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Abstract. The classical Schläfli formula relates the variations of the dihedral angles of a

smooth family of polyhedra in a space-form to the variation of the enclosed volume. We give
higher analogues of this formula: for each p, we prove a simple formula relating the variation
of the volumes of the codimension p faces to the variation of the ‘curvature’ – the volumes of

the duals of the links in the convex case – of codimension pþ 2 faces. It is valid also for ideal
polyhedra, or for polyhedra with some ideal vertices. This extends results of Suárez-Peiró. The
proof is through analoguous smooth formulas. Some applications are described.
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Let Mnþ1
K be the spherical, Euclidean or hyperbolic space of constant curvature K

and dimension nþ 15 2. Consider a smooth one-parameter family, ðPtÞt2½0;1�, of

polyhedra in M having the same combinatorics. Call Vt the volume bounded by

Pt, yi;t and Wi;t the dihedral angle and the ðn� 1Þ-volume of the codimension 2 face

i of Pt. The classical Schläfli formula (see, for instance, [Mil] or [Vin]) relates the var-

iation of Vt and of the angles yi;t in the following way:

CLASSICAL SCHLÄFLI FORMULA

nK
dVt

dt
¼
X
i

Wi;t
dyi;t
dt

: ðE0Þ

Although it is not apparent here (it should be made clear below), this formula is

related to the variation of the ‘integral mean curvature’
P

i Wi;tyi;t of Pt. We will give

here analogs of this formula for the higher mean curvatures. To state our generalized

formulas, we need to introduce some definitions. Let F be a codimension p face of a

convex polyhedron P 	 Mnþ1
K , and let x 2 F. Consider, in ðTxF Þ

?, the subset of all

the unit vectors that ‘point into’ P, i.e. unit vectors that are velocity vectors of the

geodesics starting at x that go into the interior of P. Since the unit sphere in

ðTxF Þ
? is isometric to Sp�1, we get a convex polyhedron in Sp�1, denoted by

LðF;PÞ, which is, up to isometry, independent of the choice of x and is called the link
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of F in P. The dual of the link of F in P, denoted by L�ðF;PÞ, is defined to be the dual

polyhedron of LðF;PÞ in Sp�1. It is the subset of Sp�1 – viewed as the unit sphere in

Rp – which consists of all the unit vectors making an angle 5p=2 with all the vectors

in LðF;PÞ. The ð p� 1Þ-dimensional volume KðF Þ of L�ðF;PÞ will be called the cur-

vature of P at F, or simply the curvature of F.

For instance, for codimension 2 faces, we recover the exterior dihedral angle of P

at F, which is a polyhedral analog of the mean curvature of P along those faces.

For vertices of a polyhedron P in a three-dimensional space-form, on the other

hand, KðF Þ is the singular curvature at F of the metric induced on P.

We can now write the:

HIGHER SCHLÄFLI FORMULAS. For each 14 p4 n� 1,

Kðn� pÞ
X
j

dWj;t

dt
Kj;t þ p

X
i

Wi;t
dKi;t

dt
¼ 0; ðEpÞ

where j runs over the faces of codimension p and i runs over those

of codimension pþ 2 and Wi and Wj denote the volumes of the faces, and

Ki, Kj their curvatures.

Although the curvature at a face has only been defined here for convex polyhedra,

it also has a meaning for nonconvex ones (this is defined below) and the higher

Schläfli formulas still hold. The curvatures we use coincide – up to a normalization–

with the Lipschitz-Killing curvatures used by J. Cheeger, W. Müller and R. Schrader

([C-M-S]) for piecewise flat spaces. However, our curvatures show up in a natural

way when dealing with polyhedra embedded in simply connected space forms.

The same formula was previously found by E. Suarez-Peiro [SP] in the special case

of simplices in the de Sitter space. She used a different, more combinatorial method

in the proof, but her approach could probably be extended to prove the more general

results that are described below.

Recently, the first author and I. Rivin [Ri-S-a], [Ri-S-b] gave a ‘smooth Schläfli

formula’ for deformations of compact hypersurfaces in space-forms. A remarkable

point is that this formula extends to deformations of hypersurfaces in Einstein mani-

folds, and even to deformations of the metric (among Einstein metrics of fixed scalar

curvature) in an Einstein manifold with boundary. The (polyhedral) Schläfli formula

is then obtained as a corollary.

We follow the same idea to establish the higher Schläfli formulas. We first derive

higher smooth Schläfli formulas (Theorem 1) and then obtain the polyhedral ones

for convex polyhedra (Theorem 2). The proof of our smooth Schläfli formulas is

based on the work of R. Reilly [Re]. The (smooth) higher Schläfli formulas do

not seem, however, to extend to deformations of hypersurfaces in Einstein mani-

folds.

We will then show how the application of a classical duality between Hnþ1 and the

de Sitter space Snþ1
1 leads to the same formulas for some space-like polyhedra in

Snþ1
1 , and indicate why the same formulas hold for nonconvex polyhedra.
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We also use Schläfli formulas to prove that some quantities defined using the inte-

gral mean curvatures of smooth or polyhedral hypersurfaces are topological invari-

ants. Some of those invariants are related to the Gauss–Bonnet integrands, while

others, involving the ‘dual volume’, seem to be new. One of those formulas was

written in [SP] in the case of a hyperbolic simplex.

As another application of our higher Schläfli formulas, we show that some extrin-

sic quantities for polyhedra and for hypersurfaces are invariant under isometric

deformations.

As we mentioned above, J. Cheeger, W. Müller and R. Schrader ([C-M-S]), intro-

duced Lipschitz–Killing curvatures for piecewise flat spaces and used them to

approximate Riemannian manifolds. A significant role is played by their generalized

Regge formulas which give the variational derivative of the total Lipschitz-Killing

curvatures. These formulas coincide with our higher Schläfli formulas when the pie-

cewise flat space is a compact polyhedron in a Euclidean space. Conversely, our

higher Schläfli formulas provide generalized Regge formulas for piecewise hyper-

bolic or spherical spaces. This suggests the possibility to approximate Riemannian

manifolds by piecewise hyperbolic or spherical spaces.

1. Smooth Schläfli Formulas

Let S be a smooth compact oriented boundaryless n-dimensional manifold and con-

sider an immersion f: S�!Mnþ1
K . Call I the induced metric on M and H its Levi-

Civita connection. Let B denote the shape operator of S defined, for any x 2 S
and X 2 TxS by BX ¼ �DXN, where N is the oriented unit normal to S and D

the Levi-Civita connection on Mnþ1
K . Denote by II the second fundamental form

of f defined by IIðX;Y Þ ¼ hBX;Yi.

We will need the elementary symmetric functions Sr of the principal curvatures

k1; k2; . . . ; kn of the immersion f:

Sr ¼
X

i1<���<ir

ki1 . . . kir ð14 r4 nÞ:

A deformation of the immersion f is a smooth mapping F: ½0; 1� � S�!Mnþ1
K

such that ft : S�!M; t 2 ½0; 1�, defined by ftðxÞ ¼ Fðt; xÞ; x 2 S, is an immersion

and f0 ¼ f.
Let (after R. Reilly [Re]) Tr; 04 r4 n, be the Newton transformations (or

tensors) defined by Tr ¼ SrId� Sr�1Bþ � � � ð�1ÞrBr or, inductively, by T0 ¼ Id,

Tr ¼ SrId� BTr�1. These Newton transformations enjoy the following properties

(cf. [Re] or [Ro]):

(1) TraceðTrÞ ¼ ðn� rÞSr,

(2) TraceðBTrÞ ¼ ðrþ 1ÞSrþ1,

(3) S0
r ¼ TraceðB0Tr�1Þ, the derivative being taken with respect to the parameter t

of the deformation.
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We will often implicitly identify, through the metric, quadratic forms and linear

morphisms.

