On the volume of symmetric tetrahedron ${ }^{1}$

D.A. Derevnin, A.D. Mednykh, M.G. Pashkevich

Abstract

An elementary formula is obtained for the volume of symmetric tetrahedron in hyperbolic and spherical spaces.

Mathematical Subject Classification: 30F40, 51M10, 57M50 Key words: hyperbolic tetrahedron, spherical tetrahedron, volume formula, Gram matrix

1 Introduction

The calculation of volume of polyhedron is very old and difficult problem. A few years ago it was shown by I.H. Sabitov [Sb] that the volume of Euclidean polyhedron is a root of algebraic equation whose coefficient are function combinatorial type and lengths of polyhedra. In hyperbolic and spherical spaces the situation is march more complicated. Since Lobachevsky and Schläfli (see [L] and [Sh] respectively) the volume formula for biorthogonal tetrahedron (orthoscheme) is know. The volume of the Lambert cube and some other polyhedron were calculated by R. Kellerhals [K], D. A. Derevnin, A. D. Mednykh [DM], A. D. Mednykh, J. Parker, A. Yu. Vesnin [MPV] and other. The volume of regular polyhedron was obtained by G. Martin $[M]$. The volume of ideal hyperbolic polyhedron in many important particular cases was found by E. Vinberg [V].

The volume formula for arbitrary hyperbolic and spherical tetrahedron for a long time was unknown. Some attempt to obtain such a formula contains in $\mathrm{Wu}-$ Yi Hsiang [H]. Just recently simple volume formula for tetrahedron was obtained by Yu. Cho, H. Kim [ChK] and J. Murakami, U. Yano [MY]. Easy proof for this formula which covers also the volume of truncated tetrahedron can be find in A. Ushijima [U].

The aim of this paper is to find an elementary formula for volume of symmetric tetrahedron both in hyperbolic and spherical spaces.

[^0]
2 Preliminary results

Denote by \mathbb{X}^{n} the Euclidean, hyperbolic or spherical n-space. Let compact tetrahedron $T=(A, B, C, D, E, F) \in \mathbb{X}^{3}$ have vertices $v_{1}, v_{2}, v_{3}, v_{4}$ and dihedral angles A, B, C, D, E, F with edge lengths $l_{A}, l_{B}, l_{C}, l_{D}, l_{E}, l_{F}$ respectively (see Fig. 1).

Figure 1: The tetrahedron T
We will call tetrahedron T symmetric if $A=D, B=E, C=F$.
Our calculation of volume of tetrahedron can be based on the following Schläfli formula (see, for instance [Sh], [Hd], [K]).

Theorem 1 (The Schläfli volume formula). Let compact simplex $S \in \mathbb{X}^{n}$ ($n \geq 2$) have vertices P_{1}, \ldots, P_{n+1} and dihedral angles $\alpha_{j k}=\angle\left(S_{j}, S_{k}\right), 1 \leq j<$ $k \leq n+1$, of order $n-1$ formed by the faces S_{j}, S_{k} of S with apex $S_{j k}:=S_{j} \cap S_{k}$. Then the differential of the volume function V_{n} on the set of all simplices in \mathbb{X}^{n} can be represented by

$$
K d V_{n}(S)=\frac{1}{n-1} \sum_{\substack{j, k=1 \\ j<k}}^{n+1} V_{n-2}\left(S_{j k}\right) d \alpha_{j k} \quad\left(V_{o}\left(S_{j k}\right):=1\right)
$$

where K is the curvature of \mathbb{X}^{n}.

In the present paper we set $K=-1$ for hyperbolic space and $K=1$ for spherical space. The Schläfli formula for hyperbolic and spherical 3 -spaces can be reduced to

$$
K d V=\frac{1}{2} \sum_{\substack{j, k=1 \\ j<k}}^{4} l_{j k} d \alpha_{j k}
$$

where $l_{j k}$ are the lengths of the correspondent edges of S.

