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Abstract

The classical Schläfli formula relates the variations of the dihedral angles of a smooth family of polyhed
space form to the variation of the enclosed volume. We extend here this formula to immersed piecewise
hypersurfaces in Einstein manifolds. This leads us to introduce a natural notion of total mean curvature of p
smooth hypersurfaces and a consequence of our formula is, for instance, in Ricci-flat manifolds, the invar
the total mean curvature under bendings. We also give a simple and unified proof of the Schläfli form
polyhedra in Riemannian and pseudo-Riemannian space forms. Moreover, we show that the formula mak
even for polyhedra which are not necessarily embedded.
 2003 Elsevier B.V. All rights reserved.
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Introduction

Let Mn+1
K be the spherical, Euclidean or hyperbolic space of constant curvatureK and dimension

n+ 1� 2. Consider a smooth one-parameter family,(Pt )t∈[0,1], of polyhedra inMn+1
K bounding compac

domains and having the same combinatorics. WriteVt for the volume bounded byPt , and letθi,t and
Vol(Gi,t ) denote respectively theinterior dihedral angle and the(n− 1)-volume of the codimension
faceGi,t of Pt . The classical Schläfli formula relates the variation ofVt and of the anglesθi,t in the
following way:
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The Classical Schläfli formula

nK
dVt

dt
=

∑
i

Vol(Gi,t )
dθi,t

dt
.

The Schläfli formula is an important tool in the computation of the volume of hyperbolic and sph
polyhedra. Unlike the Euclidean case, there is no simple formula for the volume of a simp
hyperbolic or spherical case. The formula was first proved in the 1850’s by L. Schläfli for sph
simplices of any dimension. Then H. Kneser gave in 1936 a different proof which also applies
hyperbolic case [11]. The Euclidean version of the formula was rediscovered by Regge in 196
A more modern proof is given in [12]. During the recent years the Schläfli formula and its generaliz
proved to be useful in several areas. Rivin and Schlenker [17] gave a smooth analogue of the
formula for deformations of smooth hypersurfaces in Einstein manifolds relating the variation
volume bounded by a hypersurface and the integral of the variation of the mean curvature. Th
their formula to obtain rigidity results for Ricci-flat manifolds with umbilic boundaries. Other mo
applications of the Schläfli formula include the study of ideal polyhedra in hyperbolic space
of hyperbolic cone-manifolds [7] and convex cores of hyperbolic manifolds [8]. J.-M. Schlenke
the author [21] obtained Schläfli formulas of higher orders, for deformation of polyhedra, relatin
variations of the volumes of the codimensionp faces to the variations of thecurvatureof codimension
(p + 2) faces, for 1� p � n − 1. They deduced some topological invariants of polyhedra u
deformations. Following Kneser’s proof, Suarez-Peiró [23] extended the Schläfli formula to sim
(bounding compact domains) in pseudo-Riemannian space forms of nonzero constant sectional c
She used it to generalize to higher dimensions a formula of Santalo relating the volume of a hyp
simplex with the measure of the set of hyperplanes intersecting it.

In this paper, we shall give further extensions of the Schläfli formula and derive some conseq
Our first main result gives a unified proof of Schläfli’s formula for polyhedra in all simply conne
Riemannian and pseudo-Riemannian space forms (Theorem 2). An important feature of the for
that it applies to oriented polyhedra which are not necessarily embedded and may have self-inters
The point is that the variation of volume always makes sense for the type of polyhedra we consid
proof of Schläfli’s formula uses methods of differential geometry, mainly the divergence theorem
we believe it is not only simpler than the previous ones but can also be used in more general si
(see also Remark 1 after the proof of Theorem 2). Roughly speaking, the idea is to observe th
the deformation isthrough polyhedrathen all codimension one faces of the polyhedron remain to
geodesic during the deformation. This provides us with a vector field defined on each of thes
whose divergence has a simple form—for instance the divergence is zero in the flat case. Then a
the divergence theorem to each of these faces and analyzing the boundary terms on codimensio
leads to the Schläfli formula.

As an illustration of our techniques, our second main result gives a Schläfli-type formula for piec
smooth hypersurfaces in Einstein manifolds (Theorem 4). It extends the formula obtained by
and Schlenker [17] for smooth hypersurfaces. This leads us to introduce a natural notion of tota
curvature for piecewise smooth hypersurfaces. We obtain, as a corollary, the invariance under is
deformations of a linear combination of the volume bounded by the hypersurface and the tota
curvature (Corollary 6). For results on deformation and rigidity of piecewise smooth surfaces we r
the survey paper by Ivanova-Karatopraklieva and Sabitov [10].
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As a consequence of the formula in the polyhedral case, we also obtain the invariance under fl
isometric deformations) of the total mean curvature of polyhedra in (pseudo-)Euclidean spaces,
invariance of a linear combination of thevolumeand the total mean curvature in (pseudo-)Riemann
space forms of nonzero curvature (Corollary 3). In particular, we recover in this way, the inva
of total mean curvature under flex in the Minkowski 3-space proved recently by Alexandrov [3
invariance under flex of the total mean curvature of polyhedra in the Euclidean 3-space was first
by Alexander [2] and rediscovered and extended to smooth hypersurfaces by Almgren and Rivin
also [17] and [22] for easier proofs and generalizations to higher order mean curvatures). The s
geometric invariants of polyhedra (and of smooth surfaces) under flex is an interesting part in the
of flexibility/rigidity of these objects. One of the best achievements in this field is the proof by Sa
of the invariance of the volume of a polyhedron under flex inR

3, solving the Bellows conjecture (c
[9,18,19]). It is noteworthy that V. Alexandrov has constructed flexible polyhedra with nondege
faces in the Minkowski 3-space and observed that the proof of the invariance of the volume carri
to this case [3].

