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Applications of a Computer Implementation 

of Poincare9s Theorem on Fundamental Polyhedra* 


By Robert Riley ** 

Abstract. PoincarC's Theorem asserts that a group r of isometries of hyperbolic space W is 
discrete if its generators act suitably on the boundary of some polyhedron in W ,  and when thls 
happens a presentation of r can be derived from this action. We explain methods for 
deducing the precise hypotheses of the theorem from calculation in r when r is "algorithmi- 
cally defined", and we describe a file of Fortran programs that use these methods for groups r 
acting on the upper half space model of hyperbolic 3-space W 3 .  We exhibit one modest 
example of the application of these programs, and we summarize computations of repesenta- 
tions of groups PSL(2, F)  where ii' is an order in a complex quadratic number field. 

In the early 1880's H. Poincare discovered a general theorem allowing one to 
deduce the discreteness of, and a presentation for, a group G of isometries of 
hyperbolic space from its action on a hyperbolic polyhedron under certain condi- 
tions. Theorems of this sort are part of the foundations of his theories of Fuchsian 
and Kleinian groups that have become very popular again, and H. Seifert has 
recently given us a modern proof of a fairly general version of PoincarC's Theorem in 
[12]; see also [7]. T h s  theorem has been little used over the past century, perhaps 
partly because its hypotheses have seemed very difficult to verify for a given group G 
except in very special circumstances. One reason for doubting that PoincarC's 
Theorem is unreasonably difficult to apply to fairly general discrete groups is that no 
general alternative method for accomplishing its tasks has been proposed. The 
present paper is devoted to demonstrating that PoincarC's Theorem can indeed be 
applied to given groups in apparently difficult cases and that much of the work can 
be done by a computer. Our experience suggests that the theorem is really very 
helpful in guiding the user to an understanding of the details of the action of G 
starting from a state of near ignorance. 

An outline of t h s  paper is as follows. In Section 1 we begin by stating Seifert's 
version of PoincarC's Theorem and explaining how we would apply it to an 
"algorithmically defined" group G of isometries of hyperbolic space W ". In Section 2 
we specialize to the situation, W 3, for which we wrote our file, Poincar;, of Fortran 
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programs. Poincare uses an identification of the sense presewing hyperbolic isome- 
tries of the unit ball or half space models of w with PSL(6) := PSL(2, C), and it 
embodies the methods of Section 1 as far as was practicable. In Section 3 we present 
one modest example of the application of this file to a group of the kind it was 
developed for. T h s  group is generated by parabolics, is not free, and is discrete but 
not obviously so. We conclude in Section 4 with a summary of an entirely different 
application of the Poincare file. By a Bianchi group we mean 9, = PSL(Z[o,]) where 
d is a negative integer and 

I + 'C.d 
W, = -

2 
if d = 1 (mod 4), o, = \6 otherwise. 

The integral domain h[w,] is an order in the complex quadratic number field ~(0) 
and is a discrete subset of 6 .  Hence the Bianch groups are automatically discrete- 
and they are considered to be of interest for arithmetical reasons, cf. Swan [14]. We 
shall describe how we found the presentations of 30 Bianch groups, give the 
conlplete presentation for 9-,,, and summarize the corresponding results for the 
other groups in Table 1. We also state a few small conjectures inferred from our 
examination of the computer printout. Incidently, the Bianch project is only 
intended as an advertisement for the Poincare file whch was developed for entirely 
different applications. This author thnks that many of the torsion-free subgroups of 
Bianchi groups are likely to be much more exciting than the full groups. 

The present paper is one part of a long term project studying the projective 
representations of knot groups. We have tried to make it independent of the 
previous papers of the project because we feel that thngs like the Poincare file will 
be of more widespread interest. Our main application is establishng the existence of 
the excellent hyperbolic structure on knot complements by direct calculation, cf. [8], 
[lo], [ll].  Another related application is to Kleinian groups G which either are 
homomorphic images of knot groups TK, or the other way around, and this also will 
be reported on elsewhere. 

Our methods for applying PoincarC's Theorem to specific groups were devised in 
1974 while the author was an official visitor to Southampton University and had 
been granted the use of an office and the standard facilities, except the computer. 
This was during a 24 year period of unemployment when our main financial support 
was the savings from a 6 month visit in 1973 to the Universite de Strasbourg that 
was very generously funded by the C.N.R.S. The author was a Research Fellow on a 
project supervised by Dr. David Singerman at Southampton University during the 4 
years 1976-1979. This project was also very generously funded by the Science 
Research Council, and we are most grateful to Dr. Singerman for his invaluable 
assistance during the grim years, and to Professors H. B. Griffiths and S. A. 
Robertson of Southampton University for their continued support since 1968. 
During the first half of 1980 we wrote up the first version of this paper while 
enjoying the warm hospitality of the Institute for Advanced Study. From September 
1980 our project was funded first by Professor W. P. Thurston from his Waterman 
Fellowship and then by the NSF grant supporting the Sullivan-Thurston project of 
1980-8 1 at the University of Colorado at Boulder. 
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1. How We Applied the Fundamental Theorem. 
1.1. H. Seifert's account [12] of this theorem is in the context of isometries of a 

complete simply connected Riemannian manifold G"of constant sectional curvature 
and dimension n. We begin by stating his version of t h s  theorem in approximately 
hls notation, and we shall change over to our notation as we get deeper into our 
special case. A k-blob (k-dimensionalen Raumstuck) of Gnis the closure of an open 
connected subset of a k-plane of Gn.Let K be a finite nonempty collection of blobs 
with union I K I in G".Seifert calls K a complex when the following assertions hold 
for K. 

K1: Each p E I K I is an interior point of precisely one blob of K, 

denoted Z( p )  = Z( p ,  K ) .  

K2 : If p belongs to the blob A of K, then Z( p ) C A .  

He soon restricts attention to the complexes satisfying two further conditions. 

K3 : Each blob of K belongs to at least one n-blob of K. 

K4: Each (n - 1)-blob of K belongs to precisely one n-blob of K. 

The blobs of dimension less than n are called sides of K. 
Let S,, .. . ,S, be the (n - 1)-sides of such a complex K. We suppose that for each 

side S,there is an isometry 7~ of G" that maps S,on some other side, say on S,. (My 
7~ is Seifert's ?-I.) We suppose also that r, = 7,-', and that for each interior point 
p E S,, 7~ maps the inward normal to S, (pointing into 1 K 1) to the outward normal at 
? ( p )  E S,. Call p E S, directly equivalent to 7~( p), and say that points p, q in 
bdry I K I are equivalent when p, q are the ends of a finite sequence of points of 
bdry K each directly equivalent to its immediate neighbors. Finally, suppose that no 
side of K contains equivalent interior points. Then Seifert calls K a complex with side 
pairing and writes (K; r,,. . . ,r,) or just (K; r )  for it. A cross line of K is a curve v: 
[0, A] +I K I for some A > 0 whose image lies entirely in interior I K I , except that 
v(0) and v(A) are interior points of (n - 1)-sides. A cross line chain is a sequence 
{v,) of cross lines such that the endpoint of v, is equivalent to the beginning of v,, ,. 
It has finite length when each v, has finite length, say I,, and 2 I, < co.A complex 
with side pairing (K; r )  satisfies the cross line condition when each cross line chain of 
finite length lies in a compact subset of / K I . 