THEOREM 1. Let S be a closed oriented hypersurface in a ðnþ 1Þ-dimensional space-

form of constant sectional curvature K. For any deformation of S, the corresponding

variations of the elementary symmetric functions of the principal curvatures satisfy for

each p 2 f1; . . . ; n� 1g:

Kðn� pÞ
d

dt

Z
S
Sp�1dA ¼

Z
S
fKðn� pÞS0

p�1 � pS0
pþ1gdAþ

þ

Z
S

1
2 hI

0;Bððn� pÞKTp�2 � pTpÞidA ðFpÞ

where, by convention, T�1 ¼ 0.

Proof. We need to know the derivative S0
r, for r5 1. First, we have the following

formula (see [Ro], where a similar formula is derived for ‘normal’ deformations but

the proof extends easily to general ones):

hB0u; vi ¼ �hHuN
0; vi � hDBux; vi þ hRðx; uÞN; vi; u; v 2 TS; ð1:1Þ

where R denotes the curvature tensor of Mnþ1
K and x the deformation vector field,

that is, x ¼ @F=@t. Note that N0 is tangent to S since Nt is unitary for each t. Let

feig be a local orthonormal frame on S, using (3) we obtain

S0
r ¼ �

Xn
i¼1

hHTr�1ðeiÞN
0; eii �

Xn
i¼1

hDBTr�1ðeiÞx; eii þ Khx;NihTr�1ðeiÞ; eii: ð1:2Þ

Now, a nice feature of the Newton tensors Tk is that they are divergence-free (cf.

[Re]), this implies that, for any vector field V on S (see [Ro] for a direct proof):

Traceðu ! HTkðuÞV Þ ¼ Traceðu ! HuTkðV ÞÞ: ð1:3Þ

Together with (1), we thus can rewrite (1.2) in the simpler form

S0
r ¼ �divSðTr�1ðN

0ÞÞ � 1
2hI

0;BTr�1i þ Kðn� rþ 1ÞSr�1hx;N i: ð1:4Þ

Integrating and using the divergence theorem, we getZ
S
S 0
r dA ¼ �

Z
S

1
2hI

0;BTr�1idAþ Kðn� rþ 1Þ

Z
S
Sr�1hx;N idA: ð1:5Þ

Also, we have

d

dt

Z
S
Sr dA ¼

Z
S
S 0
r þ

Sr

2
hI 0; IidA:

Taking into account the inductive relation Tr ¼ SrId� BTr�1, this gives

d

dt

Z
S
Sr dA ¼

Z
S

1
2hI

0;Tri þ Kðn� rþ 1Þ

Z
S
Sr�1hx;NidA:

Let x? be the tangential part of x to S, using (2) we have
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1
2hI

0;Tri ¼ divSðTrðx
?
ÞÞ � ðrþ 1ÞSrþ1hx;Ni: ð1:6Þ

Therefore:

d

dt

Z
S
Sr dA ¼ �ðrþ 1Þ

Z
S
Srþ1hx;NidAþ Kðn� rþ 1Þ

Z
S
Sr�1hx;NidA: ð1:7Þ

Observe that (1.7) also holds for r ¼ 0 with the convention S�1 ¼ 0.

Now, the smooth Schläfli formulas follow by replacing in (1.7) (written for

r ¼ p� 1) the two integrals in the right-hand side by their expressions obtained from

(1.5) (for r ¼ p� 1 and r ¼ pþ 1 respectively). &

Note that the formula of Theorem 1 can be somewhat simplified, since the two

leftmost terms can be brought together; as a result, again for each p 2 f1; . . . ; n� 1g:

2 Kðn� pÞ

Z
S
Sp�1 dA

0 þ p

Z
S
S0
pþ1 dA

� �
¼

Z
S
hI 0;Bððn� pÞKTp�2 � pTpÞidA;

where dA0 is the variation of the volume element of I on S.

2. Higher Polyhedral Schläfli Formulas

We now use, as announced, the smooth Schläfli formulas to derive the polyhedral

ones for convex polyhedra:

THEOREM 2. Let P be a convex polyhedron in a ðnþ 1Þ-dimensional Riemannian

space form with sectional curvature K; for any deformation of P, and for each

14 p4 n� 1, we have

Kðn� pÞ
X
j

dWj;t

dt
Kj;t þ p

X
i

Wi;t
dKi;t

dt
¼ 0; ðEpÞ

where j runs over the faces of codimension p and i runs over those of codimension pþ 2;

Wi and Wj denote the volumes of the faces, and Ki, Kj their curvatures, i.e. the volumes

of the duals of their links.

Proof. Call PE the set of points at distance E of P on the outside (i.e. on the side of

P which is concave). For E small enough, PE is a C1 piecewise smooth hypersurface

and can be decomposed as PE ¼
Sm¼nþ1

m¼1 PE;m; where PE;m is the set of points where

the normal meets P on a codimension m face. We will first see that the smooth

Schläfli formulas apply to PE, at t ¼ 0, provided the deformation preserves its

smooth parts. In particular, it applies to PE, at each t, for the deformation induced by

the deformation Pt. We emphasize here that these formulas do not apply to general

C1 and piecewise smooth hypersurfaces. Denote by Pi
E;m the set of points that project

on the codimension m face Fi. The smooth parts of PE are the P
i
E;m. Moreover, Pi

E;m is

isometric to the product bðEÞFi � cðEÞL�ðFiÞ, where bðEÞ ¼ 1þ oð1Þ and cðEÞ ¼ Eþ oðEÞ
are functions of E. For instance, in the hyperbolic space Hnþ1, bðEÞ ¼ coshðEÞ and
cðEÞ ¼ sinhðEÞ.

HIGHER SCHLÄFLI FORMULAS AND APPLICATIONS 5



Let x 2 Pi
E;m. If u; v 2 TxPE;m correspond to vectors orthogonal to TxFi, then,

orienting PE by the inward unit normal,

IIEðu; vÞ ¼ aðEÞIEðu; vÞ; ð2:1Þ

where aðEÞ ¼ ð1=EÞ þOðEÞ is a function of E. For instance, in the hyperbolic space

Hnþ1, aðEÞ ¼ coth E. In case u; v correspond to vectors in TxFi, then

IIEðu; vÞ ¼
1

aðEÞ IEðu; vÞ; for K 6¼ 0,

0; for K ¼ 0.

(
ð2:2Þ

For the elementary symmetric functions of the principal curvatures, we have, for

each 14 r4 n:

OnPE;m; SE;r ¼

Pk¼r

k¼0

m� 1
r� k

� �
n�mþ 1

k

� �
aðEÞr�2k; for K 6¼ 0,

m� 1
r

� �
aðEÞr; for K ¼ 0,

8><
>: ð2:3Þ

with the conventions: s
k

� �
¼ 0 for s and s

0

� �
¼ 1.

Now, formulas (1.4) and (1.6) apply to all the smooth parts of PE, i.e. to the Pi
E;m.

In order to show that the smooth Schläfli formulas apply to PE, we have to check

that the boundary terms that appear after integrating in (1.4) and (1.6) cancel out

two by two after summing up. These boundary terms are (using the symmetry of

the Newton transformations) of the form
R
@Pi

E;m
hX;TrðnÞi, for some 14 r4 n, X

being a (continuous) vector field on PE and n the unit exterior conormal to @Pi
E;m.