Our article is organized as follows. In Section 1, we recall some basic definitions includ
description of the class of polyhedra we consider. We also introduce the notion of thevariation of
volumefor these polyhedra. Section 2 gives the proof of the Schläfli formula and its conseque
the polyhedral case. Part of Section 2 is devoted to make precise the adequate notion of dihed
for the polyhedra under consideration. Finally, Section 3 is devoted to the case of piecewise
hypersurfaces.

1. Preliminaries

We first recall some basic facts about pseudo-Riemannian manifolds. A basic reference in the
is [13]. A pseudo-Riemannian (or semi-Riemannian) manifold(M,g) is a differentiable manifoldM
endowed with a metric tensorg, that is, a symmetric nondegenerate(0,2) tensor field onM , of constant
index, sayν, 0 � ν � n = dimM . For instance, ifν = 0, M is a Riemannian manifold, and ifν = 1,
M is a Lorentz manifold. The norm of a tangent vectoru ∈ TM is the complex number|u| = √

g(u,u)

and is a positive real number in caseg(u,u) > 0, u is then said to be spacelike and we setε(u)= 1. In
the caseg(u,u) < 0, |u| = √

g(u,u) is positive pure imaginary,u is then said to be timelike and we s
ε(u)= −1. Finally if |u| = 0 andu 	= 0, u is said to be a null vector.

The pseudo-Euclidean spaceR
n+1
ν is R

n+1 endowed with the pseudo-Riemannian metric defined
the bilinear form of indexν:

〈x,y〉 = −
ν∑
i=1

xiyi +
n∑

i=ν+1

xiyi,

wherex = (x1, . . . , xn+1) andy = (y1, . . . , yn+1).
The pseudo-Euclidean spaces are flat and, for instance,R

n+1
1 is the Minkowski space of dimensio

(n+ 1).
Thepseudosphereof radiusr > 0 in R

n+1
ν is the hyperquadric

S
n
ν(r)=

{
x ∈ R

n+1
ν | 〈x,x〉 = r2

}
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endowed with the metric induced from that ofR
n+1
ν . It has dimensionn, indexν and constant sectiona

curvature 1/r2. A particularily important space among these is the de Sitter spaceS
n
1(1) which is a

complete, simply connected forn� 2, Lorentzian manifold of constant curvature one.
Thepseudohyperbolic spaceof radiusr > 0 in R

n+1
ν+1(r) is the hyperquadric

H
n
ν(r)=

{
x ∈ R

n+1
ν+1 | 〈x,x〉 = −r2},

endowed with the metric induced from that ofR
n+1
ν+1. It has dimensionn, indexν and constant sectiona

curvature−1/r2.
Connected components of pseudospheres and pseudohyperbolic spaces are, up to isometry

complete simply connected pseudo-Riemannian manifolds of constant sectional curvature. The
geodesic submanifolds ofS

n
ν(r) andH

n
ν(r) are the connected components of their intersection with lin

subspaces ofRn+1. For this reason polyhedra make sense in these spaces. In the sequel, we sha
the simply connected pseudo-Riemannian space form of dimensionn+1, indexν and constant curvatur
K , byMn+1

ν (K).
Let (M,g) be a pseudo-Riemannian manifold of dimensionn and Levi-Civita connectionD. For a

vector fieldX onM its divergence is given by:

divX =
∑
i

ε(ei)〈DeiX, ei〉,

wheree1, . . . , en is an orthonormal frame. If(M,g) is orientable, there is defined a global volume fo
and for pseudo-Euclidean spacesR

n+1
ν , it coincides with the Euclidean volume form (cf. [13]).

Polyhedra. We will consider compact oriented polyhedra which may have self intersections. Th
defined as follows: LetΣ be ann-dimensional simplicial complex which is homeomorphic to a comp
oriented manifold. A polyhedron inMn+1

ν (K), modeled onΣ is a continuous mapP :Σ →Mn+1
ν (K)

such that its restriction to each simplex of any dimensionk of Σ takes its images in a totally geodes
submanifold of dimensionk and is injective and smooth up to the boundary of the simplex. By abu
language we callP(Σ) a polyhedron too. Images of simplices ofΣ will be called faces ofP and these
two objects will often be implicitly identified.

The volume function. In case a polyhedronP in a simply connected pseudo-Riemannian space f
Mn+1
ν (K) is embedded and (its image) bounds a uniquely determined compact domain then n

the volume ofP is set to be the volume of that domain. However, in general, a compact emb
polyhedron does not necessarily bound a compact domain because the spacesMn+1

ν (K) are in genera
not contractible. This happens, for instance, in the de Sitter space for an important class of con
compact polyhedra with spacelike faces, namely those which are the duals of convex compact po
in hyperbolic space through the classical duality between the hyperbolic space and the de Sitt
(cf. [16]). Moreover we are considering general polyhedra which are not necessarily embedde
way to overcome the difficulty in defining the volume in this general situation is to observe th
variation of volumealways makes sense. We proceed as in [5], where the problem is tackled for s
hypersurfaces.

By a smooth deformationPt of a polyhedronP :Σ → Mn+1
ν (K) we mean a continuous ma

Ψ : [0, t] × Σ → Mn+1
ν (K) such thatψt = Ψ (t, .) defines a polyhedronPt for each t andψ0 = P .