Consider an interior point p ,  of the (n - 2)-side Z(p , )  of the complex with side 
pairing (K; r), and let K be a circle of radius E and centerp, lying in a 2-plane of Gn 
perpendicular to Z(p , )  at p, .  We suppose the radius E is so small that K is near only 
Z(p , )  in the (n - 2)-skeleton of K. Orient K arbitrarily, and let b, be an arc of K 

whose interior lies in an n-blob of K so that its beginning and endpoints lie in 
(n - 1)-sides. Let 7, be the pairing transformation for the side containing the 
endpoint of b,, and let p, be r,(p,).  Then r, maps K = K ,  to an oriented circle K, 

about Z(p,), and the endpoint of r,(b,) is the beginning of an arc b, of K, whose 
interior lies in an n-blob of K. Then the endpoint of b, belongs to an (n - 1)-side of 
K with transformation r2 that maps p, on p, and K, on K,, a circle about Z(p,). We 
continue in this manner and generate sequences p, ,  p,,. . . and b,, b,,. ... When K 
satisfies the cross line condition, p ,  is equivalent to only finitely many points of 
I K I , so these sequences are periodic. Let A be the least positive integer such that 
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b, = b,,,. Then Z ( p , ) , ... , Z ( p , + , )  form a cycle of ( n  - 2)-sides. The two ( n  - 1)-
sides of K meeting along Z(p , )  that contain the boundary of b, make an angle of, 
say, a, in I K I . The angle sum for t h s  cycle is a = a ,  + . . . +a,. The angle sum 
condition on K requires that for every such cycle the angle sum a is 2n/l where I is a 
positive integer depending on the cycle. If r,, . . . ,r, are the transformations used in 
the cycle in their proper order, then (7,. . . 7,)' is the identity isometry of Gn.We 
call the equation (7,. . . 7,)' = E the cycle relation and the product 7,. . . 7, the cycle 
transformation of the cycle. 

It might happen that a side pairing transformation 7 for ( K ;r ) is the reflection of 
G" in the ( n  - 1)-plane carrying the corresponding side S,. Then 7,2 = E, and thls 
relation is called a reflection relation. Such a relation does not naturally correspond 
to an ( n  - 2)-cycle of ( K ;  r), although it is certainly possible to subdivide K and get 
a new complex with side pairing in which the old S, has been split in two by a new 
( n  - 2)-side. 

Let ( K ;r )  be a complex with side pairing, and let r be the group generated by the 
5 . Seifert calls ( K ;7) a gapless cover of G "  when 

G " =  U Y ( I K I ) .  
YE^ 

He also calls (K; r )  simple when y,(/ K 1 )  meets y2(l K 1 )  at most in boundary points, 
for distinct y,, y, in r. Then Seifert's verslon of the fundamental theorem can be 
stated as follows. 

THEOREM.For some n 2 2 let (K; r )  be a complex with side pairing in Gnwhose 
side pairing transformations generate the group T.When ( K ;  7) satisfies the cross line 
condition, then ( K ;  r )  is a gapless cover of G n .  When the interior of I K I is connected 
and ( K ;  7) satisfies both the cross line condition and the angle sum condition, the cover 
is both gapless and simple. In this case r is a discrete group of isometries acting 
properly discontinuously on Gn,and the cycle relations and reflection relations of ( K ;  7) 
present T on the generators 5 .  

1.2. When G "  is hyperbolic space W",it is convenient to replace the cross line 
condition by the more manageable cusp condition. This is best stated in the context 
of the two standard conformal models of W n  that we will use later, viz. the unit ball 
model 3 "  and the upper half space model qn.Start with Euclidean space I W n  with its 
standard metric, the E-metric, which we use both as a distance ( d ( x ,y)  = )x - y 1) 
and as a Riemannian metric ( d s ,  = I  dx I ) .  Let Rnbe the one point compactification 
of IW " with compactifying point oo.Write 

an= { ( x , , .. . , X n )  E I W n :  1x1 < 1 1 ,  

%I1 = { ( x , , .. . , X n )  E I W n :  x,, > 0 1 ,  

nh={ ( x,,...,X n )  E R ~ ~ : X , = ~ ) ,n;= n, u ( 0 0 ) .  

The sphere at infinity, SP", is the boundary of 3 "  and I I g  in the two cases, and its 
points are called points at infinity. W n  carries a hyperbolic metric, the H-metric, 
whch for our two models depends only on the E-metric and the distance to SP", 
viz. 
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respectively, cf. [I], [2] for more detail. Most objects or relations in either model are 
described with respect to one of these two metrics, and we use the appropriate 
prefix, E- or H-, to denote whlch. In cases where the metrics always give the same 
result, notably angles, we do not use a prefix, and we shall often omit the E-prefix. 
(Therefore the H-prefix can only be omitted when the meaning is very clear.) For 
example, the H-topology on W n  is the restriction of the E-topology, and W n  is 
H-complete but not E-complete. Let a n ,  %n be the E-closures of our two models. 

A horosphere for either model is an E-sphere S of 3 "  or 5"whch is tangent to 
SPm at some point p ,  with the convention that if p = co,then S = IIi for some h. 
One component of W n  - S meets SPm only at p and is called a horoball. A horoball 
may be thought of as a deleted H-neighborhood of the point p at infinity. Let (K; r )  
be a complex with side pairing in our model, and suppose the E-closure of I K 1 meets 
SPm in a nonempty set L. An isolated point of L is called an ideal vertex of K. At 
each ideal vertex z ,  we choose a horoball Va which is so E-small that distinct 
horoballs do not meet and so that V, meets only those sides of K that have z, on 
their E-boundaries. We call the portion of I K I inside V, a cusp of I K I . The cusp 
condition on (K; r )  requires that these horoballs V, for the cusps of j K 1 can be 
chosen so that, if p E 1 K I belongs to some V,, then all points of I K I equivalent t o p  
also belong to the horoballs. Seifert calls the H-distance of P E Vato the horosphere 
bounding V the niveau of p and shows that when the cusp condition holds the 
horoballs can be chosen so that corresponding points of I K I in the horoballs have 
the same niveau. 

ADDENDUM The cusp condition for ( K ;  r )  implies the cross line TO THE THEOREM. 
condition. If the horoballs for the cusps of I K I can be chosen so that each V, n I K 1 is 
connected, then the two conditions are equivalent. 

1.3. We are now ready to discuss the mechanics of actually using PoincarC's 
Theorem to demonstrate the discreteness of an explicitly defined isometry group I? 
and to determine a presentation of T.One possible meaning of "explicitly defined" 
is the following. An algorithmically defined group is a triple ({S'), AD(l), AD(2)), 
where {S,) is a (finite in this paper) set of isometries of G n  generating a group T, 
AD(1) is an algorithm which solves the word problem for r on {S,), and AD(2) is an 
algorithm that computes the action of each S, E { S , )  on G n  to any requested 
accuracy, with respect to some fixed atlas of charts of Gn .  For brevity we shall call 
the set {S,) algorithmic when these algorithms are provided, and we shall regard 
them as provided when the definition of {S,) suggests ways of providing them. The 
standard case for us is where we are using some model of G n  that gives a convenient 
faithful representation of the isometry group of G n  by a matrix group M C GL(m, C )  
for some m .  Suppose that each S, is represented by a matrix whose entries belong to 
an algebraic number field F = Q(o), where o is a root of a known integral 
polynomial f ( x ) .  Then AD(1) is reduced to arithmetic in F, and this boils down to 
calculations with polynomials in Q [ x ]modulo f(x) which can be done algorithmi- 
cally. Similarly, AD(2) boils down to Newton's iteration to the specific root o 
starting from a sufficiently good first approximation. Not all finite sets {S,) of 
isometries actually permit AD(1) or AD(2), for instance, because it is easy to give 
cute examples of cyclic subgroups of the additive group Q whlch make either 
algorithm depend on the truth of Fermat's Last Theorem. 
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Many algorithmic sets { S j ) generate indiscrete groups r ,  and PoincarC's Theorem 
does not apply to them. We are told that for every G nthere is in principle an 
effective criterion for indiscreteness of r in terms of inequalities associated with sets 
of elements of r.The main difficulty in applying such a criterion is finding the right 
subset of l? for it. Our basic plan of attack on {S,) is to try to construct a complex 
with side pairing (K; T) where T generates r by some kind of a reasonably efficient 
search for suitable transformations 5.Whenever a new transformation is proposed it 
is fed to the indiscreteness criterion so that the search can be stopped immediately 
when r is proved indiscrete. The idea is that the early guesses at a fundamental 
domain for r are too big, the search is looking for ways to reduce them, and r is 
indiscrete when the guesses get too small. 

Our methods for dealing with isometry groups of W napply to the models 91"and 
"21"for all n 2 2. The advantages of these models are the two metrics, the conformal- 
ity, and the convenient matrix representation of the groups. A good reference for the 
background is Chapter I1 of Ahlfors [ l]  or Thurston [15]. We shall henceforth make 
the tacit assumption that all mentioned H-isometries of our model preserve orien- 
tatiofi. Therefore if our original set {S,) contains orientation reversing elements we 
first produce an appropriate set of products of the S, generating the orientation-pre- 
serving subgroup I?+ of I?, and then study I?+ by the methods below. It is easy to 
derive the desired results for I? from those for I" . 