Now, Pi
E;m and Pj

E;q have a common boundary of nonzero ðn� 1Þ-measure if and only

if q ¼ mþ 1 or (symmetrically) q ¼ m� 1. Along the common boundary of P i
E;m and

Pj
E;mþ1, the unit conormal n is tangent to Fi and orthogonal to Fj. A straightforward

computation, using (2.1), (2.2) and (2.3), shows that the vectors TrðnÞ, where n is a

vector orthogonal to the common boundary, are equal on the two sides of the com-

mon boundary. For instance, in the Euclidean space Rnþ1, for Pi
E;m, we have

TrðnÞ ¼ m�1
r

� �
aðEÞrn, and for P j

E;mþ1,

TrðnÞ ¼
Xk¼m

k¼0

ð�1Þk
m

r� k

� �" #
aðEÞrn:

The conclusion follows then from the identity

Xk¼m

k¼0

ð�1Þk
m

r� k

� �
¼

m� 1

r

� �
:

So, with obvious notations,

Kðn� pÞ
d

dt

Z
PE

SE;p�1dAE

¼

Z
PE

fKðn� pÞS0
E;p�1 � pS0

E;pþ1gdAE þ

Z
PE

1
2hI

0
E;BEððn� pÞKTE;p�2 � pTE;pÞidAE:
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Using the flow of the unit normal vectors to the PE, we can identify PE and PE0 for

E0 6¼ E, so that we can consider, e.g. I0E as a 1-parameter family of symmetric 2-tensors

on a fixed manifold.

For each 14 r4 n, it follows from (2.3) that

OnPE;m; SE;r ¼

OðEr�2ðm�1ÞÞ; if m < rþ 1,

m�1
r

� �
Er þO 1

Er�2

� �
; if m5 rþ 1.

8<
: ð2:4Þ

Therefore

lim
E!0

d

dt

Z
PE

SE;r dAE ¼
X
i

dWi;t

dt
Ki;t þWi;t

dKi;t

dt
;

where i runs over the codimension rþ 1 faces of P.

We now compute limE!0

R
PE;m

1
2hI

0
E;BETE;ridAE. Let x 2 PE;m and u 2 TxPE;m. We

distinguish four cases:

(1) For r < m� 2, it follows from (2.1), (2.2) and (2.4) that BETE;rðuÞ ¼ O 1=Em�2
� �

u:

Therefore hI0E;BETE;ri ¼ O 1=Em�2
� �

hI0E; IEi: Further, using the fact that the vol-

ume element on PE;m is of the form Em�1 þ oðEm�1Þ, we haveZ
PE;m

1
2hI

0
E; IEidAE ’ Em�1 d

dt

X
i

Wi;tKi;t

 !
;

as E ! 0, i running over the codimension m faces of P. Consequently,

lim
E!0

Z
PE;m

1
2hI

0
E;BETE;ridAE ¼ 0

(2) For r ¼ m� 2: if u corresponds to a vector in TxF, then BETE;m�2ðuÞ ¼

O 1=Em�2
� �

u: While if u corresponds to a vector orthogonal to TxF, then

TE;m�2ðuÞ ¼
1

Em�2
þO

1

Em�4

� �� �
u

and

BETE;m�2ðuÞ ¼
1

Em�1
þO

1

Em�3

� �� �
u:

As before, we deduce, this time, that

lim
E!0

Z
PE;m

1
2hI

0
E;BETE;m�2idAE ¼ lim

E!0

Z
PE;m

1

Em�1

1

2
hI0E; IEi0 dAE;
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where the term 1
2hI

0
E; IEi0 refers to the metric on the second factors in the cano-

nical isometry between PE;m and
S

i bðEÞFi � cðEÞL�ðFiÞ, i running over the codi-

mension m faces of P. Now it is not difficult to check that

Z
PE;m

1
2hI

0
E; IEi0dAE ’ Em�1

X
i

Wi;t
dKi;t

dt
;

as E ! 0. Therefore

lim
E!0

Z
PE;m

1
2hI

0
E;BETE;m�2idAE ¼

X
i

Wi;t
dKi;t

dt
;

with i running over the codimension m faces of P.

(3) For r ¼ m� 1: again, using (2.1), (2.2) and (2.4), it can be checked that

BETE;m�1ðuÞ ¼ Oð1=Em�2Þu. Therefore, limE!0

R
PE;m

1
2hI

0
E;BETE;m�1idAE ¼ 0.

(4) For r > m� 1: if u corresponds to a vector in TxF, then, as before, we get:

BETE;rðuÞ ¼ OðErþ1�2ðm�1ÞÞu. Take now another tangent vector v that corre-

sponds to a vector orthogonal to the face F. Taking u; v unitary, we deduce

from (2) and (2.4) that BETE;rðvÞ ¼ OðErþ1�2ðm�1ÞÞv. This implies again that the

limit of the integral vanishes.

Furthermore, on the smooth parts of PE, we have S0
E;k ¼ 0 for each k.

The higher Schläfli formulas follow now straightforwardly. &

3. Dualities

The classical ‘projective’ duality in Snþ1 is a one-to-one map between points and

oriented hyperplanes. It is defined by sending a hyperplane H to the point H� at dis-

tance p=2 on the geodesic defined by the oriented normal to H (it is independent of

where the geodesic starts on H), and by sending a point x to the hyperplane x� made

of all points at distance p=2 from x, with a natural orientation.

There is also a classical duality (see [Ri-Ho]) between Hnþ1 and the de Sitter space

Snþ1
1 of dimension nþ 1. It can be defined using the models of Hnþ1 and Snþ1

1 as

hyperboloids in the Minkowski space Rnþ2
1 . It also sends a point in Hnþ1 to a

space-like hyperplane in Snþ1
1 , and a point in Snþ1

1 to an oriented hyperplane in

Hnþ1. Both dualities can be defined in a single ‘intrinsic’ way, see [Sch98].

In both cases, a convex polyhedron P is sent to another convex polyhedron P�,

which can be in Snþ1 if P 	 Snþ1 and in Snþ1
1 (and space-like) if P 	 Hnþ1. A k-face

F of P is associated to the ‘dual’ ðn� kÞ-face F � of P�, and the metric induced on F �

is exactly the metric on the dual L�ðF;PÞ of the link of F as defined in the intro-

duction. Conversely, the metric induced on F is the same as the metric on the

dual of the link of F �; if P 	 Hnþ1, then F � 	 P� 	 Snþ1
1 , so LðF �;P�Þ 	 Sn

1, and

L�ðF �;P�Þ 	 Hn.

8 JEAN-MARC SCHLENKER AND RABAH SOUAM



In other terms, if we call W �
i;t (resp. W

�
j;t) the volume of the p-face i of P�

t , and K�
i;t

its curvature, thenW �
i;t ¼ Ki�;t; K�

i;t ¼ Wi�;t; where i
� is the face of Pt dual of i. Using

those transformations in the higher Schläfli formula of Theorem 2 shows that

Kðn� pÞ
X
j

dK�
j;t

dt
W �

j;t þ p
X
i

K�
i;t

dW �
i;t

dt
¼ 0;

where j and i run over codimension p and codimension pþ 2 faces of P, respectively.

Setting q ¼ n� p:

Kq
X
j

dKj;t

dt
Wj;t þ ðn� qÞ

X
i

Ki;t
dWi;t

dt
¼ 0;

where i now goes over faces of codimension q, and j over faces of codimension qþ 2

of P�.

This is almost the same formula as in Theorem 2. This means that we have nothing

new in Snþ1 (the higher Schläfli formulas are pariwise dual), but, in Hnþ1, it leads to

the higher Schläfli formulas in the de Sitter space.