We assume moreover that for each simplex∆ of Σ , the restriction ofΨ to [0, t] × ∆ is smooth up
to the boundary. A face of a polyhedronP is said to be nondegenerate if the metric induced on
nondegenerate. Consider a smooth deformationPt of an oriented polyhedronP . The volume function
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(or maybe more adequately thebalance of volume, cf. [6]) is by definition the functionV : [0, t] → R

given by:

Vt =
∫

[0,t ]×P
Ψ # dM,

dM being the volume form onMn+1
ν (K).

Let ξt (p) = ∂Ψ
∂t
(t, p), p ∈ Σ , be the deformation vector field ofΨ . Then, we have the following

formula for the variation of the volume similar to one known in the smooth case (cf. [5]):

Lemma 1.LetP be a compact oriented polyhedron inMn+1
ν (K)with nondegeneraten-dimensional faces

andPt a smooth deformation ofP through polyhedra satisfying the same nondegeneracy condition
variation of the volume is then given by:

dVt

dt
=

∑
j

ε
(
Nj(t)

) ∫
Fj,t

〈
ξt ,Nj (t)

〉
dFj,t ,

wherej runs over then-dimensional facesFj,t of Pt , dFj,t being the volume form onFj,t andNj(t) the
unit vector field normal toFj,t compatible with the orientation onP .

Remarks.

(1) As usual, the unit fieldN normal to the faceF of P is said to be compatible with the orientatio
on P if for a positive basis{e1, . . . , en} of TxF , x ∈ F , the basis{e1, . . . , en,N} is positive for the
orientation of the ambiant space.

(2) Note that by continuityε(Nj (t))= ε(Nj) for all t through the deformation.

Proof. It is enough to prove the formula fort = 0. Since the faces of dimension less thann have measure
zero inP , we haveVt = ∑

j

∫
[0,t ]×Fj Ψ

# dM . Let x ∈ Fj be a fixed point ande1, . . . , en, en+1 = Nj a
positive orthonormal frame aroundx. Then,Ψ # dM = f (t, x) dt ∧ dFj , where

f (t, x)= Ψ # dM

(
∂

∂t
, e1, . . . , en

)
= dM

(
∂Ψ

∂t
, dψt (e1), . . . , dψt (en)

)

and so:

f (0, x)= ε
(
Nj(0)

)〈
ξ0,Nj (0)

〉
.

Therefore:

dVt

dt

∣∣∣∣
t=0

=
∑
j

d

dt

∣∣∣∣
t=0

{ ∫
[0,t ]×Fj

f (t, x) dFj

}
=

∑
j

∫
Fj

f (0, x) dFj

=
∑
j

ε
(
Nj(0)

) ∫
Fj

〈
ξ0,Nj (0)

〉
dFj . ✷
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Remark. It is not difficult to check that the formula is the same if we consider the volume bound
the polyhedraPt in case they bound compact domains and orient them by the exterior normal. Als
reasonable definition of the volume, for instance the generalized volume of a polyhedron in the Eu
space or in the Minkowski space (cf. [3]), leads to the same formula for the variation of the volum

2. The Schläfli formula for polyhedra

We will treat in a unified way the Riemannian and pseudo-Riemannian cases although the Riem
case is simpler. We first fix some notations. LetP be an oriented polyhedron inMn+1

ν (K) and letF1, F2

be two adjacent faces of dimensionn sharing a faceG of dimensionn− 1. LetNi be the unit norma
to Fi , compatible with the orientation onP , andνi the unit outward conormal toG in Fi , i = 1,2. Call
Πi , for i = 1,2, the totally geodesic hypersurface ofMn+1

ν (K) containingFi . Then, using the models fo
Mn+1
ν (K) described before, it can be checked that, for eachx, y ∈G, there is an orientation preservin

isometry ofMn+1
ν (K) keepingΠ1 andΠ2 globally invariant, sendingx to y and sendingNi(x) toNi(y)

andνi(x) to νi(y), i = 1,2. Therefore the geometry of the polyhedronP at x ∈G does not depend o
the choice ofx ∈G. This is the case, in particular, for the 2-plane orthogonal—inTxM

n+1
ν (K)—to TxG,

x ∈G. So for simplicity, for instance, we will sayG is orthogonally definite (respectively Lorentzian)
the scalar product induced on the 2-plane orthogonal toTxG,x ∈G, is definite (respectively Lorentzian

We now make precise the notion of dihedral angle.
The signed dihedral angle.In order to be able to define dihedral angles we will restrict ourselve

oriented polyhedraP in Mn+1
ν (K) satisfying the following two conditions:

(C1) the metric induced on each face of dimensionn or n− 1 of P is nondegenerate,
(C2) for each faceG of dimensionn− 1 of P which is orthogonally definite, the unit normalsN1 and

N2—compatible with the orientation onP—to the twon-dimensional facesF1 andF2 sharingG
as a common face satisfyN1 +N2 	= 0.

