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An elementary formula is obtained for the volume of symmetric tetra-
hedron in hyperbolic and spherical spaces.
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1 Introduction

The calculation of volume of polyhedron is very old and difficult problem. A few
years ago it was shown by I.H. Sabitov [Sb] that the volume of Euclidean polyhe-
dron is a root of algebraic equation whose coefficient are function combinatorial
type and lengths of polyhedra. In hyperbolic and spherical spaces the situation is
march more complicated. Since Lobachevsky and Schläfli (see [L] and [Sh] respec-
tively) the volume formula for biorthogonal tetrahedron (orthoscheme) is know.
The volume of the Lambert cube and some other polyhedron were calculated
by R. Kellerhals [K], D. A. Derevnin, A. D. Mednykh [DM], A. D. Mednykh,
J. Parker, A. Yu. Vesnin [MPV] and other. The volume of regular polyhedron
was obtained by G. Martin [M]. The volume of ideal hyperbolic polyhedron in
many important particular cases was found by E. Vinberg [V].

The volume formula for arbitrary hyperbolic and spherical tetrahedron for a
long time was unknown. Some attempt to obtain such a formula contains in Wu–
Yi Hsiang [H]. Just recently simple volume formula for tetrahedron was obtained
by Yu. Cho, H. Kim [ChK] and J. Murakami, U. Yano [MY]. Easy proof for
this formula which covers also the volume of truncated tetrahedron can be find
in A. Ushijima [U].

The aim of this paper is to find an elementary formula for volume of symmetric
tetrahedron both in hyperbolic and spherical spaces.

1Partially supported by the Russian Foundation for Basic Research (Grant 03–01–00104),
INTAS (Grant 03–51–3663) and the State Maintenance Program for the Leading Scientific
Schools of the Russian Federation (Grant SS–300.2003.1).
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2 Preliminary results

Denote by X
n the Euclidean, hyperbolic or spherical n-space. Let compact tetra-

hedron T = (A, B, C, D, E, F ) ∈ X
3 have vertices v1, v2, v3, v4 and dihedral angles

A, B, C, D, E, F with edge lengths lA, lB, lC , lD, lE, lF respectively (see Fig. 1).

Figure 1: The tetrahedron T

We will call tetrahedron T symmetric if A = D, B = E, C = F.

Our calculation of volume of tetrahedron can be based on the following Schläfli
formula (see, for instance [Sh], [Hd], [K]).

Theorem 1 (The Schläfli volume formula). Let compact simplex S ∈ X
n

(n ≥ 2) have vertices P1, ..., Pn+1 and dihedral angles αjk = ∠(Sj, Sk), 1 ≤ j <

k ≤ n+1, of order n−1 formed by the faces Sj, Sk of S with apex Sjk := Sj ∩Sk.

Then the differential of the volume function Vn on the set of all simplices in X
n

can be represented by

KdVn(S) =
1

n − 1

n+1∑

j, k=1

j<k

Vn−2(Sjk)dαjk (Vo(Sjk) := 1),

where K is the curvature of X
n.
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In the present paper we set K = −1 for hyperbolic space and K = 1 for
spherical space. The Schläfli formula for hyperbolic and spherical 3-spaces can
be reduced to

KdV =
1

2

4∑

j, k=1

j<k

ljkdαjk,

where ljk are the lengths of the correspondent edges of S.

3 The volume of hyperbolic tetrahedron

Let T be a hyperbolic tetrahedron. Denote by

G = 〈− cos αij〉i,j=1,2,3,4 =




1 − cos A − cos B − cos F

− cos A 1 − cos C − cos E

− cos B − cos C 1 − cos D

− cos F − cos E − cos D 1




the Gram matrix of T and by H = 〈cij〉i,j=1,2,3,4 the associated with G matrix form
by cij = (−1)i+jMij, where Mij is (i, j)− th minor of G. Following arguments by
A. Ushijima [U] we obtain

Proposition 1. Let T be a proper hyperbolic tetrahedron. Then

(i) det G < 0

(ii) cii > 0, i = 1, 2, 3, 4

(iii)
sin A

sinh lA
=

√
c33c44√
−det G

(3.1)