We shall use a geometric description of the (n - 1)- and (n - 2)-planes and the 
action of H-isometries for our model, 3" or an,of Wn.We wish to use our system of 
carefully distinguishmg the two metrics, but because this gets clumsy for general n, 
we shall describe everything primarily for n = 3 and indicate the notational changes 
for other n. It is well known that a 2-plane II of (our model of) W has the form 
W n S, where S is an E-sphere or E-plane perpendicular to SPm.We shall call II an 
H-plane, or an EH-plane when S is an E-plane. A 1-plane is the intersection of two 
intersecting H-planes. We shall call it an H-line, or an EH-line when the two planes 
are EH. In dimension n the corresponding objects have the same codimension, so 
"H-(n - 1)-plane" and "H-(n - 2)-plane" replaces "H-plane" and "H-line", re-
spectively, in the following discussion. 

An EH-transformation or EH-isometry is an H-isometry which is also an E-isome- 
try. Let T be an H-isometry of "21".Then the nth root of the Jacobian Jcb(T) 
evaluated at a point P of G2Ln gives the expansion of the E-metric at P by T, so T is 
an E-isometry of G2Ln exactly on the locus Jcb(T)(P) = 1. When Jcb(T) is noncon- 
stant, then this locus is an H-hyperplane which we call the isometric sphere of T and 
denote by I(T). If we denote the H-hyperplane that perpendicularly H-bisects a 
segment (a, b) of W nby Eq(a, b), then I(T) (when it exists) is 

lim E ~ ( T - ' ( P ) ,  P) ,  
P- 00 

and the E-centre of I(T), denoted cn(T), is T- ' (a)  E SPm.The cases where I (T)  is 
not defined for G2Ln are when Jcb(T) is a constant function. When Jcb(T) = 1, then 
T is EH, and when Jcb(T) -- c # 1, then T is an E-similarity of a type that we will 
have to exclude from the discussion below. So if we encounter a group r acting on 
G2Ln containing such an element, we shall have to switch to the ball model. In the next 
section we shall give the explicit formulae for I(T), cn(T), and the E-radius, rd(T), 
of I(T) for G2L3 using the standard complex notation. 
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An EH-isometry T of 9 "  is an H-isometry whch fixes the Euclidean center 0 of 
a n ,  cf. (1.1). When T is not an EH-isometry, we define the isometric sphere of T, 
again denoted I(T), by I(T) = Eq(T-'(O), 0). Then, both for G2Ln and a n ,  if T admits 
an isometric sphere, there is an EH-hyperplane Ref(T) that E-bisects I(T) such that 
the action of T is the product of an E-inversion of W 3  in I(T), an E-reflection 
(inversion) in Ref(T), and an EH-transformation that carries I(T) on I(T-'). It 
follows from this description that T is an E-magnification E-inside I(T), an 
E-isometry exactly on I(T), and an E-contraction E-outside I(T). Therefore, if U is 
an EH-isometry we have 

(1.2) I(UT) = I(T), I(TU) = U-I(I(T)). 
We shall not need to give a rule to determine the reflectingplane Ref(T) except when 
T is an involution. If T has fixed points in W ",then T is an H-rotation about an axis 
ax(T) which is an H-(n - 2)-plane. If T~ = E and I(T) exists, we choose Ref(T) to 
be the EH-plane containing ax(T). If T is both EH and an H-rotation, we call T an 
EH-rotation. For 9 "  the E-centre, still cn(T), of I(T) for a non-EH-isometry lies 
outside 9" .  If R is an EH-rotation of W n  (either model) such that the E-(n - 2)-plane 
containing ax(R) contains cn(T), we shall say merely that ax(R) contains cn(T). 

1.5. Suppose we are given an algorithmic set {S,) generating a discrete group r of 
(orientation-preserving) H-isometries. We wish to produce a complex with side 
pairing (K; T) such that T also generates r ,  and we begin by selecting a model, 93" or 
G2Ln, of W ". Let I?,, denote the subgroup of all EH-transformations of I?. Then TEH is 
a Euclidean group of a simple type that we may suppose has been completely 
classified. Hence, if the study of r is to present a challenge, we suppose that 
r # rEH.Let 8 be the open region of W n  which is E-outside all isometric spheres of 
r - r,,. Then 6 is nonempty if we are in a " ,  but 8 could be empty if we are in %". 
If t h s  happens, we must switch to 9" .  So suppose 6 is nonempty. Each (n - 1)-side 
(face) of 6 lies on an isometric sphere, say I(T), and T maps the face of 6 on I(T) 
onto that on I(T-I). When TEH is trivial, then CO is a fundamental domain for T. We 
then set 9 = CO and call 9 a Ford domain for T. It is associated with the set {T,) of 
elements of r whose isometric spheres carry faces of 9 .  

When TEH is nontrivial, the region 6 is bigger than a fundamental domain, and we 
have to describe a rule for getting a good domain in some detail. Let pr: G2Ln + It0 
C SPm be the orthogonal projection (x,, . . .,x,) + (x,,. . . ,xn- ,), and let pr: 93" -
(0) + SPm be the radial projection from 0. Our method for getting a Ford domain 
9 for r is to select a fundamental domain qmc SPm for TEH, and then set 
9 = 6 n pr-'(9,). It will simplify the later discussion if we always choose qmso 
that the number of spherical faces of 9 is minimal, and we do this as follows. Each 
face of 8 is an H-polygon on some isometric sphere. Suppose first that r does not 
contain an EH-rotation which rotates a face of 8 on itself. Then there is a collection 
{T,) of elements of I? - I?,, such that each I(T,) and I (Ti l )  carries a face of 6, 
these faces are all distinct except for the possibility that T, = Ti' ,  and the interior 
of the closure of the union of the projections on SPm of these faces is a fundamental 
domain for rEH. The modification needed when the EH-rotation R rotates a face F 
of 8 on itself is to replace F by a suitable wedge Won F. If R is a rotation of exact 
order r 2 2, the vertex angle of W will be 27r/r, and the "vertex" of W will be 
ax(R) f' I (T)  where F C I(T). One of the sides of W to this "vertex" will be an 
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H-(n - 2)-line to an (n - 3)-side of bdry F. Also TRT-' is an EH-rotation whose 
axis contains cn(T-I), and we select a wedge W' on I(T-I) for it by W' = T(W). 
Then 9, will be the interior of the union of the projections of the complete faces 
and wedges on the I(T,'I1), and is a fundamental domain for r,,. The resulting 
domain 9is called a Ford domain for r ,  and 9 is determined by I?,, the collection 
{T,), and, perhaps, the choice of certain wedges. These wedges will be tacitly taken 
for granted and will be mentioned only when needed. So, in all cases, our Ford 
domain 9is associated with a collection {T,) such that each Tk is some word on the 
original generators {S,), and Tk maps the face of 9on I(T,) onto that on I(Til) .  

When TEH is nontrivial, the above rule for producing 9, can be refined to ensure 
that 9be connected and even that the number of EH-edges be least possible. Whle 
these features may seem desirable, they do not enter our analysis at all, and it turns 
out to be rather difficult to achieve them in practice. It is very unusual for one of our 
Ford domains to be H-convex, and typically an H-convex fundamental domain 
(when rEHis nontrivial) is more complicated than a Ford domain in ways that really 
matter. Incidentally, the Beardon-Maskit theory for H-convex domains in dimension 
3 applies directly to our Ford domains in spite of the nonconvexity. 

1.6. To get a complex with side pairing (K; 7) from a Ford domain associated 
with {T,) take I K I to be the H-closure of 9and the sides of K to be the minimal 
collection of blobs on bdry I K I that is consistent with the H-polyhedral structure 
and satisfies Seifert's restrictions Kl, .  . . ,K4. (When r contains involutions we may 
have to bisect some faces of K so that no side of K contains equivalent interior 
points.) The side pairing transformations 7 are {T,) and any necessary EH-transfor- 
mations for EH-sides. It is clear that the E-distances to SP" of equivalent points of 
I K I are the same and that this implies that the cusp condition holds for (K; 7). 
Hence Seifert's Addendum shows that the cross line condition holds. Because 9is a 
fundamental domain for I? we know that (K; 7) is a gapless simple cover of [HI ",and 
then item 9.3 of [12] tells us that the angle sum condition also holds. The only new 
information that PoincarC's Theorem might give us now is that the cycle relations of 
(K; 7) present r on the generators 7. 

