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Abstract

In the present paper links and knots are investigated as a singular set of
geometric cone–manifolds with the three-sphere as underlying space. Trigono-
metrical identities between lengths of singular components and cone angles of
these cone–manifolds (Sine, Cosine, and Tangent rules) are obtained. Ge-
ometrical inequalities between volumes and singular geodesic lengths of the
cone–manifolds are also given. They can be considered as a sort of isoperi-
metric inequalities well-known for convex polyhedra.
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0. Introduction
Knot theory was born around the year 1867 in Scotland from the imagination

of three phisicists: J. C. Maxwell, P. G. Tait, and W. Thomson (Lord Kelvin). For
more details see [Kn], [HKW]. Maxwell’s interest for knots came from his theory
of electromagnetism. For instance, he gave in [Ma] an important interpretation of
Gauss integral formula for the linking coefficient of two knots in the 3-space: it is
equal to the work required to move a magnet pole along one knot while the other
knot is run by an electric current. Another curious fact is that Seifert surface whose
boundary is a given knot being introduced by Tait via pure phisical arguments.
Due to afforts of J. B. Listing, K. Reidemeister, and M. Dehn knot theory was
gradually embodied in the more general theory of 3-dimensional manifolds. The
notion of the fundamental group was introduced and the group theory became one
of the most powerful tools in the knot theory. In 1975 R. Riley [R] had found
examples of hyperbolic structures on some knot and link complements in the three-
sphere. Later, in the spring of 1977 W. P. Thurston had announced an existence
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theorem for Riemannian metrics of constant negative curvature on 3-manifolds. In
particular, it turned out that knot complement of a simple knot (excepting torical
and satellite) admits a hyperbolic structure. This fact allowed to consider knot
theory as a part of geometry and Kleinian group theory. Starting from Alexander’s
works polynomial invariants became a convenient insrument for knot investigation.
A lot of different kinds of such polynomials were investigated in the last twenty
years. Among these there are Jones-, Kaufmann-, HOMFLY-, A–polynomials and
others ([Kauf], [CCGLS], [HLM2]). This relates the knot theory with algebra and
algebraic geometry.

In the present paper we investigate knots and links as singular subsets of the
3-sphere endowed by Riemannian metric of constant curvature (negative, positive,
or zero). More precisely, our aim is to investigate the structure of geometrical cone–
manifolds whose underlying space is the three-sphere and the singular set is a given
knot or link.

Section 1 contains a list of trigonometrical identities (Sine, Cosine, and Tan-
gent rules) relating the lengths of singular geodesics of geometrical cone-manifolds
with their cone–angles. Cone-manifolds are supposed to be hyperbolic, spherical,
or Euclidean. Similar results are known for the right–angled hexagons in the hyper-
bolic 3-space which can be considered as triangles with complex lengths and angles
[Fench]. Related results can be also obtained for a class of knotted graphs. For
example, they take place for the rational knots with bridges through their tunnels.

Section 2 is devoted to explicite calculation of volume of some cone-manifolds in
hyperbolic and spherical geometries. In particular, simple volume formulas will be
obtained for the figure-eight cone–manifold. Partially, these results are well-known
and were given earlier in [HLM3], [MV], and [Kj].

Section 3 gives inequalities between volumes and singular geodesic lengths of the
cone–manifolds under investigation. They can be consider as a sort of isoperimetric
inequalities well-known for convex polyhedra [BZ].

1. Trigonometrical identities for knots and links

1.1 Cone–manifolds, complex distances and lengths
We start with the definition of cone–manifold modeled in hyperbolic, spherical

or Euclidian structure.
Definition 1.1.1. A 3–dimensional hyperbolic cone–manifold is a Riemannian

3–dimensional manifold of constant negative sectional curvature with cone-type
singularity along simple closed geodesics. To each component of singular set we
associate a real number n ≥ 1 such that the cone-angle around the component is
α = 2π/n. The concept of the hyperbolic cone-manifold generalizes the hyperbolic
manifold which appears in the partial case when all cone-angles are 2π. The hyper-
bolic cone-manifold is also a generalization of the hyperbolic 3–orbifold which arises
when all associated numbers n are integers. Euclidean and spherical cone–manifolds
are defined similarly.