As an immediate consequence of this proposition we have the following result

Proposition 2. Let T be a proper hyperbolic tetrahedron. Then

sin A sin D

sinh lA sinh lD
=

sin B sin E

sinh lB sinh lE
=

sin C sin F

sinh lC sinh lF
=

√
P

∆
(3.2)

where P = c11c22c33c44 and ∆ = −det G

From now on we suppose that the tetrahedron T is symmetric. By direct
straightforward calculation we obtain c11 = c22 = c33 = c44 = γ, where

γ = 1 − cos2 A − cos2 B − cos2 C − 2 cos A cosB cos C. (3.3)
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And also

∆ = −det G = (1− a + b + c)(1 + a− b + c)(1 + a + b− c)(−1 + a + b + c), (3.4)

where a = cos A, b = cos B, c = cos C.

Putting this calculations into Proposition 2 we have

Proposition 3 (The Sine Rule). Let T be a symmetric hyperbolic tetrahedron.
Then

sin A

sinh lA
=

sin B

sinh lB
=

sin C

sinh lC
= u, (3.5)

where u =
γ√
∆

and γ, ∆ are defined by (3.3) and (3.4) respectively.

We note the following useful identity

u2 +1 =
4(cos A + cos B cos C)(cos B + cos A cos C)(cos C + cos B cos A)

∆
. (3.6)

The following lemma can be obtained by elementary calculations

Lemma 1. Let t is defined by equality

t2 =
4(a + bc)(b + ac)(c + ab)

(1 − a + b + c)(1 + a − b + c)(1 + a + b − c)(−1 + a + b + c)
, (3.7)

where a = cos A, b = cos B, c = cos C and A, B, C are the dihedral angles of a
symmetric hyperbolic tetrahedron T . Then

arcsin
a

t
+ arcsin

b

t
+ arcsin

c

t
= arcsin

1

t
. (3.8)

Proof. Notice first that from (3.6) follows t2 = u2 + 1 > 1. Show that t defined
by equality (3.7) satisfies to equality (3.8). By the basic formula

arcsin(x ± y) = arcsin(x
√

1 − y2 ± y
√

1 − x2)

we transform (3.8) to

arcsin
(a

t

√
1 − b2

t2
+

b

t

√
1 − a2

t2

)
= arcsin

(1

t

√
1 − c2

t2
− c

t

√
1 − 1

t2

)
.

Hence, (3.8) is equivalent to

a
√

t2 − b2 + b
√

t2 − a2 =
√

t2 − c2 − c
√

t2 − 1. (3.9)
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From the other side the straightforward calculation shows that (3.7) implies

t2 − a2 =

(
a(1 − a2 + b2 + c2) + 2bc

)2

∆
,

t2 − b2 =

(
b(1 − b2 + a2 + c2) + 2ac

)2

∆
,

t2 − c2 =

(
c(1 − c2 + a2 + b2) + 2ab

)2

∆
,

t2 − 1 =

(
1 − a2 − b2 − c2 − 2abc

)2

∆
.

By (3.1) (ii) we have

1 − a2 − b2 − c2 − 2abc = c11 > 0

and it is not difficult to see that

√
t2 − a2 =

a(1 − a2 + b2 + c2) + 2bc√
∆

,

√
t2 − b2 =

b(1 − b2 + a2 + c2) + 2ac√
∆

, (3.10)

√
t2 − c2 =

c(1 − c2 + a2 + b2) + 2ab√
∆

,

√
t2 − 1 =

1 − a2 − b2 − c2 − 2abc√
∆

.

Substituting (3.10) into (3.9) we have the identity.