However, our usual starting point is the algorithmic set {S,) generating r ,  and 
intiially we may not know whether I? is discrete, or know the subgroup rEH, or the 
set {T,) for a suitable Ford domain. These three items are to be part of the 
conclusion. Suppose that we have found a candidate corresponding to {T,) for being 
a Ford domain for r by some kind of search. The Tk and the proposed EH-pairing 
transformations are supposed to be explicit words on {S , ) .  Our problem is then 
reduced to proving that 9actually is a Ford domain for r .  The hypothesis that 9 ,  
{T,) is a candidate Ford domain means first of all that we have used algorithm 
AD(2) to calculate roughly the intersections of the I(Tkel) and the effect of the 
EH-transformations, and that we have lists of the sides of the candidate (K; 7) 
(defined as above for 9,{T,)). These lists give us the proposed incidence relations of 
K and the approximate E-boundary of each k-plane carrying a side of K. The edges 
(codimension 2 sides) of K have been sorted into tentative edge cycles, and the cycle 
transformation for each cycle has been reduced to a word on {S,).The angle sum for 
each cycle has been calculated very accurately and found to be very nearly 2m/a for 
some definite integer a. Then the cycle relation Xa = E for the cycle has been 



verified by algorithm AD(1). It is assumed that no inconsistency in (K; r )  was found 
during these checks, so that 01) is pretty certain to be correct. 

The easiest condition to settle is the angle sum condition for each proposed edge 
cycle. Say the cycle has cycle transformation X, that Xa = E, and that the angle sum 
estimate really proves that the angle sum is less than 47r/a. Now Xa = E implies 
that the angle sum is exactly 2am/a for some integer m 2 1 whch is relatively 
prime to a. Our upper bound implies that m = 1, so the angle sum condition holds 
for this cycle. We call this argument the angle sum trick. 

The really hard part of the verification is proving that the side pairing transforma- 
tions really do pair the faces of K in the manner indicated by the approximate 
calculation. We do not have a general method for doing this, so we have to take 
advantage of the special circumstances of the definition ({S,)) of r .  There is a direct 
method for solving the pairing problem when the S, are defined by a faithful matrix 
representation of the group of H-isometries and the entries of the matrices generate 
a known algebraic number field F. It is then possible to compute the coordinates of 
the vertices of the E-closure of I K I as explicit algebraic numbers. Then if rk seems to 
send a side A on a side A', one can compute the vertices of rk(A) and A' and 
compare them as algebraic numbers. If A' and rk(A) have the same vertices, they are 
equal because they are both H-convex. This method is so grim that we call it the 
method of last resort. 

There are two important simplifications of t h s  pairing problem that help even the 
method of last resort. The first is that when a tentative Ford domain 01) is 
constructed by the above rules, its EH-faces are automatically paired correctly by 
EH-transformations and hence they can be omitted from the pairing verifications. 
First of all, the two EH-sides that meet along the axis of an EH-rotation through the 
apex of a wedge on a face of 8 are paired by R because we explicitly arranged it. For 
the other EH-faces recall from (1.2) that the EH-transformations permute the 
isometric spheres of F - r,,, and hence permute the edges of our candidate for 8. 
An edge e of 8 gives rise to an EH-strip pr-'(pr(e)), so rEHpermutes these strips. All 
the EH-faces of 01)except those from wedges are such strips, so the EH-elements of r 
must pair them correctly. Note that t h s  argument works even when 01) is wrong 
provided that we keep to the rules for defining 01)given a candidate 8. 

The second simplification of the pairing problem is the recognition that PoincarC's 
Theorem really does not require hypotheses on the sides of K of codimension 2 3. 
Let T E I-and let F, F' be faces of 01) such that T approximately maps F on F'. Let 
I,, . . . ,I, and I;, . . . ,I; be the H-lines (or H-(n - 2)-planes) containing the edges of 
F and F'. Suppose we can prove that T maps the H-lines I, on the H-lines 1;. Then 
T(F) and F' are nearly coincident H-polygons on the same H-plane which are 
bounded by segments of the same set of H-lines. Therefore T(F) = F', and we have 
solved the pairing problem for F, Fr. The H-line T(1,) is determined by the effect of 
Ton  the E-endpoints (or E-boundary in higher dimensions), so in the method of last 
resort the pairing problem is reduced to calculations of the effect of the Tk on SP". 

We are now ready to explain our preferred methods for solving the pairing 
problem efficiently. We shall consider the effect of the Tk on the H-lines carrying 
non-EH-edges of K on a cycle by cycle basis rather than on a face by face basis. 
Consider a nontorsion cycle of length 6 whose cycle transformation Xis the product 
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U3&U2V2UlV,,where the U, are EH-transformations and the 7 belong to { T ~ ? ' ) .Of 
course, the cycle relation X = E was verified by AD(1).  The H-lines carrying the 
edges of this cycle are 

Clearly Ul(m2)= m3, U2(m4)= r5,and U3(.rr,)= r,,and we need to prove that 

( I . 3 ]  .2= V l ( m l ) ,  m 4 =  v2(~3),r f j =  v 3 ( r 5 ) .  

Let m; := U3V3(m5), mi := U;'V;1U;1(?T5). Because 9C I (V3)  and u;'(m5) C 
~(v;') ,  are E-isometries of .rr, on a ;  and 71;. Hencethe maps U3V3and U{'V;'U;' 
the composite U;'V;'U;' . (u3v2)- '= Y is an E-isometry of a ;  on 71;, whence 
m; C I ( Y )  and 4 C I ( Y - I ) .  But the cycle relation implies that Y = V , , so 

mi = I ( v , - I )  f' = m2.m; = I(v,)n u 3 ( I ( v q 1 ) )= r l ,  and u; '(I(v~))  
Hence .rr, = Vl(ml) .Next 

r4= u;'(T~) = V2Ul(m2)= ~ ~ ( 7 3 )5 ,= V 2 U l ( ~ ; )  = 

and the proof of the last assertion of (1.3) is similar. The conclusion is that the 
H-lines carrying the edges of a torsion free cycle whose cycle transformation has 
exactly three non-EH-factors are automatically mapped on their successors correctly. 
We call thls little swindle the closing trick. The closing trick even helps the method of 
last resort, because if we have a torsion free cycle with more than three non-EH-fac- 
tors in its cycle transformation, the trick permits the omission of the calculation of 
the effect of one non-EH-factor on an H-line. 

We have not found a similar good trick for most torsion cycles, and when we 
encounter one we rely on ad hoc arguments, cf. the example in Section 3. However, 
if the cycle relation is a direct power 7,"= E, then the cycle can contain only one 
edge and this edge is a segment of ax(r , ) .  So there is nothing to do here, but for the 
sake of reference we call this observation the torsion trick. 

1.7. Experience suggests that these tricks are completely reliable except in cases 
where some alternative method is not especially unpleasant. One common situation 
where the closing trick is prone to fail is where we have two isometry groups r C A, 
so that information about one group can be used for the other. For example, when 
the bigger group is proved discrete the smaller group is a fortiori discrete, and a 
Ford domain for I? is the interior of the H-closure of the union of A-translates of one 
for A. If r has finite index in A, then A is discrete when r is, and this time we 
subdivide a Ford domain for I? to get one for A. A third important case is where A is 
generated by I? and EH-isometries and I? is normal in A. Then A is discrete if r is, 
because both groups have the same lattice 0 of isometric spheres. In any of these 
cases, once we have produced a complex with side pairing (K; r ) ,  where the interior 
of I KI is a Ford domain for one group, the approximate calculations of AD(2)  
suffice to determine all we need to know about the other group. 