Condition (C1)—which was considered in [23] and is superfluous in the Riemannian ca
rather natural and allows us to define the angle between the normals to adjacentn-dimensional faces
Condition (C2) means that, for a faceG which is orthogonally definite, the intersection of the t
adjacent faces atG is reduced toG. For a faceG violating that condition, the normals toF1 andF2

satisfy:N1 = −N2 and in this case the dihedral angle cannot be defined in a coherent way as it
clear below. We will attach to each face of dimensionn − 1 of P a signed dihedral angle. It is a re
number which depends on the chosen orientation onP and represents in some sense themean curvature
of the polyhedron along that face. Note that when one considers compact embedded polyhedra i
connected space forms it is enough to use the usual interior dihedral angles to state the Schläfli
However, if one wants to consider the total mean curvature, then the interior dihedral angle is no
the appropriate one. Moreover we are considering general polyhedra which do not necessarily
The notion of dihedral angle is therefore a little more subtle. We first need to recall the notion of
between two vectors in the Minkowski planeR

2
1. Such angles were used by Alexandrov [3], Schlen

[20] and Suarez-Peiró [23]. In the definition of Alexandrov and that of Schlenker, the angle is a co
number, whereas Suarez-Peiró uses real numbers. Although not defined in the same way, the
of angle introduced by these authors are basically equivalent up to some conventions. Indeed,
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instance, straightforward to check that the non-oriented angle used by V. Alexandrov (see the de
below) is equal to the modulus of the real part of the angle used by J.-M. Schlenker and is e
the modulus of the angle used by E. Suarez-Peiró. To avoid distinguishing several cases, we w
follow the exposition of V. Alexandrov. The oriented angle is a complex multivalued function, w
assigns to two non-null nonzero vectorsu, v ∈ R

2
1 a number of the form	 uv = θ0 − ik π2 , k ∈ Z, θ0 ∈ R,

which satisfies the relation:〈u, v〉 = |u||v|cosh	 uv. It has the following properties:

(i) it is additive: ifu, v,w are three non-null nonzero vectors and	 uv = θ1+ ik1
π
2 and 	 vw= θ2+ ik2

π
2 ,

then there existsn ∈ Z such that:	 uw = (θ1 + θ2)+ i (k1+k2)π

2 + 2πin.
(ii) if the ordered pair of non-null and nonzero vectorsu, v is positively oriented and satisfy〈u, v〉 = 0

(i.e., they are orthogonal) then	 uv = −i π2 + 2πin, n ∈ Z.

We refer to [3] for more details. We just mention that an alternate way to introduce the oriented
in the Minkowski plane is as follows: first note that it is enough to define it for normalized vectors
is, vectors of norm 1 ori. Consider then an ordered pair of such vectorsu and v. If they are of the
same type then there exists a unique orientation preserving linear isometry takingu to v. This isometry
is a hyperbolic rotation of some real angleθ0. If u andv are not of the same type then there is a uni
orientation preserving anti-isometry takingu to v, and again such an anti-isometry is determined by s
real angleθ0. Now requiring the property〈u, v〉 = |u||v|cosh	 uv leads naturally to define the angle a
(multivalued) complex function of the form	 uv = θ0 − ik π2 , k ∈ Z, depending on the position ofu and
v on the different branches of the hyperbolas of normalized vectors. It is not very difficult to chec
this definition agrees with the one given by Alexandrov [3] and, for instance, property (i) then fo
from the fact that the set of linear and anti-linear isometries is a group under composition.

We shall also need the notion of non-oriented angle between two vectorsu, v in a 2-planeΠ endowed
with a definite or Lorentzian scalar product (cf. [3]). Fix some orientation onΠ . Consider first the cas
whereΠ is endowed with a definite scalar product and order the vectorsu, v so that the oriented ang
(with respect toΠ ) between them is of the formφ+ 2kπ, 0� φ � π, k ∈ Z. Thenφ is the non-oriented
angle betweenu andv. Consider now the case whereΠ carries a Lorentz scalar product and order
two vectorsu, v so that the real partθ0 of the oriented angle betweenu, v is positive. Then,φ := θ0 is
called the non-oriented angle betweenu andv. Note that, in both cases,φ is independent of the choic
of orientation on the planeΠ .

Consider now anoriented polyhedronP in Mn+1
ν (K) satisfying conditions (C1) and (C2) andG an

(n − 1)-dimensional face ofP which is the common face of twon-dimensional facesF1 andF2. By
assumption (C1) the 2-planeΠx orthogonal toTxG, x ∈ G, is nondegenerate. Denote byφ the non-
oriented angle (inΠx) between the normalsN1 andN2 to F1 andF2—recall that this is independent o
the choice ofx ∈G. Fix an orientation onΠx . In caseφ = 0, we set, by definition, thesigned dihedral
angleθ to be zero. Now consider the caseφ 	= 0. Interchanging indices if necessary, we can assume
	 N1N2 = φ + 2kπ, k ∈ Z, 0� φ � π , in caseΠx is definite andφ = �	 N1N2 in caseΠx is Lorentzian.
We say thatG is of positive type if the ordered basis{ν1,N1} is positively oriented and of negative typ
in the opposite case. Observe that because our polyhedron is oriented, the two ordered bases{ν1,N1}
and {ν2,N2} have opposite orientations. Note also that in the definite case condition (C2) is nec
otherwise we would haveN1 = −N2 andφ = π , and there is no canonical way to distinguish betweenN1

andN2. So, in that case, one cannot distinguish between the positive and the negative type and t
between the two possible values forθ , namelyπ and−π . In caseφ = 0, the problem is solved becau
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the positive and the negative type both lead to the same value forθ , namely zero. Again, the type ofG
depends neither on the pointx ∈G nor on the orientation onΠx . Now, thesigned dihedral angleθ at the
faceG is, by definition,θ = φ if G is of positive type andθ = −φ if G is of negative type. For instanc
for an embedded polyhedronP in a space form, oriented by the exterior normal, then our signed dih
angles are given byθi − π , whereθi denote the interior dihedral angles.