Let T be a symmetric hyperbolic tetrahedron. Denote by V = V (A, B, C) the
hyperbolic volume of T . Since A = D, B = E, C = F, lA = lD, lB = lE, lC = lF ,
by Theorem 1 we have

dV = −lAdA − lBdB − lCdC. (3.11)

Hence
∂V

∂A
= −lA,

∂V

∂B
= −lB,

∂V

∂C
= −lC . (3.12)

We note that if A, B, C → arccos 1

3
then T is going to regular Euclidean tetrahe-

dron. In this case ∆ → 0 and u → +∞. By the Sine Rule, lA, lB, lC → 0 and,
consequently V → 0. So, we have

V (arccos
1

3
, arccos

1

3
, arccos

1

3
) = 0. (3.13)

Now we are able to prove the following
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Theorem 2. Let T be a symmetric hyperbolic tetrahedron whose dihedral angles
corresponding to pairs of opposite edge are A, B, C. The hyperbolic volume of T

is given by the formula

V =

+∞∫

u

(
arcsin

cos A√
ν2 + 1

+ arcsin
cos B√
ν2 + 1

+ arcsin
cos C√
ν2 + 1

− (3.14)

arcsin
1√

ν2 + 1

)dν

ν

where u =
1 − a2 − b2 − c2 − 2abc√

(1 − a + b + c)(1 + a − b + c)(1 + a + b − c)(−1 + a + b + c)
,

a = cos A, b = cos B, c = cos C.

Proof. We set

F (A, B, C, ν) = arcsin
a√

ν2 + 1
+arcsin

b√
ν2 + 1

+arcsin
c√

ν2 + 1
−arcsin

1√
ν2 + 1

and Ṽ (A, B, C) =
+∞∫
u

F (A, B, C, ν)dν. To prove the theorem is sufficient to show

that Ṽ satisfies (3.12) with initial data (3.13). By the Leibnitz Rule we have

∂Ṽ

∂A
= −F (A, B, C, u)

∂u

∂A
+

+∞∫

u

∂F (A, B, C, ν)

∂A
dν. (3.15)

For t2 = u2 + 1 in (3.6) by Lemma 1 we have F (A, B, C, u) = 0. Hence, tak-

ing into account that
∂F (A, B, C, u)

∂A
=

sin A

u
√

u2 + sin2 A
and by the Sine Rule

lA = arcsinh
sin A

u
we obtain

∂Ṽ

∂A
=

+∞∫

u

∂F (A, B, C, ν)

∂A
dν =

+∞∫

u

sin A

ν
√

ν2 + sin2 A
dν = −lA. (3.16)

The equalities

∂Ṽ

∂B
= −lB,

∂Ṽ

∂C
= −lC (3.17)

can be obtained by the similar way. Let A, B, C → arccos 1

3
, then u → +∞ and

the relation

Ṽ (arccos
1

3
, arccos

1

3
, arccos

1

3
) = 0 (3.18)

follows from the convergence of integral
+∞∫
u

F (A, B, C, ν)dν.
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Substituting ν = tan t in the above proposition we have

Theorem 3. Let T be a symmetric hyperbolic tetrahedron whose dihedral angles
corresponding to pairs of opposite edge are A, B, C. Then the hyperbolic volume
of T is given by the formula

2

π

2∫

θ

(arcsin(cos A cos t)+arcsin(cos B cos t)+arcsin(cos C cos t)−arcsin(cos t))
dt

sin 2t

(3.19)
where θ ∈ [0, π

2
], is defined by

tan2 θ =
1 − a2 − b2 − c2 − 2abc√

(1 − a + b + c)(1 + a − b + c)(1 + a + b − c)(−1 + a + b + c)
,

a = cos A, b = cos B, c = cos C.

The obtained result numerically coincides with a result obtained early by
Yu. Cho, H. Kim [ChK] and can be expressed in term of the Lobachevsky function

Λ(x) = −
x∫
0

ln |2 sin ξ|dξ.

4 The volume of spherical tetrahedron

Let T be a spherical tetrahedron with Gram matrix

G = 〈− cos αij〉i,j=1,2,3,4 =




1 − cos A − cos B − cos F

− cos A 1 − cos C − cos E

− cos B − cos C 1 − cos D

− cos F − cos E − cos D 1




and associated matrix H = 〈cij〉i,j=1,2,3,4. The next proposition essentially follows
from [L].