In the present paper hyperbolic, spherical or Euclidean cone-manifolds C are
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considered whose underlying space is the three-dimensional sphere and the singular
set Σ = Σ1∪Σ2∪. . .∪Σk is a link consisting of components Σj = Σαj , j = 1, 2, . . . , k

with cone-angles α1, . . . , αk respectively.
Recall a few well-known facts from the hyperbolic geometry.

Let H3 = {(z, ξ) ∈ C ×R : ξ > 0} be the upper half model of the 3 -dimen-

sional hyperbolic space endowed by the Riemannian metric ds2 =
dzdz + dξ2

ξ2
.

We identify the group of orientation preserving isometries of H3 with the group
PSL(2,C) consisting of linear fractional transformations

A : z ∈ C→ az + b

cz + d
.

By the canonical procedure the linear transformation A can be uniquely extended to

the isometry of H3. We prefer to deal with the matrix Ã =
(

a b
c d

)
∈ SL(2,C)

rather than the element A ∈ PSL(2,C). The matrix Ã is uniquely determined by
the element A up to a sign. If there will be no confusions we shall use the same
letter A for both A and Ã.

Let C be a hyperbolic cone–manifold with the singular set Σ. Then C defines
a nonsingular but incomplete hyperbolic manifold N = C − Σ. Denote by Φ the
fundamental group of the manifold N.

The hyperbolic structure of N defines, up to congugation in PSL(2,C), a holon-
omy homomorphism

ĥ : Φ → PSL(2,C).

It is shown in [Zhou] that the monodromy homomorphism of a compact orientable
cone-orbifold can be lifted to SL(2,C). Denote by h : Φ → SL(2,C) this lifting
homomorphism. Chose an orientation on the link Σ = Σ1 ∪Σ2 ∪ . . . ∪Σk and fix a
meridian-longitude pair {mj , lj} for each component Σj = Σαj . Then the matricies
Mj = h(mj) and Lj = h(lj) satisfy the following properties:

tr(Mj) = 2 cos(αj/2), MjLj = LjMj , j = 1, 2, . . . , k.

Definition 1.1.2. A complex length γj of the singular component Σj of the cone-
manifold C is defined as displacement of the isometry Lj of H3 , where Lj = h(lj)
is represented by the longitude lj of Σj .

Immediately from the definition we get [Fench, p.46]

2 cosh γj = tr (L2
j ) (1.1.1)

We note [BZie, p.38] that the meridian-longitude pair {mj , lj} of the oriented
link is uniquely determined up to a common conjugating element of the group Φ.
Hence, the complex length γj = lj + i ϕj is uniquely determined up to a sign and
(mod 2πi) by the above definition.
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We need two conventions to choose correctly real and imaginary parts of γj . The
first convention is the following. Since Σj does not shrink to a point, lj 6= 0. Hence,
we choose γj in such a way that lj = < γj > 0. The second convention is concerned
with the imaginary part ϕj = = γj . We want to choose ϕj such that the following
identity holds

cosh
γj

2
= −1

2
tr(Lj) (1.1.2)

By virtue of identity tr(Lj)2 − 2 = tr(L2
j ) equality (1.1.1) is a consiquence of

(1.1.2). The converse, in general, is true only up to a sign. Under the second
convention (1.1.1) and (1.1.2) are equivalent. The two above conventions lead to
convenient analytic formulas for calculation of γj and lj . More precisely, there are
simlple relations between these numbers and eigenvalues of matrix Lj . Recall that
detLj = 1. Since matrix Lj is loxodromic it has two eigenvalues fj and 1/fj . We
choose fj so that |fj | > 1. The case |fj | = 1 is impossible because in this case the
matrix Lj is elliptic and lj = 0. Hence

fj = −e
γj
2 , |fj | = e

lj
2 . (1.1.3)

1.2. Whitehead link cone–manifold
Denote by W (α, β) the cone-manifold whose underlying space is the 3-sphere

and whose singular set consists of two components of the Whitehead link with cone
angles α = 2π/m and β = 2π/n (see Fig.1). It follows from Thurston’s theorem that
W (α, β) admits a hypebolic structure for all sufficiently small α and β. The region
of hyperbolicity of W (α, β) was investigated in [HLM2] and [KM]. In particular,
this cone–manifold is hyperbolic for m, n > 2.507.. The following theorems have
been obtained in [M].