One further advantage of Ford domains is that when one of the torsion free cycles 
admits the closing trick the angle sum cu for the cycle is bounded above by 3m, 

http:U3(.rr,)
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whence a = 27r. More generally, suppose the cycle relation is r, . . . T, = E. If an 
edge of the cycle is a segment of the intersection of two non-EH-faces, then the angle 
here is < 7r. When one face at an edge is an EH-face paired by r,, we use 

angle in / K / of Z(r,) n T;'(I(T,)) + angle in I K I of T,(I(T,)) n Z(T,) 

= angle of Z(T,) n Z(rbr,) < 7r. 

Hence if exactly r of the factors 7~ are not EH, we get the bound a < ra. Therefore 
we do not have to consider a when r = 3 or 4 because then a = 27 automatically. 

A final verification that may sometimes be necessary after (K; r )  has been found 
is that T generates r itself, and not some proper subgroup TI. For each generator 
S E { S,) of r that is not known to be in r, we construct an approximation to 
S(( K I) and connect an interior point of t h s  to an interior point of ( K ( by an 
H-polygonal path that avoids the r,-images of the edges of K. This path determines 
a word T on T such that T(( K 1) overlaps S(( K 1). Then we use AD(1) to check that 
T =  S.  

2. The Poincare Library File. The Poincare file is a collection of Fortran 
subroutines that is to be combined with a main Fortran program to make a system 
implementing something like the methods of Section 1 for dimension 3. The file has 
grown over the years and is now getting near its natural limits. There are still certain 
restrictions on the groups it can handle, and there will always be machne dependent 
practical limitations, but the system can now do most of what one could expect and 
want. The file is on magnetic tape and will be available for copying by other 
matematicians desiring to use it. We shall also prepare a manual describing Poincare 
in more detail and explaining how to use it. Here we will just outline what it does 
and give a few hnts  about its methods, whch will support the discussion of its 
applications in the next two sections. 

First of all, Poincare uses the standard complex notation for Q3, so now we will 
write 

T h s  facilitates an identification of the group of orientation-preserving H-isometries 
of Q3 with PSL(C) = PSL(2, C) = SL(C)/(-E), where SL(C) = SL(2, C). Let 

We shall consistently minimize the notational distinction between SL and PSL and 
express an H-isometry by one of the matrices representing it. It is also convenient to 
pick out the entries of the matrix (2.1) by the functions 

~ I I ( T )= a ,  b , 2 ( ~ )= b, c2,(T) = C ,  d,,(T) = d .  

Our T acts on p1(C) by 

where a/c = ca when c = 0. T h s  action extends to (?L3 by a quarternion formula 
which is equivalent to PoincarC's original formulae, cf. [I], [2]. We can identify 
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C X R with the space of quarternions p = x,  + x2i + x3j + 0 .  k by (x + iy, h) -
p = x + yi + hj. hen T acts on G2L3 by 

(2.3) ~ ( p )= (ap + b) . (cp + d)-I. 

It follows from (1.1) and (2.3) that T is an H-isometry of G2L3, and a standard 
argument shows that every orientation-preserving H-isometry T can be represented 
in this way. It also follows that T is EH on GLL3 exactly when c2,(T) = 0 and 
I a ,  ,(T) ( = 1. All EH-transformations are either EH-translations 

which E-rotate q3about the EH-line ax(R) whose finite E-endpoint is 

If c2,(T) # 0, then T has an isometric circle I,(T) C C where I,(T) is the locus 
( cz + d 1 = 1. The isometric sphere I(T) is the H-plane whose E-boundary is I,(T). 
The specific formulae for radius and center are 

We fix a definite choice for the reflecting plane Ref(T) (with E-boundary the 
reflecting line Ref,(T)) by taking the action of T to be the product of inversion in 
I(T), reflection in Ref(T), and EH-translation (not rotation) of I(T) on I(T-I). 

To identity the group of orientation-preserving H-isometries of 9A3 with PSL(C) 
we define a conformal map F: G2L3 + a3using the above quarternionic represen- 
tation of G2L3 and an identification of R3 with another space of quaternions: 

( x l ,  x2,  x3) ++ q = x1 + x2j + x3k. 

Then 

has inverse 

F - ' : q t + ( l  -q)-l( l  + q ) j = p  ( q € a 3 ) .  

Note that F sends (0,l) =j to 0 E a3and F extends to the spheres at infinity so 
that F(w) = (1,0,0) = 1. We transfer the action of Ton q3to an action on B3by 

T(q) := F o  To F-'(q). 

The Poincare file computes rd(T) and cn(T 'I) for a3in a straightforward manner, 
but leaves Ref(T) undefined because Ref(T) is only used for Calcomp plots of Ford 
domains in Q3. 

Poincare uses two criteria for indiscreteness. The first is Shrnizu's Lemma, a 
special case of Jsrgensen's Inequality, which asserts that 
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is indiscrete when 0 <Jq c 1 < 1, cf. [2]. (We have been told that Shmizu's Lemma 
was known earlier, notably by H. Petersson, but on looking into t h s  we did not find 
an account gving an explicit criterion for indiscreteness.) The other criterion is 
Jargensen's Inequality, which asserts that (X ,  Y )  C SL(C) is indiscrete when 

except when ( X , Y ) is an elementary group of three explicitly noted types; cf. [6]. 
Whenever there is a choice, Poincark relies solely on Shimizu's Lemma because it is 
easier to manage. 

In using Poincare one first gives it values for several parameters that determine the 
type of groups to be considered. The input data for each group G is a collection {S,) 
of unimodular matrices that generates G. The program then attempts to set up a 
Ford domain 9in Q3or a3for G, and when it thinks it has succeeded it sorts the 
edges of Oi) into cycles and works out the non-EH-cycle relations. These, together 
with data for the non-EH-side pairing transformations {T,) of 9are then sent to the 
output routines. The official record of the calculation is the printout. This includes a 
list of the {T,) expressed as words on the {S,), rd(T) and cn(~" ) ,  and the matrix 
entries of T, for each T E {T,). Then comes a count of the number of non-EH-edges, 
and finally the non-EH-cycle relations from q.Each torsion-free cycle which does 
not admit the closing trick is noted. If G turned out to be indiscrete, some 
information about the details may be given. Poincare also allows the option of 
producing a Calcomp plot of the orthogonal projection of 9on @ for Q3or an 
orthogonal projection of 6B on some plane for a3.The plots for Q3 are usable as 
working diagrams that give insight into the action of G, they use three colors to 
make them easy to interpret, and many are rather pleasant works of art. The plots 
for a3are a recent development that is not yet complete, but it seems that they will 
have to be regarded solely as artwork because they are too difficult to use as worlung 
diagrams. 

The large size of the output per group means that Parkinson's Laws usually will 
apply before the practical and theoretical Limitations do. The only current theoretical 
restriction on the gorup G is that it must admit a Ford domain Oi) with only a finite 
number of sides, i.e. be geometrically finite. Two simple examples of geometrically 
infinite groups are 

These are the J-groups of [lo], after T. Jgrgensen, who found the first examples of 
this type. Feeding J-groups to Poincare would lead to disaster, and yet a casual 
inspection of these input matrices would not arouse suspicion. There are also certain 
avoidable restrictions on the subgroup GEH of a group G that Poincare accepts. The 
system was originally intended for parabolic representations of knot groups, cf. [8], 
[9], [lo], [ll], for which one wants G,, to be allowed to contain two independent 
EH-translations and an EH-involution, using the model Q3.The very considerable 
programming effort needed to provide for ths  involution discouraged us from 
providing for EH-rotations of higher order. For the ball model, GEH must be trivial. 
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To avoid these restrictions, replace G by a suitable conjugate XGX-' for which G,, 
is trivial, and use the ball model. 

