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Abstract. A convex hull consmaction in Minkowski space defines a canonical cell decomposition for 
a cusped hyperbolic n-manifold. An algorithm to compute the canonical cell decomposition uses the 
concept of the 'tilt' of an n-simplex relative to each of its (n - 1)-dimensional faces. An essential 
tool for computing tilts is the tilt theorem. The tilt theorem was previously known only in dimensions 
n < 3, and the proof was needlessly complicated. Here we offer a new, simplified proof which applies 
in all dimensions. We also offer a second geometric interpretation of the tilt. 

Mathematics Subject Classifications (1991): Primary: 51M10; secondary: 51M09, 57M50o 

O. Introduction 

A convex hull construction in Minkowski space defines a canonical cell decom- 
position of a cusped hyperbolic n-manifold ([EP], [W]). An efficient algorithm 
for computing canonical cell decompositions relies on the so-called tilt formula 
([W]). The algorithm allows the computer program SnapPea to quickly determine 
whether two cusped hyperbolic 3-manifolds are isometric, and to compute the 
symmetry group of a cusped hyperbolic 3-manifold. In particular, SnapPea can 
decide whether two hyperbolic knots or links are equivalent, and can compute the 
symmetry group of  a hyperbolic knot or link ([HEW]). Further applications of the 
canonical cell decomposition appear in [AHW], [HiW], [HMW] and [SW]. 

Unfortunately, the proof of the tilt formula given in [W, Th 1 and 2] is needlessly 
complicated, and is restricted to 2- and 3-dimensional manifolds. The present paper 
generalizes the tilt formula to n dimensions, provides a conceptually clean proof, 
and offers a second geometric interpretation of the tilt. Section 1 reviews the 
definition of the tilt. Section 2 states and proves our generalization of the tilt 
formula. Section 3 offers a second geometric interpretation of the tilt. Section 
4 comments on remaining obstacles to computing higher-dimensional canonical 
decompositions. 
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1. The Definition of the Tilt 

This section briefly reviews the definition of the tilt. For more complete back- 
ground and motivation, including the use of the tilt in computing the canonical cell 
decomposition, please see [W]. 

We will work in the Minkowski space model of hyperbolic n-space. The 
Minkowski space E '~,1 is the real vector space R n+l with the inner product 
(x, Yl = -xoYo + xlYl + "'" + ZnYn. Hyperbolic n-space is the set H n = 
{x C En'll(x, x) = - 1  and x0 > 0}. Throughout this paper let T denote an 
ideal triangulation for a cusped hyperbolic n-manifold M. Choose horospherical 
cross-sections of the cusps bounding equal volumes. The preimage of the cusp 
cross-sections in the universal cover H ~ is an infinite set S of horospheres, invari- 
ant under the action of the group of covering transformations. In the Minkowski 
space model, each horosphere is the intersection of H '~ with a hyperplane W whose 
normal vector is lightlike; we associate to each horosphere the unique vector v such 
that (v, w) = - 1  for all w E W. Let V be the set of points on the light cone 
corresponding to the horospheres in S. For an n-simplex F of T, let F be a lift of 
F to the universal cover I t  ~, and let F be the convex hull in E nd spanned by the 
points {v0, vl , . . . ,  vn } C V corresponding to the ideal vertices of F.  The normal 
vector p to/~ is defined by the condition (p, x) = - 1 for all x C F.  Let Ei be the 
face of F opposite the ideal vertex corresponding to vi. Let/~i (resp./~i) be the 
face of _~ (resp./~) corresponding to Ei, and let rni be the outward pointing unit 
normal to the hyperplane in Minkowski space containing/~ and the origin. 

DEFINITION 1.1 The tilt ti of F relative to Ei is the inner product (mi, p). 

2. The Generalized Tilt Formula 

The intersection of the cusp cross-section with the ith ideal vertex of F is a 
Euclidean (n - 1)-simplex. We call it the ith vertex cross-section and measure its 
size by the radius Ri of its circumscribed sphere (in the Euclidean geometry of the 
cusp cross-section). The following theorem generalizes Theorems 3.2 and 5.1 of 
[W]. 