COROLLARY 3. Let P be a convex space-like polyhedron in Snþ1
1 , which is dual to a

convex hyperbolic polyhedron; for any deformation ðPtÞt2½0;1� of P among convex space-

like polyhedra, and for each 14 q4 n� 1, we have:

ðn� qÞ
X
j

dWj;t

dt
Kj;t � q

X
i

Wi;t
dKi;t

dt
¼ 0;

where j runs over faces of codimension q of P and i runs over those of codimension

qþ 2, Wi and Wj denote the volumes of the faces, and Ki, Kj their curvatures.

It would actually have been possible to prove directly those de Sitter higher Schläfli

formula, by proving first their smooth analogues, and then applying the same

E-neighborhood argument as above.

The classical Schläfli formula is known to extend well to the de Sitter setting (see

[SP]) beyond the duals of convex hyperbolic polyhedra. It would be interesting to

know whether the higher Schläfli formulas described above also extend to general

polyhedra in the de Sitter space or in other pseudo-Riemannian space-forms.

4. Two Special Cases

The proof of Theorem 1 above also leads to a proof of the smooth Schläfli formula

of [Ri-S-a], which is simpler and more straightforward than the one given in [Ri-S-a].

But the result is not exactly the one obtained by replacing p by 0 in the formula of

Theorem 1, because some terms disappear for p ¼ 0, and some coefficients change.

The formula ends up as (see [Ri-S-a]):

nK
dV

dt
¼

Z
S
S 0
1 þ

1
2hI

0;BidA ðF0Þ
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The classical Schläfli formula of the introduction follows as Theorem 2 follows from

Theorem 1 above. Note that the dual formulas were proved directly in [Ri-S-a].

The second interesting case happens for p ¼ 1 in Theorem 1. S0 ¼ 1, so the inte-

gral of S0
0 is zero, and T�1 ¼ 0 too, so that the formula of Theorem 1 becomes

ðn� 1ÞK
dA

dt
þ

Z
S
S0
2 þ

1
2hI

0;BT1idA ¼ 0; ðF1Þ

where A ¼
R
S dA is the total area of S.

Going to the polyhedral case, we find that

ðn� 1ÞK
dA

dt
þ
X
i

Wi;t
dKi;t

dt
¼ 0; ðE1Þ

whereA is again the total area and i goes over codimension 3 faces. In other terms, the

angle at codimension 1 faces, which doesn’t make sense, has to be taken equal to 1.

If n ¼ 2 (i.e. in total dimension 3) this formula is similar to the Gauss–Bonnet

formula for polyhedra: it shows that the total curvature of a polyhedron, which is

the sum of K times the area plus the singular curvatures at the vertices, is constant.

The formula above for the variation of the area can be proved in a rather simple

and purely combinatorial way, by using twice the usual Schläfli formula, applying it

once to the codimension 1 faces, and once to the duals of the links of the codimen-

sion 3 faces. It does not seem easy, however, to generalize this approach to prove

Theorem 2 directly from the classical Schläfli formula, because some terms don’t

add up well when p5 2.

For p ¼ n� 1 and K ¼ 0, our Schläfli formula again recovers an elementary geo-

metric fact. In this case, the sum over codimension n� 1 faces doesn’t appear because

of the coefficient K, and the only remaining term is the sum over the vertices, which is

n� 1 times the sum of the variations of the curvatures at the vertices. The curvature

at a vertex is just the area of the image of this vertex by the Gauss map (which takes

a point p to the set of the oriented normals to the support plane at p) so the sum of

the curvatures at all vertices is constant, and equal to the volume of the n-sphere.

5. Ideal Polyhedra

The classical Schläfli formula has no real meaning for ideal polyhedra, since the

lengths of the edges are then infinite. It is possible, however (see [Ri]), to show that

it still holds under a slightly different formulation.

But both sides of the higher Schläfli formulas (Ep) remain meaningful for ideal

polyhedra (or polyhedra having some ideal vertices) because the volumes of the faces

of dimension at least two are finite, as are the curvatures of all faces. We can there-

fore state the:

THEOREM 4. Let P be a convex hyperbolic polyhedron, which has some ideal vertices.

Let ðPtÞt2½0;1� be a deformation of P among finite volume polyhedra, which is smooth
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when considered in a projective model of H nþ1, such that Pt has the same combinatorics

as P and the same ideal vertices. Then, for any p 2 f1; . . . ; n� 1g, formula ðEpÞ holds.

It should also be possible to prove that the same formulas remain valid when some

ideal vertices become nonideal during the deformation (but the polyhedron should

remain of finite volume).

Proof. Choose a projective mapping r: Hnþ1 ! Bnþ1
0 ð1Þ, where Bnþ1

0 ðrÞ is the ball

of radius r centered at 0 in Rnþ1. For each t 2 ½0; 1�, let Qt ¼ rðPtÞ. Define QE
t be the

image of Qt by the homothety of ratio 1� E and center 0, and PE
t as r

�1ðQE
tÞ. ðP

E
tÞt2½0;1�

is a 1-parameter family of compact polyhedra in Hnþ1, having the same combina-

torics as P, and such that, for fixed t, PE
t ! Pt, for instance in the sense that PE

t 	 Pt,

while VðPE
tÞ ! VðPtÞ.

Now choose p 2 f1; 2; . . . ; n� 1g. Let j be a codimension p face, and i a codimen-

sion pþ 2 face of P. For t 2 ½0; 1� and E 2 ð0; 1Þ, call WE
i;t and WE

j;t the volumes of i

and j in PE
t , and KE

i;t and KE
j;t their curvatures. Then, as E ! 0:

(1) WE
i;t ! Wi;t, because the vertices of i for P

E
t converge to the corresponding ver-

tices of i for Pt;

(2) KE
j;t ! Kj;t, because the face which is dual to j for PE

j;t converges to the face dual

to j for PE
j;t, which is an ‘ordinary’ (p� 1)-dimensional space-like face in Snþ1

1 .

Now the following points can be easily checked:

(1) if i is of dimension at least 1 or is a nonideal vertex, then ðLði;PE
tÞÞt2½0;1� is a

smooth 1-parameter family of spherical polyhedra, which C1-converge to

ðLði;PtÞÞt2½0;1�;

(2) if v is an ideal vertex of P, then ðLðv;PE
tÞÞt2½0;1� is a 1-parameter family of poly-

hedra in Sn which converges to a point; but, upon ‘renormalization’ by a factor

cðEÞ (that is, multiplication of the metric on Sn by cðEÞ, where cðEÞ ! 1 when

E ! 0) it converges to ðLðv;PtÞÞt2½0;1�, which is a 1-parameter family of

Euclidean polyhedra (defined as the intersection of Pt with a horosphere cen-

tered on v, close enough to v).

Therefore, if p is an edge of the link Lði;PÞ and if lp;t and ki;p;t are its length and the

curvature of Lði;PÞ at p, respectively, in Pt, and if lEp;t and kEi;p;t are the same

quantities in PE
t , then as E ! 0: dlEp;t=dt ! dlp;t=dt, k

E
i;p;t ! ki;p;t: The (classical) dual

Schläfli formula applied to Lði;PE
tÞ and to Lði;PtÞ therefore shows that

dKE
i;t=dt ! dKi;t=dt: as E ! 0.

If q is a codimension 2 face of j, call wj;q;t and yj;q;t its volume and the dihedral

angle of j at q respectively for Pt, and let wE
j;q;t and yEj;q;t be the volume of q and

the dihedral angle of j at q respectively for PE
t . Then, for the same reason as above

dyEj;q;t=dt ! dyj;q;t=dt, while one can check directly that wE
j;t ! wj;t and the limit is
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finite since j has codimension p4 n� 1, and therefore dimension at least 2. The

Schläfli formula applied to j therefore shows that WE
j;t=dt ! dWj;t=dt:

We have just seen that all the terms involved in ðEpÞ are converging as E ! 0; the

formula ðEpÞ for ðPtÞt2½0;1� therefore follows from the same formula for the families

ðPE
tÞt2½0;1�.