3 The volume of hyperbolic tetrahedron

Let T be a hyperbolic tetrahedron. Denote by

$$
G=\left\langle-\cos \alpha_{i j}\right\rangle_{i, j=1,2,3,4}=\left(\begin{array}{cccc}
1 & -\cos A & -\cos B & -\cos F \\
-\cos A & 1 & -\cos C & -\cos E \\
-\cos B & -\cos C & 1 & -\cos D \\
-\cos F & -\cos E & -\cos D & 1
\end{array}\right)
$$

the Gram matrix of T and by $H=\left\langle c_{i j}\right\rangle_{i, j=1,2,3,4}$ the associated with G matrix form by $c_{i j}=(-1)^{i+j} M_{i j}$, where $M_{i j}$ is $(i, j)-$ th minor of G. Following arguments by A. Ushijima [U] we obtain

Proposition 1. Let T be a proper hyperbolic tetrahedron. Then
(i) $\operatorname{det} G<0$
(ii) $c_{i i}>0, i=1,2,3,4$
(iii) $\frac{\sin A}{\sinh l_{A}}=\frac{\sqrt{c_{33} C_{44}}}{\sqrt{-\operatorname{det} G}}$

As an immediate consequence of this proposition we have the following result
Proposition 2. Let T be a proper hyperbolic tetrahedron. Then

$$
\begin{equation*}
\frac{\sin A \sin D}{\sinh l_{A} \sinh l_{D}}=\frac{\sin B \sin E}{\sinh l_{B} \sinh l_{E}}=\frac{\sin C \sin F}{\sinh l_{C} \sinh l_{F}}=\frac{\sqrt{P}}{\Delta} \tag{3.2}
\end{equation*}
$$

where $P=c_{11} c_{22} c_{33} c_{44}$ and $\Delta=-\operatorname{det} G$
From now on we suppose that the tetrahedron T is symmetric. By direct straightforward calculation we obtain $c_{11}=c_{22}=c_{33}=c_{44}=\gamma$, where

$$
\begin{equation*}
\gamma=1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C-2 \cos A \cos B \cos C . \tag{3.3}
\end{equation*}
$$

And also

$$
\begin{equation*}
\Delta=-\operatorname{det} G=(1-a+b+c)(1+a-b+c)(1+a+b-c)(-1+a+b+c) \tag{3.4}
\end{equation*}
$$

where $a=\cos A, b=\cos B, c=\cos C$.
Putting this calculations into Proposition 2 we have
Proposition 3 (The Sine Rule). Let T be a symmetric hyperbolic tetrahedron. Then

$$
\begin{equation*}
\frac{\sin A}{\sinh l_{A}}=\frac{\sin B}{\sinh l_{B}}=\frac{\sin C}{\sinh l_{C}}=u \tag{3.5}
\end{equation*}
$$

where $u=\frac{\gamma}{\sqrt{\Delta}}$ and γ, Δ are defined by (3.3) and (3.4) respectively.
We note the following useful identity

$$
\begin{equation*}
u^{2}+1=\frac{4(\cos A+\cos B \cos C)(\cos B+\cos A \cos C)(\cos C+\cos B \cos A)}{\Delta} . \tag{3.6}
\end{equation*}
$$

The following lemma can be obtained by elementary calculations
Lemma 1. Let t is defined by equality

$$
\begin{equation*}
t^{2}=\frac{4(a+b c)(b+a c)(c+a b)}{(1-a+b+c)(1+a-b+c)(1+a+b-c)(-1+a+b+c)} \tag{3.7}
\end{equation*}
$$

where $a=\cos A, b=\cos B, c=\cos C$ and A, B, C are the dihedral angles of a symmetric hyperbolic tetrahedron T. Then

$$
\begin{equation*}
\arcsin \frac{a}{t}+\arcsin \frac{b}{t}+\arcsin \frac{c}{t}=\arcsin \frac{1}{t} . \tag{3.8}
\end{equation*}
$$

Proof. Notice first that from (3.6) follows $t^{2}=u^{2}+1>1$. Show that t defined by equality (3.7) satisfies to equality (3.8). By the basic formula

$$
\arcsin (x \pm y)=\arcsin \left(x \sqrt{1-y^{2}} \pm y \sqrt{1-x^{2}}\right)
$$

we transform (3.8) to

$$
\arcsin \left(\frac{a}{t} \sqrt{1-\frac{b^{2}}{t^{2}}}+\frac{b}{t} \sqrt{1-\frac{a^{2}}{t^{2}}}\right)=\arcsin \left(\frac{1}{t} \sqrt{1-\frac{c^{2}}{t^{2}}}-\frac{c}{t} \sqrt{1-\frac{1}{t^{2}}}\right)
$$

