron is correct.) When m is 7, 11, 15 or 19, the 

dihedral angles are again integer submultiples of n, but the group PGL contains a 

rotation (the one above) in a line of symmetry of a face of a Coxeter polyhedron. 

So PGL itself is an extension by an automorphism of order two of a graph 

amalgamation product. The actual generators can be discovered by patient calcula- 

tion from Swan’s generators, using the geometry as a guide. It is necessary to check 

the direction of rotation for each generator so as to obtain the correct matrix for 

the presentation which is read from the Coxeter polyhedron. Some detailed examples 

are given below. 

The cases where m = 1 or 3 are a bit different from the general case as there are 

units in 0, other than + 1. 

PGL(2, 0,) = T3(3, 2,2; 4,2,4). Hence PGL(2, 0,) is a triangular product with 

vertices (a, 6; u2 = b2= (ab)4= l)= D4,(b, c; b2= c3 = (b~)~= 1) = D,, and(c, a; c3 = 

u2= (cu)4= 1) = s,. 

Explicit generators are 

u=(y a), b=(; A), +: -A). 

In fact, PGL(2, 0,) contaius rotations along all the geodesics on the unit hemi- 

sphere whose projection into the unit disc are shown in Fig. 8. An integer n associated 

to a geodesic indicates a dihedral angle of n/n between the hemisphere and a plane 

orthogonal to C. It is easy to see that T16 = (u,f, c) has index 2 and the subgroup 

T12 = (a, g, c) has index 4. (The tetrahedra have one face and three vertices on the 

hemisphere, three faces on planes orthogonal to C, and one vertex at 00.) The Picard 

group H = PSL(2, 0,) is generated by b, c, d, e and H’, its derived group, is generated 

by c, d, h, g. The matrices here are 

d=(O i), e=(_y (!,), .I=(_: A), g = bdb, h = ece. 

The Picard group H is the quadrangular product in Fig. 6, and H’ is the 

quadrangular product in Fig. 7. 

An easy calculation using the Mayer-Vietoris sequence shows that H2( H, Z) = Z6 

and H,(H’, Z) ~iZ20Z20Z20Z20Z,. 

PGL(2, 0,) = T’(3,2,2; 6,2,3). Hence PGL(2, 0,) is a triangular product with 

vertices(u, b; u2= b2=(ub)6= l)= D,,(b, c; b2=c3=(bc)*= l)= D,,and(c, a; c3= 

u2 = (cu)’ = 1) = A4. 
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Fig. 8. 

Explicit generators are 

a=(_; (g> b=(l ;), c=(_“W2 -“1>> 
where w = ;( - 1 + i&). 

Again, PGL(2, 0,) contains rotations along the geodesics whose projections into 

the unit disk are shown in Fig. 9. Visible subgroups include T2 = (b, g, h), T6 = 

(a, b, e), T”=(e,J;g), T”=(u, h, i), T”=( a, c, i), PSL(2, 0,) = T” = (a, c, d), T22 = 

(b, e,f) and T23 = (c, i,j). 
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Fig. 9. 

Using the same techniques as [6], we have calculated that PSL(2, 0,) contains 

exactly two non-isomorphic torsion-free subgroups of index 12. One is the figure- 

eight knot group. The other has a presentation (x, y; jxJ3xj =x2); it is the group 

of the manifold obtained by 5-surgery on one component of the Whitehead link. 

PGL(2, 0,) has no torsion-free subgroups of index 12. 

For the PGL(2, 0,), m # 1, 3, we give three representative examples: m =2, 6 

and 7. 

m = 2. PGL(2, 0,) has a fundamental polyhedron which is a pentahedron. It is 

the quadrangular product in Fig. 10. 

z2 

D2 n. 

z2 
“3 

z3 

Fig. 10. 
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m = 6. PGL(2, 0,) has a complicated fundamental polyhedron. Let w = iJ6. The 

group has generators 

a=(_: A), b=(y i), c=(: -A), 

d= 
( 

ly _2-_ww), f=(-!y ,y;), g=(;; 2;). 

The generators are rotations along geodesics lying on the three hemispheres corre- 

sponding to 

IZI = 1, lz-;(l+w)l=$, 
5 1 I I z-2w =2J6. 

Eliminating the ideal vertices at 00 leaves seven vertices. One of these, $0, is an 

ideal vertex. The projection into @ is given in Fig. 11. Bianchi [5, p. 3161 also has’ 

a sketch of the polyhedron. PGL(2, 0,) is the graph amalgamation product in Fig. 12. 

f 

2 
b 

Fig. 11. 

D2 
D 

Z2 
3 

Fig. 12. 

m = 7. PGL(2, 0,) is generated by the stabilizers of the vertices of a Coxeter 

polyhedron, together with a rotation in a line of symmetry of a face. This rotation 

conjugates one vertex group to another. The result is not a graph amalgamation 

product in the usual way. Rather, it can be described as an amalgamated product 

of two copies of D, *& D, with the amalgamated subgroup being PSL(2,Z) = 

2, * 5. 
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Let w = $( 1-t i&‘). PGL(2, 0,) has generators 

a=(; -;), b=(; ;), c=(; -A), d=(-; ;), 

g=(_,-:, ;). 
The generators a, b, c and g are rotations along geodesics lying on the two 

hemispheres corresponding to IzI = 1 and Iz -$J = l/J5 The hemisphere Iz - WI = 1 

also contains the intersection of these two hemispheres. The generator d is a rotation 

along the geodesic from iw to 03. A projection into C of a Coxeter polyhedron and 

its image under the rotation d is given in Fig. 13. The group is generated by the 

vertex groups 

&=(a, b;a*=b*=(ab)*=l), D3 = (b, c; b* = c3 = (bc)’ = l), 

D, = (c, g ; c3 = g* = (cg)’ = l), D,=(g,d;g2=d2=(dg)2=1), 

and there is an extra relation a = d (cg)d. Here, (a, b, c) = D2 *z, D, = (c, g, d). Then, 

PGL(2, 0,) is the free product with amalgamation of these two groups amalgamating 

(c,a=d(cg)d)=PSL(2,Z). 

There is a subgroup of index 2 obtained by using (1, d} as coset representatives. 

The generators are a, = a, b. = b, co = c, g, a, = dad, b, = dbd, and c, = dcd. A projec- 

tion into @ of the fundamental polyhedron is given in Fig. 14. The group is the 

graph amalgamation product in Fig. 15. The generator d is an automorphism of 

Fig. 13. 
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z3 

Z2 

D3 
I ‘: 

Z2 

CO 
z3 

D2 
22 

D3 

Fig. 15. 

this subgroup. Similarly, for m = 11, 15 and 19, there is a subgroup of index 2 which 

is a graph amalgamation product and extending by the automorphism 

d= 

gives PGL(2, 0,). 
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