6. Nonconvex Polyhedra

The classical Schläfli formula (which is recalled in the introduction) is additive in the

sense that, if a convex polyhedron P is decomposed into two convex polyhedra P0;P00

with disjoint interiors, then both terms in the formula for P are the sums of the cor-

responding terms in the formulas for P0 and P00.

Define a (nonconvex) polyhedron as the union of a finite number of convex poly-

hedra P1; . . . ;PN, with disjoint interiors, but such that Pi shares a codimension 1

face with Piþ1 for i 2 f1; . . . ; n� 1g. It follows from the remark on additivity above

that, if the classical Schläfli formula holds for convex polyhedra, it also holds for

nonconvex ones, since they can be cut into convex pieces.

This doesn’t work for the higher Schläfli formulas, so some care is necessary to

prove them for nonconvex polyhedra. We actually need first to define the curvature

of a polyhedron at a face in the nonconvex case.

Consider a convex polyhedron P which can be cut into two convex pieces P0;P00.

Then P ¼ P0 [ P00, and P0 \ P00 is a convex polyhedron in a hyperplane P. Let F be a

codimension p face of P;P0 and P00. Then:

PROPOSITION 5. The curvatures KPðF Þ;KP0 ðF Þ;KP00 ðF Þ;KP0\P00 ðF Þ of F in P, P0,

P00 and P0 \ P00 respectively, are such that

KP0 ðF Þ þ KP00 ðF Þ ¼ KPðF Þ þ
VðSp�1Þ

VðSp�2Þ
KP0\P00 ðF Þ;

where VðSkÞ is the volume of the canonical k-sphere.

Proof. In this setting, P0 \ P00 can be considered either as a (degenerate) poly-

hedron in the whole ðnþ 1Þ-dimensional ambient space M, or as a polyhedron with

non-empty interior in the hyperplane ofM which contains it. Observe that the link of

F in P0 \ P00, LðF;P0 \ P00Þ, considered in the first way, and �LLðF;P0 \ P00Þ its link in

P0 \ P00 considered in the second way coincide. However, this is not true for the

corresponding dual links. Then the curvature of P0 \ P00 is obtained by looking at

P0 \ P00 as a nondegenerate polyhedron in a n-dimensional space, so KP0\P00 ðF Þ ¼

Vð �LL�ðF;P0 \ P00ÞÞ:

Consider the space of directions orthogonal to F at any point of F. It is isometric

to Sp�1, and contains polyhedra corresponding to LðF;PÞ;LðF;P0Þ;LðF;P00Þ and

LðF;P0 \ P00Þ. Moreover, LðF;PÞ ¼ LðF;P0Þ [ LðF;P00Þ and LðF;P0Þ \ LðF;P00Þ ¼
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LðF;P0 \ P00Þ: Therefore, L�ðF;PÞ ¼ L�ðF;P0Þ \ L�ðF;P00Þ; while L�ðF;P0 \ P00Þ ¼

L�ðF;P0Þ [ L�ðF;P00Þ:

Consequently,

VðL�ðF;P0ÞÞ þ VðL�ðF;P00ÞÞ ¼ VðL�ðF;PÞÞ þ VðL�ðF;P0 \ P00ÞÞ:

Now

VðL�ðF;P0 \ P00ÞÞ ¼
VðSp�1Þ

VðSp�2Þ
Vð �LL�ðF;P0 \ P00ÞÞ

and the formula follows. &

The proof would actually work in the same way for a convex polyhedron cut into

more than two convex pieces, with some additional terms corresponding to the inter-

sections of more than two of the pieces.

It is clear from this proposition that, if the higher Schläfli formulas apply to P0 and

to P00, then they must apply to P. The first term in the formula is

ðn� pÞK
X
j

W0
jKjðPÞ ¼ ðn� pÞK

X
j

W 0
j KjðP

0Þ þ ðn� pÞK
X
j

W 0
j KjðP

00Þ�

� ðn� pÞK
VðSp�1Þ

VðSp�2Þ

X
j

W 0
j KjðP

0 \ P00Þ;

where the sums are over ðnþ 1� pÞ-dimensional faces of P;P0;P00 and P0 \ P00

respectively, and KjðPÞ indicates the curvature of face j in P, etc. The second

term is

p
X
i

WiK
0
iðPÞ

¼ p
X
i

WiK
0
i ðP

0Þ þ p
X
i

WiK
0
i ðP

00Þ � p
VðSpþ1Þ

VðSpÞ

X
i

WiK
0
i ðP

0 \ P00Þ;

where the sums are now over ðn� 1� pÞ-dimensional faces of P;P0;P00 and P0 \ P00

respectively. Adding the two terms and using a higher Schläfli formula for P0 and for

P00 leaves us with

ðn� pÞK
VðSp�1Þ

VðSp�2Þ

X
j

W 0
j KjðP

0 \ P00Þ þ p
VðSpþ1Þ

VðSpÞ

X
i

WiK
0
i ðP

0 \ P00Þ;

where j and i run over the faces of P0 \ P00 of dimension nþ 1� q and n� 1� q

respectively.

Now an elementary computations shows that, for any k5 2:

VðSkþ1Þ

VðSkÞ
¼

k� 1

k

VðSk�1Þ

VðSk�2Þ
;
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so that the remaining term is simply

VðSp�1Þ

VðSp�2Þ
ððn� 1Þ � ð p� 1ÞÞK

X
j

W 0
j KjðP

0 \ P00Þ þ ð p� 1Þ
X
i

WiK
0
i ðP

0 \ P00Þ

" #
;

where the sum on j is over codimension p� 1 faces of P0 \ P00, and the sum on i is

over codimension pþ 1 faces. So this vanishes because of a higher Schläfli formula

applied to P0 \ P00.

Now we can prove Theorem 2 for nonconvex polyhedra. First, we have to define

the curvature of a nonconvex polyhedron P at a face F. P can be decomposed into a

finite number of convex polyhedra P1; . . . ;PN, i.e. P ¼
S

i Pi and the Pi have pair-

wise disjoint interiors. Then we can apply the formula of Proposition 5 (actually

the analoguous formula for more than two polyhedra if necessary) and call KPðFÞ

the result. KPðFÞ is independent of the decomposition P ¼
S

i Pi of P into convex

polyhedra Pi; if P ¼
S

j P
0
j is another decomposition into convex pieces, taking the

finer decomposition P ¼
S

i;j Pi \ P0
j and applying Proposition 5 shows that the

values of KPðFÞ obtained by
S

i Pi;
S

j P
0
j and

S
i;j Pi \ P0

j are identical.

With this definition, it is not too difficult to prove that the higher Schläfli formulas

apply to deformations of a nonconvex polyhedron P. Start by choosing a decompo-

sition of P into convex pieces ðPiÞ14 i4N, and use the corresponding higher Schläfli

formula for the Pi. Then do as in the proof above for P ¼ P0
S
P00 to get rid of the

terms involving the intersection of two or more of the Pi, and the result follows.