Hence, (3.8) is equivalent to

$$
\begin{equation*}
a \sqrt{t^{2}-b^{2}}+b \sqrt{t^{2}-a^{2}}=\sqrt{t^{2}-c^{2}}-c \sqrt{t^{2}-1} \tag{3.9}
\end{equation*}
$$

From the other side the straightforward calculation shows that (3.7) implies

$$
\begin{aligned}
t^{2}-a^{2} & =\frac{\left(a\left(1-a^{2}+b^{2}+c^{2}\right)+2 b c\right)^{2}}{\Delta} \\
t^{2}-b^{2} & =\frac{\left(b\left(1-b^{2}+a^{2}+c^{2}\right)+2 a c\right)^{2}}{\Delta} \\
t^{2}-c^{2} & =\frac{\left(c\left(1-c^{2}+a^{2}+b^{2}\right)+2 a b\right)^{2}}{\Delta} \\
t^{2}-1 & =\frac{\left(1-a^{2}-b^{2}-c^{2}-2 a b c\right)^{2}}{\Delta}
\end{aligned}
$$

By (3.1) (ii) we have

$$
1-a^{2}-b^{2}-c^{2}-2 a b c=c_{11}>0
$$

and it is not difficult to see that

$$
\begin{align*}
& \sqrt{t^{2}-a^{2}}=\frac{a\left(1-a^{2}+b^{2}+c^{2}\right)+2 b c}{\sqrt{\Delta}} \\
& \sqrt{t^{2}-b^{2}}=\frac{b\left(1-b^{2}+a^{2}+c^{2}\right)+2 a c}{\sqrt{\Delta}} \tag{3.10}\\
& \sqrt{t^{2}-c^{2}}=\frac{c\left(1-c^{2}+a^{2}+b^{2}\right)+2 a b}{\sqrt{\Delta}} \\
& \sqrt{t^{2}-1}=\frac{1-a^{2}-b^{2}-c^{2}-2 a b c}{\sqrt{\Delta}}
\end{align*}
$$

Substituting (3.10) into (3.9) we have the identity.
Let T be a symmetric hyperbolic tetrahedron. Denote by $V=V(A, B, C)$ the hyperbolic volume of T. Since $A=D, B=E, C=F, l_{A}=l_{D}, l_{B}=l_{E}, l_{C}=l_{F}$, by Theorem 1 we have

$$
\begin{equation*}
d V=-l_{A} d A-l_{B} d B-l_{C} d C \tag{3.11}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\frac{\partial V}{\partial A}=-l_{A}, \quad \frac{\partial V}{\partial B}=-l_{B}, \quad \frac{\partial V}{\partial C}=-l_{C} \tag{3.12}
\end{equation*}
$$

We note that if $A, B, C \rightarrow \arccos \frac{1}{3}$ then T is going to regular Euclidean tetrahedron. In this case $\Delta \rightarrow 0$ and $u \rightarrow+\infty$. By the Sine Rule, $l_{A}, l_{B}, l_{C} \rightarrow 0$ and, consequently $V \rightarrow 0$. So, we have

$$
\begin{equation*}
V\left(\arccos \frac{1}{3}, \arccos \frac{1}{3}, \arccos \frac{1}{3}\right)=0 . \tag{3.13}
\end{equation*}
$$