Theorem 1.2.1 (The Tangent Rule). Suppose that cone–manifold W (α, β)
is hyperbolic. Denote by γα and γβ complex lengths of the singular geodesics of
W (α, β) with cone angles α and β respectively. Then

tanh γα

4

tanh γβ

4

=
tan α

2

tan β
2

.

Theorem 1.2.2 (The Sine Rule). Let γα = lα + i ϕα (resp.γβ) be a complex
length of the singular geodesic of a hyperbolic cone-manifold W (α, β) with cone angle
α (resp. β). Then

sin ϕα

2

sinh lα
2

=
sin ϕβ

2

sinh lβ
2

.

The Whitehead link cone–manifold W (α, β). Fig. 1

Euclidean analoges of Theorems 1.2.1 and 1.2.2 were abtained by R.N. Shmatkov
(1999). The similar results can be stated also for spherical cone–manifold W (α, β).
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1.3. Cone–manifold 62
2(α, β)

According to [Rolf] denote by 62
2 two-bridge link with the ratinal slope 10/3.

Consider a cone–manifold 62
2(α, β) whose underlying space is the three-sphere and

singular set is formed by two components of the link 62
2(α, β) with cone angles α

and β (Fig.2). A canonical fundamental set for two-bridge cone–manifolds admit-
ting hyperbolic, Euclidean, or spherical structure has been constructed in [MR1].
Applying this construction to the cone–manifold under consideration we get the
following proposition.

Proposition 1.3.1 The cone manifold 62
2(α, β) admits a hyperbolic, Euclidean,

or spherical structure in regions Rh, Re and Rs respectively, where

(i) Rh = {(α, β) ∈ R2 : 0 ≤ α, β < 4π/3, cosα/2 + cos β/2 > 1/2}

(ii) Re = {(α, β) ∈ R2 : 0 ≤ α, β < 4π/3, cos α/2 + cos β/2 = 1/2}
(iii) Rh = {(α, β) ∈ R2 : 2π/3 < α, β < 4π/3, | cosα/2± cos β/2| < 1/2 }

We recall that in the case α = 0 or β = 0 the corresponding component of the
cone–manifold 62

2(α, β) should be replace by complete hyperbolic cusp.

The cone–manifold 62
2(α, β). Fig. 2

The next proposition gives an explicit formula for a real lenght of the singular
component of the cone–manifold 62

2(α, β).

Proposition 1.3.2. Suppose that cone–manifold 62
2(α, β), (α, β) ∈ Rh is hyper-

bolic. Then the length lα of the singular geodesic of 62
2(α, β) with cone angle α is

defined by the formula

cosh
lα
2

= 2
N + M

√
1 + K2

(1 + M2)
√

1 + N2
,

where M = cot α
2 , N = cot β

2 , and K2 = (1 + M2)(1 + N2)/4.

Proof is based on the following considerations.
Let Σ = Σ1 ∪Σ2 be the singular set of cone–manifold C = 62

2(α, β). Consider a
nonsingular noncomplete hyperbolic manifold C −Σ and denote by Φ = π1(C −Σ)
its fundamental group. Then Φ has the following presentation

Φ =< sα, sβ : sαlα = lαsα, lα = sβsαsβsα
−1sβ

−1sα
−1sβsαsβ >,

where sα and sβ are meridians of the components Σα and Σβ respectively, and lα is
a longitude of Σα. Let h : Φ → SL(2,C) be a holonomy homomorphism, S = h(sα),
and T = h(lβ .) After a suitable conjugation in the group SL(2,C) homomorphism
h can be chosen in such a way that

S =
(

cos µ i e
ρ
2 sinµ

i e−
ρ
2 sin µ cosµ

)
, T =

(
cos ν i e−

ρ
2 sin ν

i e
ρ
2 sin ν cos ν

)
, (1.3.1)
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where µ = α/2, ν = β/2, ρ is a complex distance between axis of S and T in the
hyperbolic space H3.