LIPSCHITZ-KILLING CURVATURES: An alternate way to define the curva-

ture of a non-convex polyhedron P at a face F could be to use the Lipschitz–Killing

curvature defined in [C-M-S]: consider, as before, a decomposition of P into a finite

number of convex polyhedra P1; . . . ;PN, i.e. P ¼ [ii, the Pi having pairwise disjoint

interiors. Let p be the codimension of F. The Lipschitz–Killing curvature of P at F is

set to be:

RPðF Þ ¼
X
G�F

i¼dimG4 nþ1

ð�1Þi�ðnþ1�pÞ VðSp�1Þ

VðSp�1�ðnþ1�iÞÞ
KGðF Þ;

where the sum is over all faces G, in the decomposition, containing F, including F

itself, counted without multiplicity and KFðFÞ ¼ 1. This is – up to a normalizing factor

– the Lipschitz–Killing curvature of order p of the given decomposition of P at F as

defined in [C-M-S]. It turns out that the curvature obtained this way coincides with

ours (this, by the way, also shows RPðFÞ doesn’t depend on the choice of the decom-

position). This will be a consequence of the following fact:

PROPOSITION 6. Let P be a convex polyhedron in Hnþ1;Rnþ1 or Snþ1, and let F be a

codimension p face of P. Then the curvature of F in P satisfies
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KPðFÞ ¼
X
G�F

i¼dimG4 nþ1

ð�1Þi�ðnþ1�pÞ VðSp�1Þ

VðSp�1�ðnþ1�iÞÞ
KGðFÞ

the sum running over all faces G of P containing F, including F itself and P.

Proof. LðF;PÞ and L�ðF;PÞ are dual polyhedra in Sp�1. The faces of LðF;PÞ are

the LðF;GÞ for faces G of P containing F, except for F and P. Hence, the faces of

L�ðF;PÞ are their ‘dual’ faces LðF;GÞ� as discussed in Section 3. Call VðF;GÞ the

volume of the link of LðF;GÞ� in L�ðF;PÞ. We distinguish two cases:

(1) In case p ¼ 2jþ 1 is odd, by the Poincaré formula (cf. [Vin]), applied to the

polyhedron L�ðF;PÞ in the even dimensional sphere S2j, we have

VðL�ðF;PÞÞ ¼
1

2
VðS2jÞ þ

X
G�F

i¼dimG4 n

ð�1Þi�ðn�2jÞ VðS2jÞ

VðS2j�ðnþ1�iÞÞ
VðF;GÞ

2
64

3
75;

where the sum is taken over all faces G of P containing strictly F, except for P

itself. Now it can be checked that LðLðF;GÞ�;L�ðF;PÞÞ is isometric to �LL�ðF;GÞ,

where G is considered as a (nondegenerate) polyhedron in a suitable sphere (see

Section 5) . Taking into account that KFðFÞ ¼ 1, we can therefore write

KPðFÞ ¼
1

2

X
G�F

i¼dimG4 n

ð�1Þi�ðn�2jÞ VðS2jÞ

VðS2j�ðnþ1�iÞÞ
KGðF Þ;

the sum being taken over faces G containing F including F itself and excluding

P. This formula is the same as the one stated in the proposition since for

p ¼ 2jþ 1 and G ¼ P: ð�1Þi�ðnþ1�pÞ
¼ �1.

(2) In case p ¼ 2j is even, we have the following formula for the polyhedron

L�ðF;PÞ in the odd-dimensional sphere S2j�1 (cf. [Vin]):

X
G�F

i¼dimG4 n

ð�1Þi�ðnþ1�2jÞ VðS2j�1Þ

VðS2j�1�ðnþ1�iÞÞ
VðF;GÞ ¼ 0;

where the sum is over faces G containing F except for P. Again this coincides

with the formula stated in the proposition. &

Consider now a decomposition of a polyhedron P (convex or nonconvex) into

convex pieces ðPiÞ14 i4N. Replacing in the formula giving KPðFÞ in Proposition 5

(or the analoguous formula for more than two pieces if necessary) each curvature

of F in an intersection of some of the Pi by its value given by Proposition 6, leaves

us with the sum defining RPðFÞ.
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To obtain a complete picture concerning nonconvex polyhedra, we briefly describe

how the duals of such polyhedra can be defined. Here P 	 Mnþ1
K is a closed orien-

table polyhedron, but it does not have to be convex or even embedded. To simplify

things a little, we suppose that two p-faces have an intersection of dimension at

most p� 1.

Suppose first that n ¼ 1 and K ¼ 1, so that P is an oriented polygon in S2. At each

vertex v of P, there is an incoming edge ei and an outgoing edge eo. Consider the set

Ev of oriented lines at v between ei and eo, i.e. Ev correspond to the segment of length

L < p between the points corresponding to ei and to eo in the unit tangent bundle of

S2 at v. Call v� the set of points in S2 which are duals to the oriented lines in Ev. v
� is

a geodesic segment of S2, and the segments corresponding to successive vertices of P

have a vertex in common, so that they all add up to a polygon P� 	 S2 which we call

the dual of P.

Now if K ¼ 0 or K ¼ �1, the same construction works and leads to a dual P� 	 S1

if K ¼ 0, and P� 	 S2
1 if K ¼ �1.

For n5 2, the dual of P 	 Mnþ1
K can be defined recursively on n. Suppose it is

already defined in Sk for k4 n; then, for P 2 Mnþ1
K , one can define the dual v0 of

a vertex v of P as the dual of the link of P at v. v0 can be considered as a polyhedron

in the hyperplane v� dual to v. Moreover, if v1 and v2 are the endpoints of an edge e,

then v 01 and v 02 share a codimension 1 face (which is the dual of e). Therefore, the

polyhedra duals of the vertices of P again add up as a polyhedron P� in the space

dual to Mnþ1
K .

This notion of duality shares many properties of the classical duality for con-

vex polyhedra; in particular, P� is orientable and one can define its ‘volume’ as

for convex polyhedra (for instance, for P 	 Hnþ1, P� 	 Snþ1
1 does not bound a

compact domain, so its volume has to be defined with respect to a fixed hyper-

plane, as in the convex case). There is therefore a notion of dual volume also for

nonconvex polyhedra.

7. Topological Invariants

We show in this section how the higher Schläfli formulas given above indicate simply

that some quantities defined for polyhedral or smooth hypersurfaces in non-flat

space-forms are topological invariants. Some of the resulting invariants are conse-

quences of the Gauss–Bonnet theorem, while others are not.

A similar approach was used by E. Suárez-Peiró in [SP] to prove a Gauss–Bonnet

type formula for simplices with Riemannian faces in the de Sitter space, as well as a

formula on the dual volume of hyperbolic simplex.

Let P be a polyhedron in Mnþ1
K , we suppose here that K 6¼ 0. For each

k 2 f1; . . . ; n� 1g, call Hk the kth integral mean curvature of P, i.e.

Hk ¼
X
i

WiKi; ð7:1Þ
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where i runs over codimension kþ 1 faces of P, Ki is the curvature of face i and

Wi is its ðn� kÞ-volume. It is natural to define also H0 as the area AðPÞ of P, and

Hn as its dual area A�ðPÞ ¼ AðP�Þ, i.e. the area of the dual polyhedron. This makes

sense because, for k ¼ 0, only the n-volume of codimension 1 faces of P appear

in (7.1).

It would also make sense to define H�1 as the volume VðPÞ of P, and Hnþ1 as the

dual volume V�ðPÞ ¼ VðP�Þ of P, i.e. the volume of the dual polyhedron.

The dualities we consider here are the one in Snþ1ðKÞ and the one between

Hnþ1ð�KÞ and de Sitter space Snþ1
1 ðKÞ of constant curvature K > 0. These dualities

follow from those in Section 3 by a change of scale.

Remember that, for k 2 N, k!! is the product of all integers between 1 and k with

the same parity as k. By a deformation (in the ambiant space) of a polyhedron we

mean a general deformation, that is, a deformation through polyhedra which does

not change the combinatorial structure. In Section 8 we derive consequences of

our generalized Schläfli formulae in the particular case of isometric deformations.