THEOREM 2.1. In an ideal triangulation of  a cusped hyperbolic n-manifold, the 
tilt o f  an ideal n-simplex relative to each o f  its codimension l faces may be computed 
as 

o / / 1  cosool cosoo2 cosoo 
t I - -  COS 010  1 - -  COS 012 . . .  - -  COS Oln 

t 2 = - -  COS 020  - -  COS 021 1 . . .  - c o s  02n 
• • : ' * . .  " 

tn - - C O S 0 n 0  - - C O S  Onl - - C O S  On2 . . .  1 

R( 

R1 

R~ 

R, 
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where ti is the tilt relative to the face opposite vertex i, Ri is the circumradius 
of  vertex cross-section i, and O~j is the dihedral angle between the faces opposite 
vertices i and j. 

hyperplane hyperplane orosphere 

d < O  d = O  d > O  

Fig. 2.1. The signed distance from a hyperplane to a horosphere is the distance d by which 
the horosphere extends past the hyperplane. 

DEFINITION 2.2. The signed distance from a hyperplane to a horosphere is the 
distance by which the horosphere extends past the hyperplane. The signed distance 
may be positive, negative or zero, as shown in Figure 2.1. 

Let di denote the signed distance from the hyperplane containing E~ to the horo- 
sphere containing the cusp cross-section at vertex i. 

ORGANIZATIONAL NOTE. We have organized the proof of Theorem 2.1 and 
its supporting lemmas in a top-down fashion: we begin with the overall plan, and 
gradually fill in more details. We hope this top-down organization makes the proof 
easy to read and understand. The actual logical dependence among the lemmas is 
as follows: 

Theorem 2.1 

Lemma 2.3 , Lemma 2.5 Lemma 2.7 

Lemma 2.4 Lemma 2.6 

PROOF OF THEOREM 2.1. Lemma 2.3 shows that the vectors {m0, m l, • • •, mn} 
form a basis for Minkowski space. Relative to this basis, m k -  (0, 0 , . . . ,  0, 1, 
0 , . . . ,  0), p = (R0, R1 , . . . ,  R,~) by Lemma 2.5, and the metric is given by the 
matrix computed in Lemma 2.7. Therefore 
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Fig. 2.2. L e m m a  2.4 shows  that the s igned distance from a hyperplane  to a horosphere  along 
their common perpendicular may be computed using the inner product of their normal vectors. 

t k  = (ink, p) 

(o, . . . ,  o, 1, o , . . . ,  o) 
( 1 - COS 001 

- cos 010 1 

- -  COS 020 - -  COS 0Zl 

Q n 

- -  c o s  OnO 

and the theorem follows. 

- -  COS Owl 

c o s 0 o 2  . . . .  c o s 0 0  

- -  COS 012 . . . .  COS Oln R1 
1 . . . .  cos 02,~ R2 

• . . ,  • ! 

- cos 0,~2 ' "  1 R,z 

[] 

L E M M A  2.3. The set {mo, m l , . . . ,  m~ ) forms a basis for Minkowski space, and 
is dual to the basis { - e  d° Vo, - e  dl V l , . . . ,  - e  a'~ v~}. 

Proof For i # j ,  vj lies in the hyperplane orthogonal to mi, so (mi,  vj) = 0. 
By L e m m a  2.4, (mi,  vi) = - e  -d~. It follows that {too, m l , . . . ,  ran)  and 
{-e~tOvo, - - e d l v l , . . . ,  - -eg"vn)  are dual; that is, (mi,  - e a j v j )  = 3ij. This dual- 
ity implies that each set is linearly independent, and therefore forms a basis for 
Minkowski  space. [] 

L E M M A  2.4. (mi,  vi) = - e  -d~ • 
Proof The hyperplane determined by ml and the horosphere determined by vi 

have a unique common perpendicular. Choose coordinates so that this common 



THE GENERALIZED TILT FORMULA 119 

perpendicular intersects the hyperplane at (1, 0 , . . . ,  0), and the horosphere at 
(cosh di, sinhdi,  0 , . . . ,  0) (see Figure 2.2). In this coordinate system, mi = 
(0, 1, 0 , . . . ,  0). The vector vl lies somewhere on the ray (t, - t ,  0 , . . . ,  0). 
To find t, use the condition that (vi, w) = - 1  for all points on the horosphere: 
((t, - t ,  0 , . . . ,  0), (cosh di, sinh di, 0 , . . . ,  0)) = - t  e di = - 1 ,  so t = e -d~. 
Hence (mi, vi) = - e  -dl.  [] 

LEMMA 2.5. p = (R0, R 1 , . . . ,  Rn) relative to the basis {m0, m l , . . . ,  mn}.  