The practical limitations of running time and array storage space are not espe- 
cially serious, because Poincark is rather efficient, and the arrays are so large already 
that most groups that exceed them are too complicated to be interesting. Of greater 
moment is the fact that algorithms AD(1) and AD(2) are not part of the system for 
obvious reasons. The lack of AD(1) means that the user will have to verify the cycle 
relations himself, and t h s  is where Parkinson's Laws usually come in. For each 
sufficiently restricted class of input groups for Poincare one might try to write a 
batch of subroutines that provide AD(1). We once did this for parabolic representa- 
tions of 2-bridge knot groups, and the programming effort required suggested that 
one will need to be very strongly motivated indeed to do t h s  for other such classes. 
Probably free groups are the most that one should ask for. Instead of AD(2) we used 
the ordinary floating-point arithmetic for the computer, which had the equivalent of 
11, 14, or 16 decimal figures for the machnes on which we implemented Poincare. 
Such accuracy is not overly generous because the arithmetic calculations of Poincare 
lose accuracy at a shocking rate. The system uses the input quantity E to test for 
presumed equality of two calculated floating point numbers, and the run will fail 
when E is simultaneously too large and too small. In the first important class of 
groups that we studied via Poincare we found a simple minded geometrically 
convergent (cf. [15]) sequence G(") of discrete groups with a very simple geometric 
limit G(") that is maximally unfavorable for the Poincare system if it is based on 
floating-point arithmetic of any fixed accuracy, cf. [ll].  Another good way of getting 
into accuracy trouble is to try and get near a general point on the boundary of a 
space of nonrigid Kleinian groups. What will happen is that the Ford domains will 
get progressively more complicated and the expression of the {T,) as words on the 
{S,) will get longer. The accuracy is lost in the resulting long chains of matrix 
multiplications. 

Poincare has three quirks that should be noted. The first is that if G is a proper 
Kleinian group such that G,, for Q3is nontrivial, then the EH-sides of the resulting 
Ford domain 9over the regular set of G in P' (C)are left undefined because they do 
not come into consideration. The second is that when GEH is nontrivial, the domain 
01) we get may be disconnected. This is difficult to recognize from the printout, and 
only the Calcomp plots brought t h s  quirk to light. The only way to prevent this 
would be to add subroutines whch check for connectedness after a good 9has been 
found, and redefine the set {T,) when it is not. This is contrary to the general flow 
of activity of the system, so it should only be done for a compelling reason. The 
third quirk is that when GEH contains an EH-rotation which rotates the face F of 0 
on I(T) on itself, Poincare does not actually choose a wedge on F in defining the 
domain as described in Section 1. Recall that TRT-' is an EH-rotation rotating 
the face F' of 0 on I(T-') on itself. Poincare marks the edges of F, F' as "live" or 
"ghost" according to a complicated rule, and when it sets up the cycle relations it 
arranges that only the live edges are used. We chose the marhng rule to ensure that 
the resulting presentation is correct, and we did not try to ensure that the live edges 
actually are edges of some Ford domain. Perhaps they always are, but we do not 
know. One cannot easily decide this from a Calcomp plot, because the projections of 
F, F' appear without any indication of which edges are live. 



We conclude this section with an outline of the search procedures to find {T,) and 
Gi) given {S,). One first approximation to Gi) could be to use just the isometric spheres 
and EH-transformations from {S,), but we often can do better. Suppose that we 
have a set {W,) of words on {S,) which are likely to be related to Gi), e.g. relations of 
G that are known in advance or words found to be of interest from previous 
computer runs for G. Subroutine BWORDS cuts each word W of {W,) into all 
possible segments which neither begin nor end with an EH-transformation and sends 
the matrices for the segments to subroutine TEST whch decides whether a matrix 
might actually contribute somethng to Gi). If one knows an element of PTL(@) (the 
group of all H-isometries) whch normalizes G, but does not belong to G, it can be 
taken into account in building approximations to 9. 

The heart of Poincare is subroutine LELIM, whch takes a collection {T,) of 
matrices and the known generators of GEHand sets up a trial Ford domain Gi) from 
them by the rules of Section 1. LELIM was the hardest subroutine to write, and for 
about 2 years the first runs for each new class of groups fed to Poincare promptly 
detected complex errors in LELIM that took a fair bit of trouble to fix. LELIM sets 
up the lists of edges of 9and associates with the edge e the isometric spheres whch 
meet in the H-line I containing e, the vertices of 9on e, the E-endpoints of 1, and 
the dihedral angle of Gi) along e. In the process the set {T,) is refined to remove 
unneeded elements. 

The output of LELIM might be sent to subroutine VXCLN whch checks for any 
obvious defects in Gi) and attempts to set them right. For each vertex v of 9and each 
T E {T,") such that v lies on I(T), VXCLN computes T(v) and sees whether it is 
E-inside some other I(V) for V in {T,'; ). If so, v is inside I(VT), and VT can be sent 
to TEST in building up the next approximation to Gi). VXCLN actually uses this idea 
more aggressively, and when it is finished the calculation is returned to LELIM if 
the list {T,) has been changed. VXCLN may be called several times if our early 
approximations to "I) are bad. Alternatively, the output of LELIM might go to 
EDGCYC, which tries to set up the non-EH-edge cycles and their relations. If a 
cycle is found to be incomplete in a usable way, it is stored and later fed to SLUIT 
which deals with it in analogy with BWORDS. The calculation would then proceed 
to LELIM and EDGCYC, and perhaps return to SLUIT. When t h s  is finished 
either the non-EH-cycle relations all seem to be correct, or some limit on recycling 
has been reached, or the process did not seem to be getting anywhere. The results are 
then sent to the output routines. To make all this practical and convenient, 
numerous bookkeeping subroutines are included, and some of these are long and 
complex. The total length of Poincark as of July 1981 is 3936 Fortran card images, 
but this length will definitely change with time. 

3. A Modest Example. We illustrate the application of the Poincark file by one 
example, a certain nonfree discrete group G generated by three parabolics. To define 
G let 

and let o be the root of 3 + h ( ~ ) ~= 0, whch is the limit of Newton's iteration 
starting from 
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Then G := (A, B, C )  where 

PROPOSITION.The group Gjust defined is a geometrically finite Kleinian group which 
is presented by the following relations: 

Proof. We begin by verifying that these relations do hold in G. A straightforward 
calculation in PSL(Z[y]) modulo 3 + h(y), shows that any one of these relations 
holds, say (3.4). Next, notice that if 

then SAS-' = B, S-'AS = C, SBS-' = C, and 

(3.8) R, = E,  RAR =A-', RBR = C-' .  

(These relations depend only on the normal form (3.3) and not on the particular 


v~~ V 3=value of w.) Write the relations (3.4), (3.9, (3.6) as V: = = 3 E ,  where 5is 
the displayed word, then 

Hence the relations all hold, as asserted. 
When we first encountered G all we knew was what we have just proved, and thls 

information was not especially helpful to the search for a Ford domain for G when 
we were relying on BWORDS and SLUIT without VXCLN. It took several attempts 
and the analysis of a diagram for an incomplete domain to find the collection {W,) 
of words listed below whch BWORDS could use to generate the list of all 
non-EH-side pairing transformations for 01). (A recent attempt using only VXCLN 
and SLUIT without any guidance from the relations of G or the rotation R was 
immediately successful. The account below is based on an earlier run.) 

The EH-rotation R of (3.7) which induces an automorphism of G by conjugation was 
taken into account by the computer on this run. 

We list below the non-EH side-pairing transformations T, that the computer found 
for its chosen 9.For each T, we give, perhaps in abbreviated form, the expression of 
T, as a word on A, B, C, and also cn(T,), cn(T,-I), rd(T,). These three numbers will 
be essential for interpreting Figure 1, a diagram of the E-projection on C of 9.We 
have not labelled the projected sides of 9in the diagram because that would clutter 
it too much. Incidentally, the computer uses a different subscript for T,-' (when 
T,, # E), but we only list the pair T,, T,-' once. Hence the missing subscripts, here 
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the even subscripts, are used for the inverses of the listed transformations. When it 
got to the cycle transformations it changed notation by using q-,, for the inverse of 
a listed transformation. We might have reindexed to make the Poincare presentation 
look a little simpler, but we refrained for fear of introducing clerical errors. 