The general Schläfli formula reads then as follows:

Theorem 2.LetPt be a smooth deformation of a compact oriented polyhedronP inMn+1
ν (K), satisfying

conditions (C1) and (C2), through polyhedra satisfying the same conditions. Letθi,t be the signed
dihedral angle at the(n − 1)-dimensional faceGi,t of Pt . Then the signed dihedral angles vary in
differentiable way and their variations are related to the variation of volume by the following formu:

nK
dVt

dt
=

∑
i

dθi,t

dt
Vol(Gi,t ).

Proof. Fix some valuet0 of the parametert . To simplify notations we will sometimes drop the referen
to the parametert for t = t0 and we will identify (metrically)Σ—the abstract simplicial comple
parameterizingP—with its imageψt0(Σ). The basic observation is that the deformation is thro
polyhedra, so each faceF , of dimensionn, remains totally geodesic through the deformation. CalNt
the unit normal toFt compatible with the orientation onP . For eachu ∈ T F and eacht , we have:
Ddψt(u)Nt = 0, whereD denotes the Levi-Civita connection onMn+1

ν (K). Therefore:D∂Ψ
∂t
Ddψt (u)Nt = 0.

This can be rewritten as follows:

Ddψt(u)D∂Ψ
∂t
Nt +R

(
dΨ

(
∂

∂t

)
, dψt(u)

)
Nt = 0,

whereR is the curvature tensor ofMn+1
ν (K). Taking the value att = t0, we get:

DuN
′ +R(ξ,u)N = 0,

where as before:ξ(x)= ∂Ψ
∂t
(t0, x), x ∈ P , is the deformation vector field ofΨ at t = t0 andN ′ = D

dt
N(t0).

Note that sinceNt is unitary for eacht , N ′ is tangent toF . It follows that

divF (N
′)= nK〈ξ,N〉.

We now apply the divergence theorem. First, we apply Stokes’ theorem, which is valid for man
with piecewise smooth boundary (see for instance [1]) and then we can apply the divergence t
in pseudo-Riemannian manifolds since the set where the metric degenerates has measure zero
We get:

∑
i

ε(νi)

∫
Gi

〈N ′, νi〉dGi = nK

∫
F

〈ξ,N〉dF,

the sum being taken over(n− 1)-dimensional facesGi of F andνi being the unit outward conormal t
Gi in F . Now, multiply both members byε(N) and then sum overn-dimensional facesFj of P . Note
that in the left-hand side of the previous equation, each faceGi appears twice since it belongs to tw
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n-dimensional facesFi,1 andFi,2. With obvious notations, we end with:
∑
i

∫
Gi

{
ε(Ni,1)ε(νi,1)〈N ′

i,1, νi,1〉 + ε(Ni,2)ε(νi,2)〈N ′
i,2, νi,2〉

}
dGi = nK

∑
j

ε(Nj)

∫
Fj

〈ξ,Nj〉dFj

wherei runs over(n− 1)-dimensional faces andj runs overn-dimensional faces.
Taking into account Lemma 1, to complete the proof we have to show that:

(2.1)ε(Ni,1)ε(νi,1)〈N ′
i,1, νi,1〉 + ε(Ni,2)ε(νi,2)〈N ′

i,2, νi,2〉 = dθi,t

dt
.

To simplify notations, we drop the indexi and consider a general(n− 1)-dimensional faceG which
is the intersection of twon-dimensional facesF1 andF2. SinceNk(t) is unitary for eacht , N ′

k is tangent
to Fk . So, we may write:

N ′
k = ε(νk)〈N ′

k, νk〉νk + uk, whereuk ∈ TG, k = 1,2.

We now distinguish two cases:
(i) G is orthogonally definite: fix an orientation on the 2-planeΠx orthogonal toTxG (for any

fixed x ∈ G). Let φt be the non-oriented angle betweenN1(t) andN2(t). Assume firstφt0 	= 0. Recall
that by assumption (C2), we also haveφt0 	= π . Interchanging indices if necessary, we can assumφt
coincides with (some determination of) the oriented angle betweenN1(t) andN2(t): 	 N1(t)N2(t) = φt
for t lying in an open interval containingt0 by continuity. So,φt is differentiable on that interva
sinceφt = arccos〈N1(t),N2(t)〉 and 〈N1(t),N2(t)〉 	= ±1 by assumption. Taking the derivatives in t
equation:〈N1(t),N2(t)〉 = cosφt , at t = t0, we get:− dφt

dt
sinφt0 = 〈N ′

1,N2〉 + 〈N1,N
′
2〉. But 〈N ′

1,N2〉 =
〈N ′

1, ν1〉〈ν1,N2〉. Now 〈ν1,N2〉 = cos	 ν1N2 = cos( 	 ν1N1 + 	 N1N2)= ∓sinφt0 according toG being of
positive or negative type respectively. Therefore,

dφt

dt
sinφt0 = ±{〈N ′

1, ν1〉 + 〈N ′
2, ν2〉

}
sinφt0

according toG being of positive or negative type respectively. Since we assumedφt0 	= 0, π , we can
conclude that att = t0:

(2.2)±dφt
dt

= 〈N ′
1, ν1〉 + 〈N ′

2, ν2〉
according toG being of positive or negative type respectively. Now, ifG is of positive (respectively
negative) type att = t0, then the same is true fort in a neighborhood oft0 and soθt = φt (respectively
θt = −φt ) on this interval and (2.1) follows.