Now we are able to prove the following

Theorem 2. Let T be a symmetric hyperbolic tetrahedron whose dihedral angles corresponding to pairs of opposite edge are A, B, C. The hyperbolic volume of T is given by the formula

$$
\begin{aligned}
V= & \int_{u}^{+\infty}\left(\arcsin \frac{\cos A}{\sqrt{\nu^{2}+1}}+\arcsin \frac{\cos B}{\sqrt{\nu^{2}+1}}+\arcsin \frac{\cos C}{\sqrt{\nu^{2}+1}}-\right. \\
& \left.\arcsin \frac{1}{\sqrt{\nu^{2}+1}}\right) \frac{d \nu}{\nu}
\end{aligned}
$$

where $u=\frac{1-a^{2}-b^{2}-c^{2}-2 a b c}{\sqrt{(1-a+b+c)(1+a-b+c)(1+a+b-c)(-1+a+b+c)}}$,

$$
a=\cos A, \quad b=\cos B, \quad c=\cos C .
$$

Proof. We set
$F(A, B, C, \nu)=\arcsin \frac{a}{\sqrt{\nu^{2}+1}}+\arcsin \frac{b}{\sqrt{\nu^{2}+1}}+\arcsin \frac{c}{\sqrt{\nu^{2}+1}}-\arcsin \frac{1}{\sqrt{\nu^{2}+1}}$
and $\widetilde{V}(A, B, C)=\int_{u}^{+\infty} F(A, B, C, \nu) d \nu$. To prove the theorem is sufficient to show that \widetilde{V} satisfies (3.12) with initial data (3.13). By the Leibnitz Rule we have

$$
\begin{equation*}
\frac{\partial \widetilde{V}}{\partial A}=-F(A, B, C, u) \frac{\partial u}{\partial A}+\int_{u}^{+\infty} \frac{\partial F(A, B, C, \nu)}{\partial A} d \nu \tag{3.15}
\end{equation*}
$$

For $t^{2}=u^{2}+1$ in (3.6) by Lemma 1 we have $F(A, B, C, u)=0$. Hence, taking into account that $\frac{\partial F(A, B, C, u)}{\partial A}=\frac{\sin A}{u \sqrt{u^{2}+\sin ^{2} A}}$ and by the Sine Rule $l_{A}=\operatorname{arcsinh} \frac{\sin A}{u}$ we obtain

$$
\begin{equation*}
\frac{\partial \widetilde{V}}{\partial A}=\int_{u}^{+\infty} \frac{\partial F(A, B, C, \nu)}{\partial A} d \nu=\int_{u}^{+\infty} \frac{\sin A}{\nu \sqrt{\nu^{2}+\sin ^{2} A}} d \nu=-l_{A} \tag{3.16}
\end{equation*}
$$

The equalities

$$
\begin{equation*}
\frac{\partial \widetilde{V}}{\partial B}=-l_{B}, \quad \frac{\partial \widetilde{V}}{\partial C}=-l_{C} \tag{3.17}
\end{equation*}
$$

can be obtained by the similar way. Let $A, B, C \rightarrow \arccos \frac{1}{3}$, then $u \rightarrow+\infty$ and the relation

$$
\begin{equation*}
\widetilde{V}\left(\arccos \frac{1}{3}, \arccos \frac{1}{3}, \arccos \frac{1}{3}\right)=0 \tag{3.18}
\end{equation*}
$$

follows from the convergence of integral $\int_{u}^{+\infty} F(A, B, C, \nu) d \nu$.

Substituting $\nu=\tan t$ in the above proposition we have
Theorem 3. Let T be a symmetric hyperbolic tetrahedron whose dihedral angles corresponding to pairs of opposite edge are A, B, C. Then the hyperbolic volume of T is given by the formula
$2 \int_{\theta}^{\frac{\pi}{2}}(\arcsin (\cos A \cos t)+\arcsin (\cos B \cos t)+\arcsin (\cos C \cos t)-\arcsin (\cos t)) \frac{d t}{\sin 2 t}$
where $\theta \in\left[0, \frac{\pi}{2}\right]$, is defined by

$$
\begin{gathered}
\tan ^{2} \theta=\frac{1-a^{2}-b^{2}-c^{2}-2 a b c}{\sqrt{(1-a+b+c)(1+a-b+c)(1+a+b-c)(-1+a+b+c)}}, \\
a=\cos A, \quad b=\cos B, \quad c=\cos C .
\end{gathered}
$$

The obtained result numerically coincides with a result obtained early by Yu. Cho, H. Kim [ChK] and can be expressed in term of the Lobachevsky function $\Lambda(x)=-\int_{0}^{x} \ln |2 \sin \xi| d \xi$.