We can now state the main result of this section:

THEOREM 7. The following quantities are invariant under deformations of P:

ð1Þ for n ¼ 2m even:

CAðPÞ ¼
Xm
q¼0

Km�q ð2q� 1Þ!!ð2m� 2q� 1Þ!!

ð2m� 3Þ!!
H2q

and if P is convex

CVðPÞ ¼ nðKmVþ EjKjmV�Þ þ
Xm
q¼1

Km�q

m�1
q�1

� �H2q�1;

where E ¼ sign of K.

ð2Þ for n ¼ 2m� 1 odd:

CVðPÞ ¼ nVþ
Xm�1

q¼0

2qq!ð2m� 2q� 3Þ!!

Kqþ1ð2m� 3Þ!!
H2qþ1;

with ð�1Þ!! ¼ 1, and if P is convex:

CV� ðPÞ ¼ nEjKjn=2V� þ
Xm
q¼1

2q�1Kq�1 ðq� 1Þ!ð2m� 2q� 1Þ!!

ð2m� 3Þ!!
H2m�2q:

Note that the assumption that P is convex in some of the cases above is not cru-

cial; if P is not convex, however, one should use the notion of dual volume of a non-

convex polyhedron, which we have only sketched at the end of Section 6.
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Proof. The constancy of CAðPÞ for n ¼ 2m follows from the linear combination:

Xm
q¼1

Km�q ð2q� 3Þ!!ð2m� 2q� 1Þ!!

ð2m� 3Þ!!
ðE2q�1Þ:

The second formula is obtained by the following linear combination of the usual,

dual, and higher Schläfli formulas:

EjKjmðEnÞ � KmðE0Þ þ
Xm�1

q¼1

Km�q ðm� q� 1Þ!ðq� 1Þ!

2 ðm� 1Þ!
ðE2qÞ:

To prove that CVðPÞ is constant for n ¼ 2m� 1, consider the equation:

�ðE0Þ þ
Xm�1

q¼1

2q�1ðq� 1Þ!ð2m� 2q� 3Þ!!

Kqð2m� 3Þ!!
ðE2qÞ:

Finally, CV� ðPÞ, which is dual of CVðPÞ, is shown to be constant by using the dual

equation. &

Using the same proofs, but with the smooth higher Schläfli instead of the polyhe-

dral ones, leads to analog smooth results:

THEOREM 8. Let S be a convex smooth hypersurface in Mnþ1
K , suppose that K 6¼ 0.

Let Hr ¼
R
S Sr, for r ¼ 0; . . . n, be the integral mean curvatures of S computed with

respect to the exterior unit normal. Then the following quantities are invariant under

deformations of S:

ð1Þ for n ¼ 2m even:

CVðSÞ ¼ �nðKmVþ EjKjmV�Þ þ
Xm
q¼1

Km�q

m�1
q�1

� �H2q�1

and

CAðSÞ ¼
Xm
q¼0

Km�q ð2q� 1Þ!!ð2m� 2q� 1Þ!!

ð2m� 3Þ!!
H2q;

with E ¼ sign of K:

ð2Þ for n ¼ 2m� 1 odd:

CVðSÞ ¼ nV�
Xm�1

q¼0

2qq!ð2m� 2q� 3Þ!!

Kqþ1ð2m� 3Þ!!
H2qþ1

and
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CV� ðSÞ ¼ nEjKjn=2V� �
Xm
q¼1

2q�1Kq�1 ðq� 1Þ!ð2m� 2q� 1Þ!!

ð2m� 3Þ!!
H2m�2q:

For n ¼ 2m, the dimension of M is odd. CA is then related to the Gauss–Bonnet

theorem applied to the hypersurface. For n ¼ 2m� 1, the dimension of M is even,

and CV is related to the Gauss–Bonnet theorem ‘with boundary’ applied to the inter-

ior of the domain bounded by the hypersurface.

For n ¼ 2, the only nontrivial quantity is CV, which is simply

CVðPÞ ¼ 2KðVþ V �Þ þH1:

The fact that this quantity is constant was already remarked by I. Rivin.

Once those quantities are known to be constant, it is easy to find their values (for

each immersion into M given up to deformation) by choosing a special hypersurface

and computing the value of the invariant.

The quantities CA for n even and CV for n odd, which do not include V�, are

also constant for hypersurfaces in constant curvature space-forms (e.g. hyperbolic

manifolds).

8. Bending Invariants

We examine here the special case of isometric deformations of polyhedra and hyper-

surfaces. A deformation of a hypersurface is said to be isometric, or a bending, if it

leaves invariant the metric induced on the hypersurface. There are no known examples

of smooth closed hypersurfaces (in fact, not even C2 ones) admitting nontrivial smooth

isometric deformations (i.e. not through rigid motions of the ambient space). Consider

the rth integral mean curvatures Hr ¼
R
S Sr, for r ¼ 0; . . . n. For r even, this depends

only on the induced metric on the hypersurface since this is even the case for Sr as it

follows from Gauss equation. However this not true for r odd as it can be checked on

the standard example (and its obvious generalizations to higher dimensions) of a toplo-

gical sphere which admits two isometric and noncongruent embeddings in R3 (see [Spi],

p. 307). The following result may be viewed as a kind of rigidity in a weak sense.

THEOREM 9. Let S be a smooth closed and oriented hypersurface in Mnþ1
K . Then, for

the choice of the unit normal compatible with the orientation of S, the following

quantities are invariant under isometric deformations of S: nKV�H1 and Hr for

r5 2; V being the ðorientedÞ volume enclosed by S.

This result was first proved for r ¼ 1 by F. Amgren and I. Rivin ([Al-Ri]) by noti-

cing firstly that the analoguous statement for polyhedra is true (see below) and then

extending it to smooth hypersurfaces using geometric measure theory methods.

Direct proofs using differential-geometric tools were then given independently in

[Ri-S-a] and [So]. In [Ri-S-a] the stronger result that the Sr, for r5 2, are pointwise

invariant under isometric deformations, is proved.
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Remark. We do not need to assume S is embedded. Indeed the enclosed volume

may be defined in the immersed case (see [Ra]) and the result still holds.

Proof. The result is a direct consequence of smooth Schläfli formulas, ðF0Þ for

r ¼ 1 and ðFr�1Þ for r5 2. &

An open question in this setting is to decide whether the volume enclosed by a

hypersurface in Rnþ1 is invariant under isometric deformations. The analoguous

statement for closed polyhedra in R3 was proved recently by I. Sabitov (see e.g.

[CSW] and the references given there). The following corollary (see also [Ri-Sch]

and [So]) suggests that this should be true also for smooth hypersurfaces. Call SE

the parallel hypersurface to S at (algebraic) distance E, that is, the hypersurface

obtained by going at distance E along the normal at each point (it is indeed a regular

hypersurface for E small enough). Call VE the (oriented) volume enclosed between S
and SE. Note that, unlike the volume of a tubular neighborhood of S, VE does

depend on the extrinsic geometry of S (this is clear from the formula below).

COROLLARY 10. The volume VE ðE small enoughÞ is invariant under isometric

deformations of S.
Proof. It is known and not too difficult to check that VE is given by

VE ¼

Z E

0

Z
S

Yi¼n

i¼1

ð1� skiÞ dAds ¼
Xr¼n

r¼1

ð�1Þr
Erþ1

rþ 1

Z
S
Sr dA

so the result follows directly from Theorem 8. &

Before stating the polyhedral version of Theorem 9, we make precise some defini-

tions. An isometric deformation, or a bending, of a polyhedron P is a deformation

such that each codimension 1 face of P remains congruent (through rigid motions) to

itself under the deformation. Cauchy [Cau] proved in 1813 that two compact convex

polyhedra in R3, constructed from pairwise congruent faces assembled in the same

order, were in fact congruent themselves; a nice exposition of this theorem, as well

as some extensions, can be found in [Sto]. Cauchy’s theorem in higher dimensions

is an easy consequence (cf [Be] or [Vin]). It follows that such polyhedra are rigid

(i.e. admit no nontrivial isometric deformations).