Set L = h(lα). Then the matrix equation SL = LS and a restriction that L is
loxodromic for all α > 0 gives the following quadratic equation for u = cosh ρ

u2 − (MN +
√

1 + K2)u + K2 + MN
√

1 + K2 = 0, (1.3.2)

where M , N and K are the same as in the statement of the proposition.
Routine calculation of the trace of the element L = TSTS−1T−1S−1TST mod-

ulo equaition (1.3.2) gives

tr(L) = 4
N + M

√
1 + K2

(1 + M2)
√

1 + N2
. (1.3.3)

Inside of region of hyperbolicity Rh we have tr(L) > 2. From(1.1.1) the com-
plex length lα = lα + iϕα is given by cosh γα

2 = − 1
2 tr(L). Hence cosh γα

2 <

−1, γα

2 = lα
2 + iπ and

cosh
lα
2

=
1
2

tr(L) = 2
N + M

√
1 + K2

(1 + M2)
√

1 + N2
.

Theorem 1.3.3 (The Sine Rule). Let lα and lβ be lengths of the singular
geodesics of a hyperbolic cone–manifold 62

2(α, β) with cone angles α and β respec-
tively. Then

sin α
2

sinh lα
2

=
sin β

2

sinh lβ
2

.

Proof. Immediately from Proposion 1.3.2 we get

sinh
lα
2

=
√

∆
(1 + M2)

√
1 + N2

= sinµ

√
∆√

(1 + M2)(1 + N2)
,

where ∆ = 4M2 + 4N2 + 4MM
√

4 + (1 + M2)(1 + N2) − (1 + M2)(1 + N2) is a
symmetric function of M and N. Hence

sinh lα
2

sinµ
=

√
∆√

(1 + M2)(1 + N2)
=

sinh lβ
2

sin ν

and the result follows.
Theorem 1.3.4 (The Cosine Rule). Let lα and lβ be lengths of the sin-

gular geodesics of a hyperbolic cone–manifold 62
2(α, β) with cone angles α and β

respectively. Then
cos α

2 cosh lβ
2 − cos β

2 cosh lα
2

cosα− cos β
= −1.
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Proof. By Proposition 1.3.2 we get

cosh
lα
2

= 2
N + M

√
1 + K2

(1 + M2)
√

1 + N2

and

cosh
lβ
2

= 2
M + N

√
1 + K2

(1 + N2)
√

1 + M2
.

Hence

M√
1 + M2

cosh
lβ
2
− N√

1 + N2
cosh

lα
2

= 2
M2 −N2

(1 + M2)(1 + N2)
= cos β − cosα.

Since M√
1+M2 = cos α

2 and N√
1+N2 = cos β

2 the theorem is proved.

1.4 The Borromean cone–manifold
In this subsection we investigate geometric properties of a cone–manifold B(α, β, γ)

with singular set the Borromean rings (Fig. 3). The cone angles of three compo-
nents of the singular set are α, β, γ. As above, the corresponding lengths of the
singular set components will be denoted by lα, lβ , and lγ .

The Borromean cone–manifold B(α, β, γ). Fig. 3

It is well-known fact that B(α, β, γ) can be obtained by glueing together eight
copies of the Lambert cube Q(α/2, β/2, γ/2) with essential dihedral angles α/2, β/2, γ/2.

See [T] and [HLM1] for details. In particular, it is shown in [T] that Q(α/2, β/2, γ/2)
(and hence B(α, β, γ)) is hyperbolic if 0 ≤ α, β, γ < π and Euclidean if α/2 = β/2 =
γ/2 = π.

Moreover, if Lα, Lβ , Lγ denote the edge lengths of Q(α/2, β/2, γ/2) with dihe-
dral angles α/2, β/2, γ/2 we get

Lα =
lα
4

, Lβ =
lβ
4

, Lγ =
lγ
4

. (1.4.1)

The Lambert cube Q(α/2, β/2, γ/2). Fig. 4

As in the case of cone–manilolds W (α, β) and 62
2(α, β) there are simple trigono-

metrical identities relating the lengths lα, lβ , lγ of B(α, β, γ) with its cone angles
α, β, γ. We start with the following

Theorem 1.4.1 (The Tangent Rule). Let B(α, β, γ), be a hyperbolic Bor-
romean cone–manifold with cone angles 0 < α, β, γ < π and the singular geodesic
lengths lα, lβ , lγ . Then

tan α
2

tanh lα
4

=
tan β

2

tanh lβ
4

=
tan γ

2

tanh lγ
4

= T,
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where T is a positive number defined by T 2 = K+
√

K2 + L2M2N2, L = tan α
2 , M =

tan β
2 , N = tan γ

2 , and K = (L2 + M2 + N2 + 1)/2.