4 The volume of spherical tetrahedron

Let T be a spherical tetrahedron with Gram matrix

$$
G=\left\langle-\cos \alpha_{i j}\right\rangle_{i, j=1,2,3,4}=\left(\begin{array}{cccc}
1 & -\cos A & -\cos B & -\cos F \\
-\cos A & 1 & -\cos C & -\cos E \\
-\cos B & -\cos C & 1 & -\cos D \\
-\cos F & -\cos E & -\cos D & 1
\end{array}\right)
$$

and associated matrix $H=\left\langle c_{i j}\right\rangle_{i, j=1,2,3,4}$. The next proposition essentially follows from [L].

Proposition 4. Let T be a spherical tetrahedron. Then
(i) $\operatorname{det} G>0$
(ii) $c_{i i}>0, i=1,2,3,4$
(iii) $\frac{\sin A}{\sin l_{A}}=\frac{\sqrt{c_{33} c_{44}}}{\sqrt{\operatorname{det} G}}$

Proof. Conditions (i) and (ii) follows from existence of spherical tetrahedron whose Gram matrix is G (see [L], [V]). To prove (iii) we used the following assertion due to Jacobi ([P], Theorem 2.5.1, p.12).

Lemma 2 (Jacobi). Let $A=\left\langle a_{i j}\right\rangle_{i, j=1, \ldots, n}$ be a matrix and $\Delta=\operatorname{det} A$ is determinant of A. Denote by $C=\left\langle c_{i j}\right\rangle_{i, j=1, \ldots, n}$ the matrix formed by elements $c_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}$, where $A_{i j}$ is $(n-1) \times(n-1)$ minor obtained by removing $i-t h$ line and $j-$ th column of the matrix A. Then for any $k, 1 \leq k \leq n-1$ we have

$$
\begin{equation*}
\operatorname{det}\left\langle c_{i j}\right\rangle_{i, j=1, \ldots, k}=\Delta^{k-1} \operatorname{det}\left\langle a_{i j}\right\rangle_{i, j=k+1, \ldots, n} \tag{4.21}
\end{equation*}
$$

By applying Lemma 2 to matrices G and H for $k=2$ we obtain $1-\cos ^{2} A=$ $\operatorname{det} G\left(c_{33} c_{44}-c_{34}^{2}\right)$. Since $\cos l_{A}=\frac{c_{34}}{\sqrt{c_{33} c_{44}}}$, the relation (iii) follows (compare A. Ushijima [U]).

As a consequence of Proposition 4 similar to hyperbolic case we have
Proposition 5. Let T be a spherical tetrahedron. Then

$$
\begin{equation*}
\frac{\sin A \sin D}{\sin l_{A} \sin l_{D}}=\frac{\sin B \sin E}{\sin l_{B} \sin l_{E}}=\frac{\sin C \sin F}{\sin l_{C} \sin l_{F}}=\frac{\sqrt{P}}{\operatorname{det} G} \tag{4.22}
\end{equation*}
$$

where $P=c_{11} c_{22} c_{33} c_{44}$.
Now we apply the obtained result to symmetric tetrahedron.
Proposition 6 (The Sine Rule). Let $T=T(A, B, C, A, B, C)$ be a symmetric spherical tetrahedron. Then

$$
\begin{equation*}
\frac{\sin A}{\sin l_{A}}=\frac{\sin B}{\sin l_{B}}=\frac{\sin C}{\sin l_{C}}=v \tag{4.23}
\end{equation*}
$$

where $v=\frac{\gamma}{\sqrt{\Delta}}$,

$$
\begin{gathered}
\gamma=c_{11}=c_{22}=c_{33}=c_{44}=1-\cos ^{2} A-\cos ^{2} B-\cos ^{2} C-2 \cos A \cos B \cos C, \\
\Delta=\operatorname{det} G=(1-a+b+c)(1+a-b+c)(1+a+b-c)(1-a-b-c),
\end{gathered}
$$

and $a=\cos A, \quad b=\cos B, \quad c=\cos C$.
We note also that

$$
\begin{equation*}
v^{2}-1=\frac{4(a+b c)(b+a c)(c+a b)}{\Delta} \tag{4.24}
\end{equation*}
$$