Proposition 4. Let T be a spherical tetrahedron. Then

(i) det G > 0

(ii) cii > 0, i = 1, 2, 3, 4

(iii)
sin A

sin lA
=

√
c33c44√
det G

(4.20)
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Proof. Conditions (i) and (ii) follows from existence of spherical tetrahedron
whose Gram matrix is G (see [L], [V]). To prove (iii) we used the following
assertion due to Jacobi ([P], Theorem 2.5.1, p.12).

Lemma 2 (Jacobi). Let A = 〈aij〉i,j=1,...,n be a matrix and ∆ = det A is de-
terminant of A. Denote by C = 〈cij〉i,j=1,...,n the matrix formed by elements
cij = (−1)i+jdet Aij, where Aij is (n − 1) × (n − 1) minor obtained by removing
i− th line and j − th column of the matrix A. Then for any k, 1 ≤ k ≤ n− 1 we
have

det〈cij〉i,j=1,...,k = ∆k−1det〈aij〉i,j=k+1,...,n (4.21)

By applying Lemma 2 to matrices G and H for k = 2 we obtain 1− cos2 A =

det G (c33c44 − c2
34). Since cos lA =

c34√
c33c44

, the relation (iii) follows (compare A.

Ushijima [U]).
As a consequence of Proposition 4 similar to hyperbolic case we have

Proposition 5. Let T be a spherical tetrahedron. Then

sin A sin D

sin lA sin lD
=

sin B sin E

sin lB sin lE
=

sin C sin F

sin lC sin lF
=

√
P

det G
(4.22)

where P = c11c22c33c44.

Now we apply the obtained result to symmetric tetrahedron.

Proposition 6 (The Sine Rule). Let T = T (A, B, C, A, B, C) be a symmetric
spherical tetrahedron. Then

sin A

sin lA
=

sin B

sin lB
=

sin C

sin lC
= v, (4.23)

where v = γ
√

∆
,

γ = c11 = c22 = c33 = c44 = 1 − cos2 A − cos2 B − cos2 C − 2 cosA cos B cos C,

∆ = det G = (1 − a + b + c)(1 + a − b + c)(1 + a + b − c)(1 − a − b − c),

and a = cos A, b = cos B, c = cos C.

We note also that

v2 − 1 =
4(a + bc)(b + ac)(c + ab)

∆
. (4.24)

The following lemma can be obtained by the same arguments as Lemma 2
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Lemma 3. Let p is defined by equality

p2 =
4(a + bc)(b + ac)(c + ab)

(1 − a + b + c)(1 + a − b + c)(1 + a + b − c)(1 − a − b − c)
.

where a = cos A, b = cos B, c = cos C and A, B, C are the dihedral angles of a
symmetric spherical tetrahedron T . Then

arcsinh
a

p
+ arcsinh

b

p
+ arcsinh

c

p
= arcsinh

1

p
.

Denote by V = V (A, B, C) the spherical volume of tetrahedron T (A, B, C, A, B, C).
Then by Theorem 1 (The Schläfli volume formula) we have

dV = lAdA + lBdB + lCdC

Hence
∂V

∂A
= lA,

∂V

∂B
= lB,

∂V

∂C
= lC . (4.25)

As in hyperbolic case we note that T collapsed to a point as ∆ → 0 or
V → +∞. In particular for A, B, C → arccos 1

3
, we obtain

V (arccos
1

3
, arccos

1

3
, arccos

1

3
) = 0 (4.26)

Theorem 4. Let T = T (A, B, C, A, B, C) be a symmetric spherical tetrahedron
whose dihedral angled corresponding to pairs of opposite edges are A, B, C. Then
the spherical volume of T is given by the formula

V = −
+∞∫

v

(
arcsinh

cos A√
ν2 − 1

+ arcsinh
cos B√
ν2 − 1

+ (4.27)

arcsinh
cos C√
ν2 − 1

− arcsinh
1√

ν2 − 1

)dν

ν
,

where v =
1 − a2 − b2 − c2 − 2abc√

(1 − a + b + c)(1 + a − b + c)(1 + a + b − c)(1 − a − b − c)
,

a = cos A, b = cos B, c = cos C.