The computer found that the Ford domain generated by the rules of Section 1 
from these transformations has 96 non-EH-edges which it arranged into 27 edge 
cycles. The cycle transformations for these cycles are as follows. 

cycle cycle 
1 A-~T,T,;~T, 2 A-'T~T,"A-'T~ 
3 T,A-~T,;~T,  4 A-~T,T;'A-IT, 
5 T,,T,-~T, 6 T~;~T,; 'T~ 

7 T;, 'T2 IT1 8 A-'T3T;'T3 
9 T.,-~T,A-~T, 

The computer also found that the angle sum for each cycle is approximately 271, 
except for cycles 16, 26, 27 where the sum is near 2 ~ / 3 .  Hence the presumed 
Poincare presentation for G on A, T I , .  . . ,T3, sets all cycle transformations to E 
except for cycles 16,26, 27 where the relations are 
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FIGURE1 
The projection of 6B on @. The circles are isometric circles, and the lines bisecting them 
suggest the reflecting planes. The bold lines are the projections of edges of 6fi where two 
isometric spheres meet on a segment of an H-line outside all other isometric spheres for G. 
The portion of 6Di7,in the regular set of G is left undefined, and the axes of the EH-rotations 
normalizing G should be clear on inspection. 



We have reached a situation of the type discussed in Section 1. We have a 
candidate 9for being a complex with side-pairing, and we must now apply our 
special arguments to complete the proof that G really is discrete and that 9really is 
a fundamental domain for it. The first part is to verify that all the relations of the 
above Poincare presentation actually hold in G. We begin with the 24 torsion-free 
relations. It is completely straightforward to use 14 of these relations to express the 
elements T,, ...,T3,as words on A, TI = B, T3 = C, and the result I obtained when I 
did this agreed with the list of words in our first table. The remaining 10 relations 
were then easily shown to hold in a free group F,, so they are all redundant. 
Therefore all the torsion-free relations together hold in a free group, and hence in G. 
Now consider the three torsion relations, beginning with (T,;'T,)~ = E. Expanding, 

T,;~T, = A C - I A B - I A B - ' A - I B A - I C A - t ,  

and this is a cyclic permutation AC-'V,(AC-')-' of the word V, of relation (3.4). 
Hence this relation is equivalent to relation (3.4), and we turn to the relation 
T; = E. We have 

T,, = A - ~ W ~= A - I B A - I B C - l ~ ~ ~ - l ~ ~ - I A ~ - l ,  
whch is a cyclic permutation of the word V2 of (3.5). Hence T$ = E is equivalent to 
(3.5), and similarly T: = (RT,,R), = E is equivalent to (3.6). Therefore the Poin-
care presentation for G is equivalent to the presentation stated in the Proposition, 
and all the cycle relations are indeed correct. 

The last part is to verify that the sides of 9are paired exactly as they seem to be 
by the presumed side-pairing transformations. Inspection of the Poincare presen-
tation shows that the closing trick and the torsion trick work for all cycles except 
cycle 16, (T,;1T7)3= E. This causes somewhat more trouble, and we first note that 

RT,R = TI;' 

is a consequence of (3.8) and the listed expressions for these elements. Hence 
T,;'T, = (RT,),, and so (RT,)~= E. Because R is an EH-isometry we have 

Therefore the rotation axis of RT, is 
I(RT,) n I((RT,)-I) = I(T,) n I(T,,), = : I ,  say. 

It is now clear that T,;' must be an E-isometry along T7(Il),so 

T,(l,) = I(T;') n I(T,;') =:I2 say. 

Therefore TI,([,) = I,, and these H-lines are indeed mapped on each other in the 
suggested manner. Ths  completes the last of our verifications of the hypotheses of 
Poincart's Theorem in the manner of Section 1. The Proposition follows im-
mediately. 

For comparison we also ran the unit ball version of Poincare for G, and found 
that the Ford domain in a3is considerably more complex than in G2L3.There are 62 
spherical sides, 54 edge cycles of which 4 are torsion cycles, and 154 edges. Every 
torsion-free edge cycle has length 3, so the closing trick works for all of them. 
Because of the extra complexity, the running time for 91,was 3.35 times longer than 
for G2L3. 

The only remaining question about G is the identification of its orbit space G 2 L 3 / ~  
with some better known 3-manifold. Matthew Grayson has just proved that G 2 L 3 / ~  is 
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homeomorphic to the knot complement R3 - k where k is the pretzel knot (3, 3, 3), 
also known as 9,,. He did this by a geometric analysis of Figure 1; cf. hls paper 
immediately following this one. 

4. Bianchi Groups. In the 1890's L. Bianchi determined Ford domains for an 
impressive collection of Bianchi groups, cf. Vol. I of h s  Opere [4]. The starting point 
of the present investigation was [14] by R. Swan in whch much of the basic theory is 
explained and a small portion of Bianchi's results are used to derive the Poincare 
presentations of 9, for 

d = -1, -2, -3, -5, -6, -7, -11, -15, -19. 
Here we shall report on our determinations of Ford domains and their Poincare 
presentations of 4, for all d where 

-8 2 d 2 -37, d = -43, -67, -163, 
except the cases listed above that Swan considered. We shall explain our methods for 
dealing with Bianchi groups, state the results for one example, d = -43, and present 
a table of some rather superficial data derived from the complete results for these 30 
groups. We also state the rather meager collection of observed regularities that we 
found in our computer output. Many of these groups are so complex that their 
intimate details are not fit for publication. We should perhaps confess that the 
Bianchi investigation was regarded as a detour from this author's primary interests, 
and that we did not put much effort into it except for finding the correct results. In 
particular, we did not complete a proof that our Ford domains are correct in 27 of 
the 30 cases, and the nature of the gap in our proofs will be indicated below. All 
these calculations were done on a CDC 7600 computer, and the hardest cases were 
run on unbudgeted Priority 0 time during July and August 1978. 

Because a Bianchi group is obviously a discrete group of a type that admits a Ford 
domain for its action on G2L3, the kind of arguments of Section 1 is inappropriate for 
the study of these groups. We use instead the classic method, due to Bianch hmself, 
which is based on the ease of listing the elements of an order 0 = Z[o] of a complex 
quadratic number field F = Q ( w ) ,  and thereby the matrices of the corresponding 
Bianchi group 4 = PSL(0). We shall assume that 0 is not the full domain of integers 
for n,a,because Picard and Bianch settled these cases. Then the subgroup 
9,, of EH-isometries, whch we now call 4,, is easily seen to be generated by 
A := A{l) and A, = A{o}. Let 

We all normalize the non-EH-side pairing transformations T for our Ford domain 9 
for 9 by requiring that cn(T 'I) belong to A. T h s  is an application of our standard 
rule for normalizing groups acting on G2L3, and it certainly works but it is not 
optional. The search for 9is based on searchng for all T E 9 - 9, with cn(T 'I) E 

A and rd(T) >constant, say h,. The computer listed elements of 0 in order of 
increasing absolute value. The list begins with 1, whch corresponds to 

For the nth number, say c, on this list the first check is whether I c I > hi1, for if so 
the search is complete. Otherwise, choose a, then d, on the list so that a/c, -d/c 



belong to A and I Im(a/c) I , I Im(d/c) 1 > 1/2. Then solve for b such that ad - bc 
= 1 and see whether b E 0. If not, continue trying values of a and d. If b E6,then 

and T is fed to subroutine TEST to see whether it might contribute something to 9 .  
It is obvious that such a search will produce a correct Ford domain when h, is small 
enough, and that the correct 9 will be found relatively early if the rule for choosing 
h, is rather pessimistic. 

The rule for choosing h, for all but one, B-,,, of the Bianchi groups listed above 
was to determine a good guess 9' for 9on a preliminary run and then take 

h, = E-height of the lowest proper vertex of 9' - (little bit) 

for the final run. We wanted to do t h s  for -33 too, but the lowest vertex was so low 
(cf. Table 1) that we would have felt guilty about wasting even unbudgeted computer 
time on something this silly. (I recall that we stopped at h, = 750-'I2, and that t h s  
took 19i minutes on a CDC 7600. One minute on t h s  computer is equivalent to 
about one hour on the first computer to run Poincare.) The main reason why these 
searches took so long is that we did not take the trouble to reprogram Poincare to 
eliminate the long stretches of redundant calculations that the standard version 
needs for t h s  lund of search. Perhaps if we had, the searches would have gone 2 or 3 
times faster. Naturally, a correct domain is obtained when the search is stopped at 
height h,, where h, is just less than the smallest radius of an isometric sphere needed 
for the true domain 9 .  If one relies on our subroutines VXCLN and SLUIT, which 
work on inconsistencies of a trial domain, the search can be stopped at height 
h2 > h, > h, when the domain seems to be consistent. Therefore one could get Ford 
domains and presentations for many more Bianchi groups at the cost of some 
reprogramming of the system and of a willingness to accept results which are only 
probable. Incidently, it would have been easy for us to have modified thls search to 
get results for congruence subgroups of Bianchi groups back in 1978, but nobody 
asked us to do it. 