Proof. We prefer to deal with the Lambert cube Q(α/2, β/2, γ/2) rather then
cone–manifold B(α, β, γ). It follows from the result of [K] that the edge lengths
Lα, Lβ and Lγ are related with its angles by

tan α
2

tanh Lα
=

tan β
2

tanh Lβ
=

tan γ
2

tanh Lγ
= T, (1.4.2)

where T = tan θ for some angle θ such that α, β, γ ≤ 2θ ≤ π. The simple proof
of this formula by means of Gram matrix techniques can be find also in [V]. The
following equation for T was obtained in ([K], p.564, eq. (II)) and ([HLM1], eq.
(A.2)) in slightly different terms

T 2 =
T 2 − L2

1 + L2

T 2 −M2

1 + M2

T 2 −N2

1 + N2
, (1.4.3)

The last equation is equivalent to

(T 2 + 1)(T 4 − (L2 + M2 + N2 + 1)T 2 − L2M2N2) = 0.

Since T is a positive number we get

T 4 − (L2 + M2 + N2 + 1)T 2 − L2M2N2 = 0. (1.4.4)

Hence T 2 = K +
√

K2 + L2M2N2, and K = (L2 + M2 + N2 + 1)/2. Taking
into acount (1.4.1) and (1.4.2) we finish the proof.

The next three theorems can be considered as a consequences of the Tangent
Rule.

Theorem 1.4.2 (The Sine Rule). Let B(α, β, γ), be a hyperbolic Borromean
cone–manifold with cone angles 0 < α, β, γ < π and the singular geodesic lengths
lα, lβ , lγ . Then

sin α
2

sinh lα
4

sin β
2

sinh lβ
4

sin γ
2

sinh lγ
4

= T,

where T is a positive number defined by T 2 = K+
√

K2 + L2M2N2, L = tan α
2 , M =

tan β
2 , N = tan γ

2 , and K = (L2 + M2 + N2 + 1)/2.

Proof. We rewrite the statement of the Tangent Rule in the form

sinh2 Lα =
L2

T 2 − L2
, sinh2 Lβ =

M2

T 2 −M2
, sinh2 Lγ =

N2

T 2 −N2
, (1.4.5)

We get also

sin2 α

2
=

L2

1 + L2
, sin2 β

2
=

M2

1 + M2
, sin2 γ

2
=

N2

1 + N2
. (1.4.6)
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By virtue of (1.4.3) we have from (1.4.5) and (1.4.6)

sin2 α
2

sinh2 Lα

sin2 β
2

sinh2 Lβ

sin2 γ
2

sinh2 Lγ

=
T 2 − L2

1 + L2

T 2 −M2

1 + M2

T 2 −N2

1 + N2
= T 2.

By taking the square root we obtain the statement of the theorem.

By similar arguments the following theorems can be proved.

Theorem 1.4.3 (The Cosine Rule).

cos α
2

cosh lα
4

cos β
2

cosh lβ
4

cos γ
2

cosh lγ
4

=
1

T 2
,

Theorem 1.4.4 (The Sine-Cosine Rule).

sin α
2

sinh lα
4

sin β
2

sinh lβ
4

cos γ
2

cosh lγ
4

= 1,

2. Explicit volume calculation
2.1. The Schläfli formula
In this section we will obtain explicit formulas for volume of some special cone–

manifolds in the hyperbolic and spherical geometries. In the case of complete hyper-
bolic structure on the simplest knot and link complements such formulas in terms of
Lobachevsky function are well-known and widely represented in [T]. In general sit-
uation, a hyperbolic cone–manifold can be obtained by completion of non-complete
hyperbolic structure on a suitable knot or link complenent. If the cone–manifold
is compact explicit formulas are know just in a few cases [Hds] , [HLM3], [MV],
[Kj]. In all these cases the starting point for the volume calculation is the Schläfli
formula (see, for example [Hds] )

Theorem 2.1.1. (The Schläfli volume formula) Suppose that Ct is a
smooth 1–parameter family of (curvature K) cone–manifold structures on a n-
manifold, with singular locus Σ of a fixed topological type. Then the derivative
of volume of Ct satisfies

(n− 1)KdV (Ct) =
∑

σ

Vn−2(σ)dθ(σ)

where the sum is over all components σ of the singular locus Σ, and θ(σ) is the cone
angle along σ.