Now in caseφt0 = 0, we can assume without loss of generality that the basis{ν1,N1} is, for
t = t0, positively oriented. This is also true by continuity fort in a neighborhood oft0. Consider the
determinationα(t) of the oriented angle	 N1(t)N2(t), for t close tot0, such thatα(t0) = 0. Then it
can be checked directly thatθ(t) = α(t). This shows differentiability ofθ(t) at t = t0. Now if φt is
not identically zero neart0 then (2.1) is satisfied att0 by the previous case and continuity int . If φt
is identically zero neart0, then neart0, N1(t) = N2(t) and ν1(t) = −ν2(t) and again (2.1) is trivially
satisfied.

(ii) G is orthogonally Lorentzian: Letφt be the non-oriented angle betweenN1(t) andN2(t). Assume
first thatφt0 	= 0. Fixing some orientation onΠx and interchanging indices if necessary, we can ass
φt = �βt , whereβt is some determination of	 N1(t)N2(t) for t in a neighborhood oft0.
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Take the derivative with respect tot in the relation:〈
N1(t),N2(t)

〉 = ∣∣N1(t)
∣∣∣∣N2(t)

∣∣coshβt,

taking into account that|Ni(t)| = |Ni | for all t by the nondegeneracy condition and continuity and
dβt
dt

= dφt
dt

. We obtain att = t0:

(2.3)〈N ′
1,N2〉 + 〈N1,N

′
2〉 = |N1||N2|dφt

dt
sinhβt0.

But

(2.4)

{ 〈N ′
1,N2〉 = ε(ν1)〈N ′

1, ν1〉〈N2, ν1〉,
〈N ′

2,N1〉 = ε(ν2)〈N ′
2, ν2〉〈N1, ν2〉.

Now, 〈N2, ν1〉 = |N2||ν1|cosh	 ν1N2, and cosh	 ν1N2 = cosh( 	 ν1N1 + 	 N1N2)= cosh(∓i π2 + βt0)=∓i|N1||N2|sinhβt0, according toG being of positive or negative type respectively. Moreover, we h
|ν1| = −iε(ν1)|N1|. We end with:

(2.5)

{ 〈N2, ν1〉 = ∓ε(ν1)|N1||N2|sinhβt0,〈N1, ν2〉 = ∓ε(ν2)|N1||N2|sinhβt0

according toG being of positive or negative type respectively.
From (2.3), (2.4) and (2.5), we get:

{〈N ′
1, ν1〉 + 〈N ′

2, ν2〉
}

sinhβt0 = ∓dφt
dt

sinhβt0.

Now, since we assumedφt0 	= 0, we haveβt0 	= ikπ, k ∈ Z, this implies that

(2.6)〈N ′
1, ν1〉 + 〈N ′

2, ν2〉 = ∓dφt
dt
.

If G is of positive (respectively negative) type then the same is true fort in an interval containingt0 and
θt = φt (respectivelyθt = −φt ) on that interval. Since{νk,Nk} is an orthonormal basis of the orthogon
of G, which is Lorentz, we have:ε(νk)ε(Nk)= −1, k = 1,2 and (2.1) follows.

Consider now the caseφt0 = 0, we can assume without loss of generality that the basis{ν1,N1} is, for
t = t0, positively oriented for a fixed orientation onΠx . This is then true fort close tot0 by continuity.
Consider the determinationα(t) of the oriented angle	 N1(t)N2(t), for t close tot0, satisfyingα(t0)= 0
in caseN1(t0) = N2(t0) andα(t0) = −iπ in caseN1(t0) = −N2(t0). Then it is directly checked tha
θ(t)= �α(t), for t close tot0. This shows differentiability ofθ(t) at t0.

If φt is not identically zero neart0 then (2.1) is satisfied att0 by the previous case and continuity int .
If φt vanishes identically neart0, then eitherα(t) is identically zero and thenN1(t) = N2(t) and

ν1(t)= −ν2(t) for t nearto, or α(t) is identically−iπ and henceN1(t)= −N2(t) andν1(t)= ν2(t) for
t neart0. In both cases Eq. (2.1) is trivially satisfied (the both members vanish).✷
Remarks.

(1) The Euclidean version of the Schläfli formula was rediscovered by T. Regge in a celebrated
[14]. His proof, which is quite hard to follow, uses the divergence theorem. It should be point
that, in this case, his argument is similar to our ours, although presented differently. Indeed, us
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divergence theorem, T. Regge establishes first the Minkowski formula: in the Euclidean cas
faceF of dimensionn, one has

∑
Vol(Gi)νi = 0, where the sum is taken over the(n− 1)-facesGi

of F (cf. Eq. (6) in [14]). Then he derives the same equation as our Eq. (2.1) and then pluggi
into the sum

∑
i

dθi,t
dt

Vol(Gi,t ), he observes that summing instead over then-faces, one obtains fo
each such faceF a term of the form〈N ′,

∑
Vol(Gi)νi〉, and this concludes the proof. It should a

be noticed that the same type of calculation, using the Minkowski formula, was done in [2] and
prove the invariance of the total mean curvature in the Euclidean and Minkowski spaces respe

(2) As we mentioned in the introduction, J.-M. Schlenker and the author [21] have found higher
Schläfli-type formulae for embedded polyhedra in space forms. The proof is through analo
smooth formulae. It would be interesting to extend the idea we used here to find a different p
those formulae. This would apply to polyhedra that are not necessarily embedded as well.

The total mean curvature of a compact oriented polyhedronP in Mn+1
ν (K) is, using the previous

notations, by definition the quantity:

H = 1

n

∑
i

θi Vol(Gi).

Recall that a deformation of a polyhedron of dimensionn is called a flex if it does not change the met
on each of itsn-dimensional faces, that is, it changes only the dihedral angles. A direct conseque
Theorem 2 is the following corollary which extends in the pseudo-Riemannian case the result o
by Alexandrov [3] for polyhedra in the Minkowski 3-space,R

3
1.