The following lemma can be obtained by the same arguments as Lemma 2

Lemma 3. Let p is defined by equality

$$
p^{2}=\frac{4(a+b c)(b+a c)(c+a b)}{(1-a+b+c)(1+a-b+c)(1+a+b-c)(1-a-b-c)} .
$$

where $a=\cos A, b=\cos B, c=\cos C$ and A, B, C are the dihedral angles of a symmetric spherical tetrahedron T. Then

$$
\operatorname{arcsinh} \frac{a}{p}+\operatorname{arcsinh} \frac{b}{p}+\operatorname{arcsinh} \frac{c}{p}=\operatorname{arcsinh} \frac{1}{p} .
$$

Denote by $V=V(A, B, C)$ the spherical volume of tetrahedron $T(A, B, C, A, B, C)$. Then by Theorem 1 (The Schläfli volume formula) we have

$$
d V=l_{A} d A+l_{B} d B+l_{C} d C
$$

Hence

$$
\begin{equation*}
\frac{\partial V}{\partial A}=l_{A}, \quad \frac{\partial V}{\partial B}=l_{B}, \quad \frac{\partial V}{\partial C}=l_{C} \tag{4.25}
\end{equation*}
$$

As in hyperbolic case we note that T collapsed to a point as $\Delta \rightarrow 0$ or $V \rightarrow+\infty$. In particular for $A, B, C \rightarrow \arccos \frac{1}{3}$, we obtain

$$
\begin{equation*}
V\left(\arccos \frac{1}{3}, \arccos \frac{1}{3}, \arccos \frac{1}{3}\right)=0 \tag{4.26}
\end{equation*}
$$

Theorem 4. Let $T=T(A, B, C, A, B, C)$ be a symmetric spherical tetrahedron whose dihedral angled corresponding to pairs of opposite edges are A, B, C. Then the spherical volume of T is given by the formula

$$
\begin{gathered}
V=-\int_{v}^{+\infty}\left(\operatorname{arcsinh} \frac{\cos A}{\sqrt{\nu^{2}-1}}+\operatorname{arcsinh} \frac{\cos B}{\sqrt{\nu^{2}-1}}+\right. \\
\left.\operatorname{arcsinh} \frac{\cos C}{\sqrt{\nu^{2}-1}}-\operatorname{arcsinh} \frac{1}{\sqrt{\nu^{2}-1}}\right) \frac{d \nu}{\nu}, \\
\text { where } v=\frac{1-a^{2}-b^{2}-c^{2}-2 a b c}{\sqrt{(1-a+b+c)(1+a-b+c)(1+a+b-c)(1-a-b-c)}}, \\
a=\cos A, \quad b=\cos B, \quad c=\cos C .
\end{gathered}
$$

Proof. We set $\widetilde{V}(A, B, C)=-\int_{v}^{+\infty} \hat{F}(A, B, C, \nu) d \nu$, where
$\hat{F}(A, B, C, \nu)=\operatorname{arcsinh} \frac{\cos A}{\sqrt{\nu^{2}-1}}+\operatorname{arcsinh} \frac{\cos B}{\sqrt{\nu^{2}-1}}+\operatorname{arcsinh} \frac{\cos C}{\sqrt{\nu^{2}-1}}-\operatorname{arcsinh} \frac{1}{\sqrt{\nu^{2}-1}}$.

We have to show that \widetilde{V} satisfy (4.25) and (4.26). Then we have $\widetilde{V}(A, B, C)=$ $V(A, B, C)$ By the Leibnitz Rule

$$
\frac{\partial \widetilde{V}}{\partial A}=\hat{F}(A, B, C, v) \frac{\partial v}{\partial A}-\int_{v}^{+\infty} \frac{\partial \hat{F}(A, B, C, \nu)}{\partial A} d \nu
$$