In the present paper we will deal mostly with three-dimensional cone–manifold
structures of negative constant curvature K = −1. The Schläfli formula in this case
reduces to

dV = −1
2

∑

i

lθidθi, (2.1.1)
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where the sum is taken over all components of the singular set Σ with lengths lθi

and cone angles θi.

Our aim is to obtain the volume formulas for cone–manifolds W (α, β), 62
2(α, β)

and B(α, β, γ) described in the above section. Since the figure eight cone–manifold
41(α) is the two-fold covering of 62

2(α, π) its volume is twice the volume of 62
2(α, π).

This leads to a simple volume formula for the figure eight cone–manifold obtained
earlier in more complicated form in [HLM3], [MV] and [Kj].

2.2. Volume of the Whitehead link cone–manifold
First of all we consider the case of the hyperbolic Whitehead link with one

complete cusp.
Theoren 2.2.2. Let W (0, α) be a hyperbolic Whitehead link cone–manifold

with a complete hyperbolic structure on one cusp and cone angle α, 0 ≤ α < π on
the another. Then the volume of W (0, α) is given by the formula

V ol W (0, α) =
1
2

∫ π

α

arcosh (8− 8 cos t + cos 2t)dt.

Proof. By [KM] cone–manifold W (0, α) is hyperbolic for all 0 ≤ α < π. Denote
by Vα the hyperbolic volume of W (0, α). By Schläfli formula we have dVα = − 1

2 lαdα.

By calculation produced in [M] we obtain

cosh lα =
M4 + 10M2 + 17

(M2 + 1)2
, (2.2.1)

where M = cot α
2 . Simplifying (2.2.1) we get cosh lα = 8− 8 cos α + cos 2α and

lα = arcosh (8− 8 cos α + cos 2α). (2.2.2)

By integrating the Schläfli formula we have

Vα = −1
2

∫ α

θ

arcosh (8− 8 cos t + cos 2t)dt + Vθ, (2.2.3)

for an arbitrary θ, 0 ≤ θ < π. We note that the geometrical limit W (0, π) of the
cone–manifolds W (0, θ) as θ → π − 0 is not hyperbolic, since its two-fold covering
branched over the π-component is the torus link 4/1. Also, W (0, π) contains no
two-dimensional suborbilolds of the type S2(π, π, π). Hence, by Theorem 7.1.2 of
[Kj] we have limθ→π−0 Vθ = 0. Going over to the limit we immediately get from
(2.2.3) the statement of the theorem.

In the case of closed cone–manifold W (α, β) the volume function becomes more
complicated and can be expressed in terms of roots of a cubic equation. See [M]
and [KM] for details.

2.3. Volumes of the 62
2(α, β), the figure eight, and the Borromean rings

cone–manifolds
This subsection will be organized in the following way. First of all, by mak-

ing use of length formula for a singular geodesic of the cone–manifold 62
2(α, β)
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from section 1 and the Schläfli variation formula we obtain a simple expression for
V ol 62

2(α, β). Then taking into account that the figure eight cone–manifold 41(α)
and the Borromean rings cone–manifold B(α, α, α) are, respectively two-fold and
three-fold coverings of 62

2(α, β) for β = π and β = 2π
3 , we find the volume formulas

for both of them. These formulas turn out to be simplier then the corresponding
formulas obtained earlier in [HLM3], [MV], and [K].

Theorem 2.3.1. Suppose that cone–manifold 62
2(α, β), (α, β) ∈ Re is hyper-

bolic. Then its volume is defined by the formula

V ol 62
2(α, β) =

∫ α∗

α

E(
α

2
,
β

2
)dα,

where E(µ, ν) = arcosh (2 sin2 µ cos ν +cos µ
√

4 sin2 µ sin2 ν + 1) and α∗, 0 ≤ α∗ <
2π
3 is uniquely determined by the equation cos α∗

2 + cos β
2 = 1

2 .