The ideal classes of 0 are associated to ends of the orbit space % = %, Q3/8 in 
the following manner. Swan [14] calls z E C singular when for no A, p E 0 such that 
the ideal (A, p) equals 0 do we have I pz + A I < 1. A singular z belongs to F, and if 
z = a/P where a, ,f3 E 0, then z is fixed by the parabolic 

Also z corresponds to the ideal (a ,  P )  C a singular point z belongs to the - 0.If 
closure q m ,  then it represents one end of Q3/8. Two singular points in the same 
orbit of 8 correspond to ideals in the same class, and conversely. The class of 
principal ideals corresponds to the sole point cc which is fixed by the EH-transla- 
tions. Further results of Humbert and Swan imply that the H-closure 9 is compact 
except for solid cusps reaching down to the singular points below and up to cc 
above, so that Q3/8 is N - 1, where N is a closed orientable 3-manifold, and 1 is a 
union of h(O) disjoint 1-spheres in N, and h(0) is the class number of 0. These 
assertions are due to Humbert, Swan, and Serre when 0 is a maximal order, but 
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Swan's proofs can easily be extended to nonmaximal orders. Incidently, if 

belong to 9 and p E G2L3, then Swan defines T(p) to be our T*(p). Because the 
EH-rotation 

normalizes 9 by RTR = T*, we all come to the same conclusions. 
It follows from these results that when the class number h(0) = 1 the lowest point 

of the E-closure is also the lowest proper vertex of Gi), and so our search 
automatically produces the correct domain in these cases. In our sample t h s  applies 
to gd for d = -43, -67, -163. When h(O) > 1 we have to supplement our search by 
an examination of the solid cusps reaching down to the (presumed) singular points 
of 9,. These singular points show up conspicuously on our Calcomp plots as points 
on many isometric circles but not inside any. Swan provided a discussion of the 
methods for verifying that our presumed 9 is correct near each singular point, and 
in [5] H. Cohn gives a table, based on [13], of arithmetic data for 8 used in the 
verifications. Once our Gi) is proved correct in the solid cusps reading down to 
singular points, our setup implies that it is correct everywhere. 

There are other ways to verify that our candidate is correct. One can locate the 
singular points on our Calcomp plots and verify without difficulty that the isometric 
circles which seem to pass through them actually do so. Then the method of last 
resort, which is actually rather easy here, could be used to verify that our 9 is a Ford 
domain of some subgroup X of 9. To prove that the index [4 :XI is < 1 we could 
use an estimate of the H-volumes, vo1(9), vol(X), of the respective orbit spaces. For 
a recent account of the classic lore of H-volumes see J. Milnor's contribution to [15]. 
On the one hand, vol(9) is determined by a formula, due to Humbert, in which the 
value of ((2) is the only ingredient whose estimation requires serious effort, where 
{(s) is the Dedekind {-function of 8.On the other hand, vol(X) = H-volume ( 9 )  
can be approximated with the aid of Milnor's Lobachevsky function provided that 
we know the dihedral angles of our polyhedron 9. But these have been computed 
and stored because they were needed to bound angle sums, so vol(X) can be 
estimated mechanically. Thus 

can be estimated accurately enough to determine which integer it must be. Inci- 
dently, Humbert's formulae for volume have only been proved for maximal orders. 
Finally, we suspect that there really is no need to supplement the lowest vertex 
search because it always gives the right answer. 

We now come to the specific results for 9 = gd where d = -43. We have 

1 + /-43 
W = , s = Z [ W ] .2 

The generators of 4 are A, A,, and the following non-EH-transformations, and again 
missing subscripts were used internally by the computer for the inverses of listed 
elements. 



The computer arranged the 36 non-EH-edges of 9into 14 cycles, and the Poincare 
presentation for 9is as follows. 

T,-'A,T,A;~ATL~T,= T,T;'T,T, = E ,  


T7A-'T8T,= T8AT,T, = E ,  A s A,, 


Note that the first two cycle transformations have four non-EH-factors, and so the 
closing trick fails for them. Figure 2 is a copy of a Calcomp diagram for 9. 

FIGURE2 
The projection of a Ford domain for the Bianchi group 9-,3. 
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The following table summarizes the computer printout for our 30 groups. The 
headings NSS and NEHE are, respectively, the numbers of spherical sides and of 
non-EH-edges of for 9,. We used our standard rule for producing Ford domains, 
so NSS is an invariant of d but NEHE is often larger than the least possible value 
for d. The headings NR and NTR are, respectively, the number of non-EH-edge 
cycles and the number of such cycles where the angle sum is 2 ~ / rfor r = 2 or 3 (the 
number of torsion relations in the Poincare presentation). Note that the Poincare 
presentation will always require the EH-relation A +A, as in our example. The 
heading RSHLV means the reciprocal of the square of the height of the lowest 
proper vertex of 9.Add somethlng like 0.1 to t h s  to get the cutoff for I c2,(T) l 2  in 
our lowest vertex search. Remark that RSHLV was written in Fortran format F10.5, 
and we guessed the rational expression for the decimal part whenever we could. In 
the cases d = -32. -33 a continued fraction expansion of this part did not give us a 
fraction we could trust. The final heading, c,,, gives c,,(T) in the form m + no, 

TABLE1 

NSS NEHE NR NTR RSHLV 
6 20 7 3 33 1/3 
8 29 11 9 49 

10 39 15 9 65 1/3 
10 34 13 9 65 1/3 
16 64 25 17 85 1/3 
26 84 26 7 108 
18 66 20 9 110 1/4 
32 110 3 6 15 133 1/3 
26 88 29 11 161 1/3 
40 117 3 3 7 117 3/5 
30 99 35 19 192 
44 147 49 13 225 1/3 
11 3 3 10 2 16 8/11 
34 108 32 11 161 1/3 
42 143 49 25 261 1/3 
80 228 7 3 13 300 
3 11 6 6 13 1/2 

52 168 5 3 17 161 1/3 
86 246 77 19 341 1/3 
62 195 63 2 1 385 1/3 
13 47 15 6 24 1/2 

100 3 14 9 1 9 176.35393 
70 230 74 29 1090.39080 

102 317 104 21 481 1/3 
7 26 8 4 40 1/3 

90 257 77 17 225 1/3 
96 314 103 29 533 1/3 
9 3 6 14 10 21 1/2 

25 82 28 12 33 1/2 
99 332 102 20 81 1/2 
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where o = adfor the last of the listed generators. The isometric sphere for the last 
side pairing transformation has the least radius. 

The first regularity in our output that we could not overlook is that for every one 
of our 30 groups there was at least one relation in the Poincare presentation which 
asserted that a product S, . . . S, = E in gd,  and there were four non-EH-transforma- 
tions in this product. The closing trick fails for such a cycle. But we never found a 
relation (S, . - .S,)' = E where 2 5 of the S, were non-EH-transformations. This 
author predicts that the closing trick is likely to fail for a group when there is no 
advantage in using it, and the Bianchi groups are cited as evidence for this 
prediction. 

Perhaps some observations on our calculations of the fundamental group .rrlGX, 
are of more general interest. Recall that for a discrete subgroup G of PSL(C) acting 
on Nl3, .rrIa%(G) = G / G ~=:T(G), where ~f is the smallest normal subgroup of G 
containing all the elliptic elements. A presentation for T(G) is derived from one of G 
by replacing every relation (S, . . - S,,)' = E by S, . . Sr= E. We applied this to 18 
Bianchi groups and, after simplifying, obtained the following results. For the first 
batch of 12 groups, 9(gd) turned out to be free, of rank r(d)  say, and the values of 
r (d)  are as follows. 

In addition, %(gd) for -14, -17, -20, -26, -31 is as follows. 

d = -14, -17: lx ,,...,x,: x, + x,l 

T h s  was pencil and paper work, and we urge anyone wishing to rely on these 
assertions for any serious purpose to check them first. All the known T(gd) are 
HNN extensions of free groups, and we wonder if this is always true. 
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