Proof. We set Ṽ (A, B, C) = −
+∞∫
v

F̂ (A, B, C, ν)dν, where

F̂ (A, B, C, ν) = arcsinh
cos A√
ν2 − 1

+arcsinh
cos B√
ν2 − 1

+arcsinh
cos C√
ν2 − 1

−arcsinh
1√

ν2 − 1
.
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We have to show that Ṽ satisfy (4.25) and (4.26). Then we have Ṽ (A, B, C) =
V (A, B, C) By the Leibnitz Rule

∂Ṽ

∂A
= F̂ (A, B, C, v)

∂v

∂A
−

+∞∫

v

∂F̂ (A, B, C, ν)

∂A
dν.

By Lemma 3 for p2 = v2 − 1 we have F̂ (A, B, C, v) = 0.
Since

∂F̂ (A, B, C, ν)

∂A
=

− sin A

ν
√

ν2 − sin2 A

and, by the Sine Rule

lA = arcsin
sin A

v
,

we obtain

∂Ṽ

∂A
= −

+∞∫

v

∂F̂ (A, B, C, ν)

∂A
dν =

+∞∫

v

sin A

ν
√

ν2 + sin2 A
dν = lA. (4.28)

The equalities

∂Ṽ

∂B
= lB,

∂Ṽ

∂C
= lC

can be obtained by the similar way. In the case A, B, C → arccos 1

3
, we have v →

+∞. The relation Ṽ (arccos 1

3
, arccos 1

3
, arccos 1

3
) = 0 follows from the convergence

of the integral
+∞∫
v

F̂ (A, B, C, ν)dν.

Corollary 1. Let T = T (A, B, C, A, B, C) be a symmetric spherical tetrahedron.
Suppose that π−A, π−B and π−C are sides of a right angled spherical triangle,
that is one of the three conditions cos A+cosB cos C = 0, cos B+cos A cos C = 0
or cos C +cos B cos A = 0 is satisfied. Then the spherical volume of T is equal to

A2 + B2 + C2

2
− π2

4
.

Proof. Since the spherical space S
3 is tessellated by sixteen copies of tetrahedron

T = T (π
2
, π

2
, π

2
, π

2
, π

2
, π

2
) we have V (π

2
, π

2
, π

2
) = 1

16
V ol(S3) = π2

8
. Hence, by Theorem

4 we get

V (
π

2
,
π

2
,
π

2
) =

+∞∫

1

arcsinh
1√

ν2 − 1

dν

ν
=

π2

8
. (4.29)

Suppose that A, B, C satisfying the condition of the theorem. Then, by (4.24),
v2 − 1 = 0. Hence v = 1.
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Lemma 4.

I(A) = −
+∞∫

1

arcsinh
cos A√
ν2 − 1

dν

ν
=

A2

2
− π2

8
, 0 ≤ A ≤ π

2
.

Proof. Indeed,

I
′

(A) =

+∞∫

1

sin A√
1 + cos2 A

ν2−1

dν

ν
√

ν2 − 1
=

+∞∫

1

sin A√
ν2 − sin2 A

dν

ν
= A

and, verified by (4.29), I(0) = −π2

8
. Hence I(A) = A2

2
− π2

8
.

By Theorem 4 we obtain V (A, B, C) = I(A)+I(B)+I(C)−I(0) = A2+B2+C2

2
−

π2

4
.

Substituting ν = coth t in the statement of Theorem 4 we obtain

Theorem 5. Let T = T (A, B, C, A, B, C) be a symmetric spherical tetrahedron
whose dihedral angles corresponding to pairs of opposite edges are A, B, C. Then
the spherical volume of T is given by the formula

−2

τ∫

0

(arcsinh (cos A sinh t)+arcsinh (cos B sinh t)+arcsinh (cos C sinh t)−t)
dt

sinh 2t

(4.30)
where τ is a positive number defined by

coth2 τ =
1 − a2 − b2 − c2 − 2abc√

(1 − a + b + c)(1 + a − b + c)(1 + a + b − c)(1 − a − b − c)
,

a = cos A, b = cos B, c = cos C.
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