Corollary 3. Let Pt be a flex of a compact oriented polyhedronP in Mn+1
ν (K) through polyhedra

satisfying conditions(C1) and (C2). Then

K
dVt

dt
− dH t

dt
= 0.

Remark. If the polyhedronP bounds a compact domain, the corollary asserts the invariance unde
of the quantityKV − H, whereV is the volume of the domain bounded byP andH the mean curvatur
with respect to the exterior normal.

3. The Schläfli formula for piecewise smooth hypersurfaces

Let (M, 〈, 〉) be an orientable Einstein manifold of dimensionn+ 1, n� 2, and letΣ be a simplicial
complex of dimensionn which is homeomorphic to a closed oriented differentiable manifold. Con
a mappingψ :Σ → M such that its restriction to each simplex of dimensionn or n − 1 of Σ is an
immersion which is smooth up to the boundary. We will call such a data an immersed piecewise s
closed and oriented hypersurface inM . In all what follows we endow the simplices ofΣ of dimension
n andn− 1 with the metric induced byψ . Consider a simplexGi of Σ of dimensionn− 1 and letFi,1
andFi,2 be the two faces ofΣ , of dimensionn, sharingGi as a common face. LetNi,1 andNi,2 be the
unit normals toψ(Fi,1) andψ(Fi,2) respectively, and which are compatible with the orientation onΣ

and denote byνi,1 andνi,2 the exterior unit conormals toGi in Fi,1 andFi,2 respectively. At each poin
x of Gi , callΠx the 2-plane inTxM orthogonal toψ∗(TxGj) andφi(x) the non-oriented angle (inΠx)



42 R. Souam / Differential Geometry and its Applications 20 (2004) 31–45

f

d

l
stinguish

tion into

ach

case

he one

ithout

ng its

Denote
r

betweenNi,1 andNi,2. Fix some orientation onΠx . Reindexing if necessary, we can assume thatφi(x)

coincides with a well chosen determination of the oriented angle, that is,φi(x) = 	 Ni,1Ni,2. Suppose
φi(x) 	= 0, π , we say thatx is of positive type if the ordered basis{νi,1,Ni,1} is positively oriented and o
negative type in the opposite case. Thesigned dihedral angleθi(x) at x is, by definition,θi(x) = φi(x)

if x is of positive type andθi(x) = −φi(x) if x is of negative type. The type ofx and hence the signe
dihedral angle do not depend on the choice of orientation onΠx . In caseφi(x)= 0, we setθi(x)= 0. If
φi(x) = π , the signed dihedral angle is not defined andx is said to becusp point. The signed dihedra
angle cannot be defined in a coherent way in the previous case as there is no canonical way to di
between the two normals and therefore between the two possible valuesπ and−π .

Consider now a smooth deformation of such a hypersurface which preserves the decomposi
smooth parts. This means we are given a mappingΨ : [0,1] ×Σ →M , such that for each simplexF of
dimensionn of Σ , the restriction ofΨ to [0,1] ×F is smooth up to the boundary and such that, for e
t , ψt := Ψ (t, .) :Σ →M defines a piecewise smooth immersion as above andψ0 =ψ .

Denote byNt the unit field normal to the smooth parts ofψt(Σ) which is compatible with the
orientation onΣ . Let alsoVt be the volume function defined in the same way as in Section 2. In
the mappingsψt are embeddings andψt(Σ) bound and are oriented by the exterior normal thenVt can
be taken to be the enclosed volume. Denote byIt the first fundamental form ofψt and byII t andHt

its second fundamental form and mean curvature respectively, with respect to the normalNt (strictly
speaking, these objects are defined only on the smooth parts ofΣ ). We implicitly identify, through the
metric, quadratic forms and linear morphisms. Our generalized Schläfli formula, which extends t
obtained for smooth hypersurfaces by Rivin and Schlenker [17], reads as follows:

Theorem 4.Let ψ :Σ →M be a compact oriented piecewise smooth immersed hypersurface w
cusp points in an orientable Einstein(n+ 1)-manifoldM with scalar curvatureS. Consider a smooth
deformation ofψ , through piecewise smooth immersions without cusp points, and preservi
decomposition into smooth parts. Then the signed dihedral angle functionsθi,t are differentiable int
and their variations and the variations of the volume, the mean curvature and metric onΣ are related
by the formula:

S

n+ 1

dVt

dt
=

∫
Σ

{
nH ′

t + 1

2
〈I ′
t , II t 〉

}
dAt +

∑
i

∫
Gi

dθi,t

dt
(x) dxt ,

wherei runs over simplices of dimensionn− 1 ofΣ .

To simplify notations we assumet = 0 and drop the reference to the parametert at t = 0. We also
identify (metrically)Σ with ψ0(Σ). To prove the theorem we need to use the following formula:

(3.1)nH ′ = −divΣ(N
′)− 1

2
〈I ′, II 〉 + S

n+ 1
〈ξ,N〉

where ξ(x) = ∂Ψ
∂t
(0, x), x ∈ Σ , is the deformation vector field ofΨ at t = 0. Formula (3.1) is a

consequence of the known formula (3.2) below. We include the proof for reader’s convenience.
byBt the shape operator associated toψt with respect to the normalNt and letR be the curvature tenso
of M .
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(3.2)〈B ′u, v〉 = −〈∇uN
′, v〉 − 〈DBuξ, v〉 + 〈

R(ξ,u)N,v
〉
, u, v ∈ TΣ.