Proof. Recall (Proposition 1.3.1) that 62
2(α, β) is hyperbolic for (α, β) ∈ Rh,

where the region Rh is bounded by the coordinate axes and by the curve Re =
{(α, β) ∈ R2 : 0 ≤ α, β < 4π/3, cos α

2 + cos β
2 = 1

2}. Moreover, for all points
(α, β) ∈ Re cone–manifold 62

2(α, β) admits Euclidean structure. If (α, β) ∈ Rh then
the lengths lα and lβ of are defined by Proposition 1.3.2. Hence

cosh
lα
2

= 2 sin2 µ cos ν + cosµ

√
4 sin2 µ sin2 ν + 1, (2.3.1)

where µ = α
2 . ν = β

2 and the similar formula takes place for cosh lβ
2 . By the Schläfli

formula for V = V (α, β) = V ol 62
2(α, β) we get

dV = − lα
2

dα− lβ
2

dβ. (2.3.2)

Choose a path of integration γ to be a segment with terminal points (α, β) and
(α∗, β), where (α∗, β) ∈ Re and note that 62

2(α
∗, β) is the Euclidean cone–manifold.

Along the path γ we have β ≡ const and (2.3.2) reduces to dV = − lα
2 dα. By

Theorem 7.1.2 in [Kj] we obtain V (α, β) → 0 as α → α∗. Hence by (2.3.1)

V (α, β) =
∫ α

α∗
− lα

2
dα =

∫ α∗

α

E(
α

2
,
β

2
)dα,

where E(µ, ν) is the same as in the statement of the theorem.

Corollary 2.3.2.The figure eight cone–manifold 41(α) is hyperbolic for 0 ≤
α < 2π

3 . The hyperbolic volume of 41(α) is given by the formula

V ol 41(α) =
∫ 2π

3

α

arcosh (1 + cos t− cos 2t)dt.

11



Proof. We have 2E(α
2 , π

2 ) = arcosh (1+cosα−cos 2α) and V (α, π) =
∫ 2π

3
α

E(α
2 , π

2 )dα.

Since the figure eight cone–manifold 41(α) is two-fold covering of V (α, π), by Propo-
sition 1.3.1 it is hyperbolic for 0 ≤ α < 2π

3 . We get

V ol 41(α) = 2V (α, π) =
∫ 2π

3

α

arcosh (1 + cos t− cos 2t)dt.

We remark that equivalent but more complicated formulas for V ol 41(α) were
obtained in [HLM3], [MV], and [Kj].

Corollary 2.3.3.The hyperbolic volume of the Borromean rings cone–manifold
B(α, α, α), 0 ≤ α < π is given by the formula

V ol B(α, α, α) = 12
∫ cos α

2

0

arcosh
u +

√
4− 3u2

2
du√

1− u2
.

Proof is based on the fact that B(α, α, α) is the three-fold covering of the cone–
manifold 62

2(α, 2π
3 ) and on equality E(α

2 , 2π
3 ) = 2 arcosh u+

√
4−3u2

2 , where u = cos α
2 .

It was noted in the subsection 1.4 that the volume of the hyperbolic cone–
manifold B(α, β, γ), 0 ≤ α, β, γ < π is eight times the volume of the Lambert
cube L(α

2 , β
2 , γ

2 ). Hence, according to [K], V ol B(α, β, γ) can be obtain as a linear
combination of eight Lobachevsky functions. The analoges of Theorem 2.3.1 and
its corollaries can be obtained also in the spherical geometry. We restrict ourself by
the statement of a spherical analog of the Corollary 2.3.2 ([MR2]).

Theorem 2.3.4. The figure eight cone–manifold 41(α) is spherical for 2π
3 <

α < 4π
3 . The spherical volume of 41(α) is given by the formula

V ol 41(α) =
∫ α

2π
3

arccos (1 + cos t− cos 2t)dt,
2π

3
< α ≤ π

and

V ol 41(α) = 2π(α− 0.9π)−
∫ α

π

arccos (1 + cos t− cos 2t)dt, π < α <
4π

3
.

Earlier [HLM3] the existence of the spherical structure on 41(α) was established
only for 2π

3 < α ≤ π.

3. Geometrical inequalities
As above denote by V (α) and l(α) the volume and the singular geodesic length of

the figure eight cone–manifold 41(α). It follows from Theorem 2.3.4 and Corallary
2.3.2 (see also [HLM3]) that V (α) → 0 as α → 2π

3 ± 0. Hence ”the Euclidean”
volume V ( 2π

3 ) = 0. Certainly, this contradicts the geometric intuition. To avoid
this phenomenon we introduce the notion of specific volume v(α). By definition

12



v(α) = V (α)
l3(α) . In particular, in the Euclidean case for α = α0 = 2π

3 we get from
[MR1]

v0 = v(α0) =
√

3
108

.