Proof p = ~ ( p ,  --edivi)mi 

= ~ edimi 

= ~ -~imi 

({m0 , . . . ,  m~} and { -ea°v0 , . . . , - - ed"vn}  

are dual by Lemma 2.3) 

((p, vi) = - 1 ,  by the definition of p) 

(Lemma 2.6). [] 

LEMMA 2.6. Ri = e di• 
Proof. Position the ideal n-simplex in the upper half space model of H ~ so 

that vertex i is at infinity, and the hyperplane containing the opposite face is a 
Euclidean hemisphere of radius one (Figure 2.3). A vertex cross-section tangent 
to the opposite face has circumradius 1. More generally, a vertex cross-section a 
signed distance d from the opposite face has circumradius e d. [] 

Comment. The techniques of Section 3 below allow one to prove Lemma 2.6 
wholly within the Minkowski space model of H n, without recourse to the upper 
half space model. 

Comment. The appearance of the circumradii Ri in the statement of Theorem 
2.1 has no deep significance. One could replace the vector (R0, R 1 , . . . ,  R~) with 
the equivalent vector (e g0, e dl , . . . ,  e an). The reason for using the circumradii is 
that they are easily computed in the computer program which finds canonical cell 
decompositions for cusped hyperbolic 3-manifolds. 

LEMMA 2.7. Relative to the basis {mo, m l , . . . ,  mn}, the Minkowski space 
metric is 

1 - c o s  0Ol - c o s  002 . . . .  c o s  OOn 

] - cos 010 1 - COS 012 . . . .  COS Oln 
COS 020 - - C O S  021 l . . . .  COS OZn . 

• : : " .  • 

COS OnO - - C O S  Onl - - C O S  On2 " ' '  1 

Proof Because the m's  are unit vectors, (mi ,  mi) = 1. For i # j ,  the angle 
between mi and mj  equals the exterior angle between faces Ei and Ej,  hence 
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R = o  d 

R = I  

Fig. 2.3. A vertex cross-section a signed distance d from the opposite face has circumradius 
e d . 

(mi, mj)  equals the cosine of the exterior angle, which is the negative of the 
cosine of the interior angle. [] 

3. A Geometric Interpretation of the Tilt 

Theorem 3.1 interprets the tilt within the intrinsic geometry of the hyperbolic space, 
without reference to the construction in Minkowski space. 

THEOREM 3.1. With notation as in Section 1, assume the cusp cross-sections 
at the vertices of  an ideal n-simplex F are equidistant from a point Q E H n. 
Let F t, E~ and Q~ be the orthogonal projections of  F,  Ei and Q onto the cusp 
cross-section at some vertex j ~ i. Let ~ be the signed distance (measured in the 
Euclidean cusp cross-section)from E~ to QI, where the sign of  ~ is negative if  Q t 
and F 1 are on the same side of  E~, and positive if  they are on opposite sides. Then 

equals the tilt t i o f  F relative to Ei. 

NOTE. The distance ~ is independent of j .  

The proof of Theorem 3.1 uses the following two lemmas. As in Sections 1 and 2, 
we represent horospheres by vectors on the light cone. 

LEMMA 3.2. If6 is the hyperbolic distance from a point u E H n to the horosphere 
determined by the vector v, then (u, v) = - e  6. 
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Fig. 3.1. The plane W containing the horocycle inherits a degenerate metric from Minkowski 
space. The distance between the points P and Q, measured along the horocycle, is simply the 
difference of their third coordinates. 

Proof. Choose coordinates so that u = (1, 0 , . . . ,  0) and the closest point 
on the horosphere is at w = (cosh /~, sinh ~, 0z . . . ,  0). The vector v must 
lie somewhere on the ray (t, t, 0z . . . ,  0); the condition (v, w) = - 1  implies 
v = (e 8, e 6, 0z . . . ,  0). Therefore (u, v) = - e  6. [] 

We now address the question of how to measure distances along a horosphere. A 
simple 2-dimensional example motivates the general method. Consider the horo- 
cycle corresponding to the vector v = (1, 1,  0) (Figure 3.1). The plane W 
containing the horocycle inherits a degenerate metric from the ambient Minkowski 
space metric, so to measure the distance along the horocycle between two points 
P and Q, we need only subtract their third coordinates ! That is, the distance along 
the horocycle from P = (Po, Pl, P2) to Q = (qo, ql, q2) is [q2 - p2[. 