Proof. Call gt the metric induced on (the smooth parts of)Σ by ψt . For all u, v ∈ TΣ , we have by
definition ofBt :

gt(Btu, v)= −〈
Ddψt(u)Nt , dψt (v)

〉
.

Taking the derivative att = 0, we get:
(
d

dt
gt

)∣∣∣∣
t=0

(Bu, v)+ g0(B
′u, v)= −〈D∂Ψ

∂t
Ddψt (u)Nt , v〉 − 〈

DuN,D∂Ψ
∂t
dψt(u)|t=0

〉

= −〈DuD∂Ψ
∂t
Nt , v〉 + 〈

R(ξ,u)N,v
〉 − 〈DuN,Dvξ 〉.

Now, ( d
dt
gt )|t=0(Bu, v)= 〈DBuξ, v〉 + 〈Bu,Dvξ 〉. Recollecting we obtain formula (3.2).✷

Proof of Theorem 4. Let F be a simplex of dimensionn of Σ . Integrating (3.1) onF and using the
divergence theorem, which is valid in our case (cf. [1]), we obtain:

(3.3)
S

n+ 1

∫
F

〈ξ,N〉dA=
∫
F

{
nH ′ + 1

2
〈I ′, II 〉

}
dA+

∑
i

∫
Gi

〈N ′, νi〉dx

wherei runs over simplicesGi of dimensionn− 1 lying on the boundary ofF andνi is the unit outward
conormal toGi in F . Take now the sum overn-dimensional faces ofΣ . Note that in the right-hand
side of the previous equation, each simplexGi of dimensionn− 1 appears twice since it belongs to tw
n-dimensional facesFi,1 andFi,2. With obvious notations, we get:

S

n+ 1

∫
Σ

〈ξ,N〉dA=
∫
Σ

{
nH ′ + 1

2
〈I ′, II 〉

}
dA+

∑
i

∫
Gi

{〈N ′
i,1, νi,1〉 + 〈N ′

i,2, νi,2〉
}
dx,

wherej runs overn-dimensional simplices andi runs over(n− 1)-dimensional ones.
Now, proceeding in the same way as in the proof of Theorem 2, case (i), we conclude that, fo

point x in Gi such thatθi(x) 	= 0, the functionθi,t (x) is differentiable int at t = 0 and its derivative
satisfies:

(3.4)〈N ′
i,1, νi,1〉 + 〈N ′

i,2, νi,2〉 = dθi,t

dt
(x).

In caseθi(x)= 0, fixing an orientation on the 2-plane orthogonal toψ∗(TxGi), we can assume withou
loss of generality that the basis{ν1,N1} is positively oriented. This is also true by continuity fort in a
neighborhood of 0. Consider the determinationαi,t (x) of the oriented angle	 Ni,1(t)Ni,2(t), for t close to
0, such thatαi,0(x)= 0. Then it can be checked directly thatθi,t (x)= αi,t (x). This shows differentiability
of θi,t (x) at t = 0. Now if φi,t (x) is not identically zero near 0, then using the previous case and cont
in t we see that (3.4) is satisfied at 0. Ifφi,t (x) is identically zero near 0, then near 0,Ni,1(t)= Ni,2(t)

andνi,1(t)= −νi,2(t) and again Eq. (3.4) is trivially satisfied (the both members vanish).
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Finally we have:

S

n+ 1

∫
Σ

〈ξ,N〉dA=
∫
Σ

{
nH ′ + 1

2
〈I ′, II 〉

}
dA+

∑
i

∫
Gi

dθi,t

dt
(x) dx,

and the result now follows becausedVt
dt

= ∫
Σ
〈ξ,N〉dA. ✷

Remark. The same proof shows that the result is true under some weaker hypotheses. Assu
instance, that the set of cusp points of the immersionψ has measure zero in

⋃
i Gi , then the signed

dihedral angle functionθi,t (x) is differentiable att = 0 for almost everyx ∈ ⋃
i Gi and the formula

is valid. Also one can weaken the regularity hypotheses. For instance one can replace everyw
smoothness condition by aC2 one. One can even assume less regularity onψ on the boundary of the
simplices of dimensionn by requiring differentiability only on the interior of the simplices of dimens
n − 1. But then one has to put adequate hypotheses which guarantee the convergence of the
involved in the formulae. We do not go into the details here in order to keep the basic ideas clear.

The previous considerations and the notion of the (total) mean curvature of polyhedra lead us n
to define thetotal mean curvature of an oriented piecewise smooth hypersurfacewithout cusp points a
follows:

H =
∫
Σ

H dA+ 1

n

∑
i

∫
Gi

θi(x) dx.

By a bending ofψ :Σ →M we mean a deformationψt of ψ preserving the decomposition into smoo
parts and such that the metrics induced on the simplices of dimensionn andn− 1 ofΣ remain the same
for eacht . From the previous theorem, we deduce:

Corollary 6. LetΣ be a piecewise smooth, compact orientable embedded hypersurface withou
points in an orientable Einstein(n + 1)-manifoldM with scalar curvatureS. AssumeΣ bounds a
compact domain of volumeV . Then the quantity S

n(n+1)V − H, whereH is the total mean curvatur
of Σ with respect to the exterior normal toΣ , is invariant under bendings through piecewise smo
immersions without cusp points.

Remark. It is clear that ifψ has no cusp points then this is true for smallt for any deformationψt of ψ .
Also, the corollary can be stated in a more general form using the notion of variation of volume as
it is neither necessary to assume that the hypersurface bounds a compact domain nor that it is em
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