Explicit volume formulas obtained in Section 2 ensure that the specific volume
function v(α) is continuous for all 0 < α < 4π

3 .

Theorem 3.1.Let 41(α) be the figure eight cone–manifold with cone angle α.

Denote by V (α) the volume and by l(α) the length of the singular geodesic of 41(α).
Then

(i) V (α) > v0 l3(α), if 0 < α < α0 =
2π

3
(hyperbolic case)

(ii) V (α) = v0 l3(α), if α = α0 (Euclidean case)

(iii) V (α) < v0 l3(α), if α0 < α < 2α0 (spherical case),

where v0 =
√

3
108 is the specific volume of 41(α0).

Proof. Case (ii) immediately follows from the definition of v0 = v(α0).
To prove (i) we will show that

(V (α)− v0 l3(α))′ < 0, 0 < α < α0.

Since l(α) > 0 and by the Schläfli formula V ′(α) = − 1
2 l(α), the last inequality

is equivalent to
1 + 6v0 l(α)l′(α) > 0, 0 < α < α0.

By Corollary 2.3.2 we have l(α) = 2 arcosh (1+cos α−cos 2α), and the inequality
is verified by straightforward calculation.

In case (iii) we need to prove

(V (α)− v0 l(α))′ > 0, α0 < α < 2α0.

By the Schläfli formula and Proposition 2.3.4 we have

V ′(α) =
1
2
l(α) = arccosh (1 + cos α− cos 2α).

Again, the inequality is a routine consiquence of these formulas.

The next theorem can be proved by similar arguments.

Theorem 3.2.The Borromean rings cone–manifold B(α, α, α) is hyperbolic for
0 < α < π, Euclidean for α = π, and spherical for π < α < 2π. Denote by V (α) the
volume and by L(α) the half length of a singular geodesic of B(α, α, α). Then

(i) V (α) > L3(α), 0 < α < π

13



(ii) V (α) = L3(α), α = π

(iii) V (α) < L3(α), π < α < 2π.

Different arguments are needed to obtain the following result

Theorem 3.3. Let B(α, β, γ), 0 < α, β, γ < π be a hyperbolic Borromean
rings cone–manifold. Denote by V (α, β, γ) the volume and by L(α), L(β), L(γ) half
lengths of singular geodesics of B(α, β, γ) with cone angles α, β, γ respectively. Then

V (0, 0, 0) > V (α, β, γ) > L(α)L(β)L(γ).

Proof. In 1928 Grötsch [G] has proved the following theorem: Let S be the con-
formal image of a square and let A,B, C, D be the images of the sides of the square
traversed in a clockwise direction. Suppose the distance between the ”opposite” sides
A and C of S is a, and between B and D is b. Then the area of S can be no smaller
then ab.

The n−dimensional analog of the Grötsch theorem for an arbitrary Riemannian
metric was obtained in ([BZ], Theorem 8.2.1). In particular, it follows from [BZ] that
hyperbolic volume of the Lambert cube L(α

2 , β
2 , γ

2 ) with essential edges Lα, Lβ , Lγ

satisfies the inequality

V ol L(
α

2
,
β

2
,
γ

2
) > LαLβLγ . (3.1)

In the Euclidean case α = β = γ = π we get the equality V ol L(π
2 , π

2 , π
2 ) = L3

π.

Since by the Schläfli theorem ∂
∂αV (α, β, γ) = −L(α) < 0, 0 < α < π, the upper

bound V (α, β, γ) < V (0, 0, 0) is established. We recall from section 2.4 that

V (α, β, γ) = 8 V ol L(
α

2
,
β

2
,
γ

2
), Lα = 2L(α), Lβ = 2L(β), Lγ = 2L(γ).

Hence, the lower bound follows from inequalty (3.1).

No doubt the spherical analog of the theorem takes place too. It will be obtain
anywhere more.

Remark 3.4.We note that the length L(α) in Theorem 3.2 is bounded above
by log 3. The equality L(α) = log 3 holds for cos α = − 1

3 . Contrary, the length L(α)
in Theorem 3.3 is unbounded. More precisely, L(α) → +∞, L(β) → 0, L(γ) → 0
as α → π

2 , β → 0, γ → 0. The proof of these properties immediately follows from
the Tangent Rule (Theorem 1.4.1).
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