The same principle applies in higher dimensions. A horosphere is defined by 
an n-dimensional hyperplane in (n, 1)-dimensional Minkowski space. The hyper- 
plane inherits a degenerate metric. When we mod out by the equivalence relation 
{u ,,~ v iff [u - v[ = 0), we project down to an (n - 1)-dimensional Euclidean 
space. Distances in this Euclidean quotient space equal distances along the horo- 
sphere. 

LEMMA 3.3. Let u C H n be a point, let E C H n be a hyperplane, and let _[t be 
a horosphere centered at an ideal point o f  E and containing u. Then the signed 
distance from E to u, measured along the horosphere 11, is (m, u), where m is a 
unit normal to the hyperplane II in Minkowski space which contains E. The signed 
distance will be positive or negative according to whether u and m lie on the same 
side of  II. 

Proof. Let v be the vector corresponding to the horosphere H. Let D be the 
3-plane of Minkowski space spanned by u, m, and v (Figure 3.2), and let D J- 
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Fig. 3.2. The signed distance from the hyperplane E to the point u, measured along the 
horosphere H, is (m, u). 

be its orthogonal complement (not shown). The discussion preceding this lemma 
says that to measure distances along H, we simply project orthogonally onto the 
(n - 1)-plane spanned by D -l- and m, and measure using its Euclidean metric. It 
follows that the distance from E to u a l o n g / / i s  just the length of the orthogonal 
projection of u onto in, which is (m, u). [] 

PROOF OF THEOREM 3.1. Let q and q' be the points Q and Q~ o f H  ~, thought 
of as unit vectors in Minkowski space. We first show that q is a multiple of p. 
Because Q is equidistant from the vertex cross-sections of F,  Lemma 3.2 implies 
that (q, vi) is constant for all i. This implies that q is orthogonal to F,  hence 
q = ap  for some a E R. 

By Lemma 3.3 we may compute the distance t5 from E~ to Q~ as the inner 
product (mi, qt). The vector q~ lies in the 2-plane spanned by the vectors q and 
vj. Therefore any vector which is orthogonal to q and vj must be orthogonal to q~ 
as well. The vector lni + svj is orthogonal to vj for any choice of 8 E R, and is 
orthogonal to q iff 

(m~,  q)  
8 - -  (v. q) 

_ (m~, p) (because q - c~p) p) 
= (mi, p) (because (vl, P / =  - 1  by the definition of p). 

We conclude that mi + (mi, p)vj is orthogonal to q'. Therefore (mi + (ini, p)vj,  
q') = 0, hence (ml, q') = - ( m i ,  p)(vj ,  q'). But since q' lies on the horosphere 
determined by vj, (vj, q~) = -1 .  Therefore ~5 = (ml, q') = (mi, p) = tl. [] 

NOTE. The geometric intuition behind the above proof is that the vectors {ml + 
8vjls E R)  are the unit normals to a family of hyperplanes in H '~ which are 
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orthogonal to the j th  vertex cross-section, and parallel to Ei. By solving for s in 
the above proof, we in effect found the hyperplane passing through q. Note that 
we never explicitly found the point q~, but knowing which hyperplane it is on 
determines its projection onto mi, which by Lemma 3.3 is all that matters. 

4. Higher-dimensional Canonical Decompositions 

The canonical decomposition algorithm of [W] has not been proved to terminate 
for dimension n < 3 (although in practice it always does). In addition, for n > 4 
we have been unable to prove that two adjacent lifts of a single n-simplex must 
meet at a convex dihedral angle on the hull (Corollaries 1 and 2 of [W] prove 
this for n _< 3). If two adjacent lifts of a single n-simplex were to meet at a 
concave dihedral angle, we would not be able to carry out the local retriangulation 
necessary to remove the concavity. To circumvent these difficulties, we conclude 
with a challenge. 

CHALLENGE. Find an algorithm which computes the canonical cell decomposi- 
tion of any cusped hyperbolic n-manifold in a finite number of steps. 
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