By Lemma 3 for $p^{2}=v^{2}-1$ we have $\hat{F}(A, B, C, v)=0$.
Since

$$
\frac{\partial \hat{F}(A, B, C, \nu)}{\partial A}=\frac{-\sin A}{\nu \sqrt{\nu^{2}-\sin ^{2} A}}
$$

and, by the Sine Rule

$$
l_{A}=\arcsin \frac{\sin A}{v}
$$

we obtain

$$
\begin{equation*}
\frac{\partial \widetilde{V}}{\partial A}=-\int_{v}^{+\infty} \frac{\partial \hat{F}(A, B, C, \nu)}{\partial A} d \nu=\int_{v}^{+\infty} \frac{\sin A}{\nu \sqrt{\nu^{2}+\sin ^{2} A}} d \nu=l_{A} \tag{4.28}
\end{equation*}
$$

The equalities

$$
\frac{\partial \widetilde{V}}{\partial B}=l_{B}, \quad \frac{\partial \widetilde{V}}{\partial C}=l_{C}
$$

can be obtained by the similar way. In the case $A, B, C \rightarrow \arccos \frac{1}{3}$, we have $v \rightarrow$ $+\infty$. The relation $\tilde{V}\left(\arccos \frac{1}{3}, \arccos \frac{1}{3}, \arccos \frac{1}{3}\right)=0$ follows from the convergence of the integral $\int_{v}^{+\infty} \hat{F}(A, B, C, \nu) d \nu$.
Corollary 1. Let $T=T(A, B, C, A, B, C)$ be a symmetric spherical tetrahedron. Suppose that $\pi-A, \pi-B$ and $\pi-C$ are sides of a right angled spherical triangle, that is one of the three conditions $\cos A+\cos B \cos C=0, \quad \cos B+\cos A \cos C=0$ or $\cos C+\cos B \cos A=0$ is satisfied. Then the spherical volume of T is equal to

$$
\frac{A^{2}+B^{2}+C^{2}}{2}-\frac{\pi^{2}}{4}
$$

Proof. Since the spherical space \mathbb{S}^{3} is tessellated by sixteen copies of tetrahedron $T=T\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)$ we have $V\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)=\frac{1}{16} \operatorname{Vol}\left(\mathbb{S}^{3}\right)=\frac{\pi^{2}}{8}$. Hence, by Theorem 4 we get

$$
\begin{equation*}
V\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)=\int_{1}^{+\infty} \operatorname{arcsinh} \frac{1}{\sqrt{\nu^{2}-1}} \frac{d \nu}{\nu}=\frac{\pi^{2}}{8} \tag{4.29}
\end{equation*}
$$

Suppose that A, B, C satisfying the condition of the theorem. Then, by (4.24), $v^{2}-1=0$. Hence $v=1$.

Lemma 4.

$$
I(A)=-\int_{1}^{+\infty} \operatorname{arcsinh} \frac{\cos A}{\sqrt{\nu^{2}-1}} \frac{d \nu}{\nu}=\frac{A^{2}}{2}-\frac{\pi^{2}}{8}, 0 \leq A \leq \frac{\pi}{2} .
$$

Proof. Indeed,

$$
I^{\prime}(A)=\int_{1}^{+\infty} \frac{\sin A}{\sqrt{1+\frac{\cos ^{2} A}{\nu^{2}-1}}} \frac{d \nu}{\nu \sqrt{\nu^{2}-1}}=\int_{1}^{+\infty} \frac{\sin A}{\sqrt{\nu^{2}-\sin ^{2} A}} \frac{d \nu}{\nu}=A
$$

and, verified by (4.29), $I(0)=-\frac{\pi^{2}}{8}$. Hence $I(A)=\frac{A^{2}}{2}-\frac{\pi^{2}}{8}$.
By Theorem 4 we obtain $V(A, B, C)=I(A)+I(B)+I(C)-I(0)=\frac{A^{2}+B^{2}+C^{2}}{2}-$ $\frac{\pi^{2}}{4}$.