Moreover Cauchy’s argument (and, of course, the rigidity consequence) extends

to (compact) convex polyhedra in all Riemannian space forms in all dimensions

and also to convex polyhedra in Hn with finite volume having some ideal vertices;

the proof of the hyperbolic case can be found in [Ri-Ho], which also contains a

sketch of the proof in the spherical case. Moreover, the infinitesimal rigidity

problems for convex polyhedra in the various (Riemannian or Lorentzian)

space-forms are essentially equivalent, since a remarkable construction of Pogor-

elov takes the problem from one space-form to another. Details and some
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applications of this to rigidity questions can be found, e.g. in [Sch98], [Sch00] or

[Sch01].

A quantity defined for a polyhedron is said to be intrinsic if it depends only on the

metric induced on its n-dimensional skeleton. In analogy with the smooth case,

the curvature of P at faces of odd codimension is intrinsic (cf. [C-M-S]), in particular

the r-th integral mean curvature, Hr, as defined by (7.1), is intrinsic for r even. There

exist polyhedra in R3 admitting nontrivial isometric deformations (cf. [Co]). We can

now state the following theorem:

THEOREM 11. Let P be a polyhedron in Mnþ1
K . Then nKVþH1 and Hr, 24 r4 n

are invariant under bendings.

Proof. (i) The volumes of the faces of P of codimension 51 are invariant under

bendings. For r ¼ 1, the result is thus a direct consequence of classical Schläfli

formula ðE0Þ (note that our definition of the curvature at codimension 2 faces

involves the external dihedral angles). This was the starting point of the work of F.

Almgren and I. Rivin [Al-Ri]. For r5 2, the statement is a consequence of the higher

Schläfli formula ðEr�1Þ. &

9. Piecewise Space-forms and Generalized Regge Formulas

Let Mnþ1
K be, as before, the spherical, Euclidean or hyperbolic space of constant cur-

vature K and dimension nþ 1. A piecewise K-space form X nþ1 of dimension nþ 1 is

a simplicial complex which is a triangulation of a compact (n+1)-dimensional mani-

fold, with or without boundary, endowed with a distance such that:

(i) each q-dimensional face of X is isometric to some q-simplex sq of Mnþ1
K

(ii) X is a path metric space, that is, the distance between each pair of its points

equals the infimum of the lengths of curves joining the points.

More details can be found in [C-M-S] (or [La]). The piecewise flat spaces defined in

[C-M-S] are more general but only those we consider here are really used by these

authors. The Lipschitz–Killing curvature of order p of X is defined on the

ðnþ 1� pÞ-skeleton: for a codimension p face snþ1�p, let

RXðsnþ1�pÞ ¼
X

si�snþ1�p

ð�1Þi�ðnþ1�pÞ VðSp�1Þ

VðSp�1�ðnþ1�iÞÞ
Ksiðs

nþ1�pÞ:

The total Lipschitz–Killing curvature of order p of X is then defined as follows:

Rp ¼
X
snþ1�p

RXðsnþ1�pÞjsnþ1�pj

where jsnþ1�pj denotes the volume of snþ1�p. Now, we can also define the curvatures

KXðsnþ1�pÞ in the same way we defined them in Section 6 for polyhedra embedded in
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Mnþ1
K . The same arguments as in Section 6 show these curvatures are the same as

Lipschitz–Killing ones and that the higher Schläli formulas apply to piecewise space

forms. We therefore have :

PROPOSITION 12 (Generalized Regge formulas). Let Xnþ1
t be a 1-parameter family

of piecewise K-space forms. Then the variation of the total Lipschitz–Killing curvature

of order p 2 f3; . . . ; nþ 1g is given by:

ðRpÞ
0
¼
X
snþ1�p

RXðsnþ1�pÞjsnþ1�pj0 � K
ðnþ 2� pÞ

ð p� 2Þ
�

�
X
snþ3�p

RXðsnþ3�pÞjsnþ3�pj0:

And for p ¼ 2:

ðRpÞ
0
¼
X
sn�1

RXðsn�1Þjsn�1j0 � nK
X
snþ1

jsnþ1j0:

Remark. In [C-M-S], the Lipschitz–Killing curvatures are defined under the fol-

lowing normalization

�RRXðsnþ1�pÞ ¼
1

VðSp�1Þ
RXðsnþ1�pÞ

and, similarly, �RRp ¼ ð1Þ=ðVðSp�1ÞÞRp. The generalized Regge formulas then read, for

p 2 f3; . . . ; nþ 1g:

ð �RR
p
Þ
0
¼
X
snþ1�p

�RRXðsnþ1�pÞjsnþ1�pj0�

� K
ðnþ 2� pÞ

ð p� 2Þ

VðSp�3Þ

VðSp�1Þ

X
snþ3�p

�RRXðsnþ3�pÞjsnþ3�pj0

and, for p ¼ 2,

ð �RR2Þ
0
¼
X
sn�1

�RRXðsn�1Þjsn�1j0 � K
n

2p

X
snþ1

jsnþ1j0:

10. In Hyperbolic Manifolds

All the results of the previous sections also hold when the ambient simply connected

space-form is replaced by some (well chosen) manifold with constant curvature. We

will illustrate this here by considering the special case of convex (smooth or polyhe-

dral) hypersurfaces in a convex cocompact ‘quasi-Fuschsian’ manifold M.

That is, we consider a hyperbolic complete manifold M homeomorphic to

N� ð0; 1Þ, where N is a compact hyperbolic n-manifold. One can obtain ‘Fuchsian’

22 JEAN-MARC SCHLENKER AND RABAH SOUAM



examples by considering a group G acting on Hn so that the quotient is a compact

hyperbolic manifold N, and then considering the natural action of G on Hnþ1 (given

by the action of G on a totally geodesic hyperplane in Hnþ1). More ‘quasi-Fuchsian’

examples can be obtained by deforming the action of G.
Let ðStÞt2½0;1� be a 1 parameter family of convex, compact hypersurfaces in M.

Each St is homeomorphic to N. It is then straightforward to check that the smooth

higher Schläfli formulas ðFpÞ of Theorem 1 extend to this setting (the proof is the

same as in Section 1). Using the same limiting argument as in Section 2 also leads

to the higher polyhedral Schläfli formulas of Theorem 2.

We also want to define the dual volume of St in such a way that the dual smooth

Schläfli formula holds for deformations of St.

One way to do this is to lift St to the universal coverHnþ1 ofM, thus obtaining the

universal cover ~StSt of St as a convex complete surface, invariant under the action of

G. ~StSt has a dual hypersurface ~StSt
�, which is a convex, space-like hypersurface in Snþ1

1

which is invariant under the action of G on Snþ1
1 induced from the action of G on

Hnþ1. One could then check that the ~StSt
� and any hemisphere S0 in Snþ1

1 bound a

domain O such that O=G has finite volume; the dual volume of St would then be

the volume of O=G.
A simpler approach, however, is to define directly V�ðStÞ as the volume of the set

of hyperplanes intersecting St. This volume exists because St is compact. Note that

this is possible because ~SS is globally convex, therefore each hyperplane in Hnþ1 inter-

sects it with a connected intersection.

It is then quite easy to prove that the dual Schläfli formula holds for the deformation

ðStÞ. As a consequence, we also recover in this setting the results of Sections 7 and 8

on topological and bending invariants of hypersurfaces.
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