Substituting $\nu=\operatorname{coth} t$ in the statement of Theorem 4 we obtain
Theorem 5. Let $T=T(A, B, C, A, B, C)$ be a symmetric spherical tetrahedron whose dihedral angles corresponding to pairs of opposite edges are A, B, C. Then the spherical volume of T is given by the formula

$$
\begin{equation*}
-2 \int_{0}^{\tau}(\operatorname{arcsinh}(\cos A \sinh t)+\operatorname{arcsinh}(\cos B \sinh t)+\operatorname{arcsinh}(\cos C \sinh t)-t) \frac{d t}{\sinh 2 t} \tag{4.30}
\end{equation*}
$$

where τ is a positive number defined by

$$
\begin{gathered}
\operatorname{coth}^{2} \tau=\frac{1-a^{2}-b^{2}-c^{2}-2 a b c}{\sqrt{(1-a+b+c)(1+a-b+c)(1+a+b-c)(1-a-b-c)}}, \\
a=\cos A, \quad b=\cos B, \quad c=\cos C .
\end{gathered}
$$

References

[Sb] I. H. Sabitov, The volume of polyhedron as a function of the lengths of its edges. (Russian) Vestnik Moskov. Univ. Ser. I (Mat. Mekh.), 6, 1996, 8991,113: English translation in: Moskow Univ. Math. Bull. 51(6), 1996, 58-59.
[M] G J. Martin, The volume of regular tetrahedra and sphere packings in hyperbolic 3-space, Math. Chronicle, 20, 1991, 127-147.
[P] V. V. Prasolov, Problems and theorems in linear algebra, Translations of mathematical monographs, 134, Amer. Math. Soc., Providence, RI, 1994, 225 pp.
[MPV] A. D. Mednykh, J. Parker, A. Yu. Vesnin, On Hyperbolic Polyhedra Arising as Convex Cores of Quasi-Fuchsian Punctured Torus Groups, Seoul National University, 2002, RIM-GARC Preprint Series 02-01, 33 pp.
[ChK] Yu. Cho, H. Kim, On the volume formula for hyperbolic tetrahedra, Discrete and Computational Geometry, 22, 1999, p.347-366.
[DM] D. A. Derevnin, A. D. Mednykh, On the volume of spherical Lambert cube, arXiv: math.MG/0212301, 22pp.
[K] R. Kellerhals, On the volume of hyperbolic polyhedra, Math.Ann., 285, 1989, p.541-569.
[H] Wu-Yi Hsiang, On infinitesimal symmetrization and volume formula for spherical or hyperbolic tetrahedrons, Quart.J.Math, Oxford, Second Series 39, 1988, p.463-468.
[MY] J. Murakami and M. Yano, On the volume of hyperbolic tetrahedron, Preprint, 2001, available at http://faculty.web.waseda.ac.jp/murakami/papers/tetrahedronrev3.pdf.
[U] A. Ushijima, A volume formula for generalized hyperbolic tetrahedra, Preprint, 2002, available at http://www.math.titech.ac.jp/Users/ushijima/welcome-e.html.
[Sh] L. Schläfli, Theorie der vielfachen Kontinuität, In: Gesammelte mathematishe Abhandlungen, Basel: Birkhäuser, 1950.
[Lb] N. I. Lobatschefskij, Imaginäre Geometrie und ihre Anwendung auf einige Integrale, Deutsche Übersetzung von H.Liebmann, Leipzig: Teubner, 1904.
[Hd] C. D. Hodgson, Schläfli revisited: Variation of volume in constant curvature spaces, Preprint.
[L] F. Luo, On a problem of Fenchel, Geometriae Dedicata, 64, 1997, p.227-282.
[V] E. B. Vinberg, Geometry II, New York: Springer-Verlag, 1993.

Authors addresses:
A.D. Mednykh

Sobolev Institute of Mathematics,
Novosibirsk State University,
Novosibirsk, 630090, Russia
mednykh@math.nsc.ru
D.A. Derevnin

Novosibirsk State University, Novosibirsk, 630090, Russia
derevnin@math.nsc.ru
M.G. Pashkevich

Novosibirsk State University, Novosibirsk, 630090, Russia marinap@math.nsc.ru

[^0]: ${ }^{1}$ Partially supported by the Russian Foundation for Basic Research (Grant 03-01-00104), INTAS (Grant 03-51-3663) and the State Maintenance Program for the Leading Scientific Schools of the Russian Federation (Grant SS-300.2003.1).

