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Introduction 

Let M 3 be a compact oriented Riemannian manifold of dimension 3. Consider 
the operator A on even forms on M, f2~ 0 2, defined on f22v (p = 0, 1) by 

A = ( - 1 ) P ( , d - d , ) .  

The eigenvalues {2} of A are all real and can be either positive or negative. In 
[1], Atiyah, Patodi and Singer have defined 

t/(s)= ~ (sign2)121 -s. 
z.0 

In [1] it is proved that t/(s) has a meromorphic continuation to the entire 
complex plane and does not have a pole at zero. It  follows that t/(0) is well- 
defined. This value is the t/-invariant t/(M) of M. 

Theorem (Atiyah-Patodi-Singer [1]). Let W be a 4-dimensional compact oriented 
Riemannian manifold with boundary M and assume that, near M, it is isometric 
to a product. Then 

t/(M) =�89 1 Pt -S ign(W),  
w 

where Sign(W) is the signature of the non-degenerate quadratic form defined by 
the cup product on the image Hz(W,M) in H2(W) and P1 is the first Pontrjagin 
form of the Riemannian metric. 

In this paper, we use the formula in the above theorem to study t/(M) for 
hyperbolic 3-manifolds and calculate the right-hand side of the formula ex- 
plicitly, in a special case. Our main task is to represent the integral of/]1 by 
some more tractible ones. 

In Sect. 1, we deal with general compact oriented Riemannian manifolds M 
of dimension 3. Let F(M) be the SO(3) oriented frame bundle of M. Let L be a 

* Dedicated to Professor M. Nakaoka on his sixtieth birthday 
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link in M. Let ~ be an or thonormal  flaming on M such that at each point of L 
the first vector of a is tangent to L. Let f f  be an orthonormal flaming defined 
on M - L  which has a special singularity at L (see Sect. 1, this notion is due to 
Meyerhoff [10]). We define the torsion number of ~ along L, z(L,~), and the 
difference degree, d(~, ~). The former is a real number and the latter an integer. 
Let Q be the Chern-Simons form on F(M) of the Riemannian metric. Let s: M 
- L ~ F ( M )  be the section defined by ~ Then the integral S Q is defined. 

s(M-- L) 
Finally let 6(M, ~) be the Hirzebruch invariant of the flamed 3-manifold (M, ~) 
defined by 6(M,~)=~P~ [ W ] - S i g n ( W ) ,  where W is a compact oriented 4-ma- 
nifold with boundary M and P1 [W] is the relative Pontrjagin number of W 
with respect to the framing ~ [93. 

Using these notions, we prove in Sect. 1, 

Theorem 1. Let M be a compact oriented Riemannian manifold of dimension 3. 
Let L be a link in M. Let ~ be an orthonormal framing on M such that, at each 
point of L, the first vector of it is tangent to L. Let ~ be an orthonormal 
framing on M - L  having a special singularity at L. Then 

r/(M) =~ ~ Q-~--~z(L, cO+ 2 d(~,~)+,5(M,~). 
s(M-- L) 

The precise definitions of all the terms in the right hand side of the above 
equation will be given in Sect. 1. We note that the last two terms in the equa- 
tion have nothing to do with the metric. 

From Sect. 2 on, we restrict our attention to hyperbolic 3-manifolds. Our 
method is as follows. Fix an oriented complete hyperbolic 3-manifold N of 
finite volume with h cusps (h> 1). By Thurston [14], deforming suitably the 
hyperbolic structure on N and completing it, we obtain a family of infinitely 
many closed hyperbolic 3-manifolds {M} (hyperbolic Dehn surgery). Topologi- 
cally each M is obtained from N by attaching h solid tori to the h ends of N, 
and the corresponding h core curves of the solid tori are short simple geodesic 
loops in M and form a link 7 in M. We want to apply Theorem 1 to the r/- 
invariant of M. At first we must choose a link L in M and a framing ~- on M 
- L  having a special singularity at L. It would seem natural to set L =  7. Un- 
fortunately in general, M - 7  does not admit such a framing. However adding 
some extra loops m =  U m i to 7 and setting L =  ~wm, we can construct such a 
framing ~ on M - L .  Then choosing a suitable framing c~ on M we can apply 
Theorem 1 to r/(M). As noted before, the last two terms of the equation in 
Theorem 1 are purely topological and may be calculated by the functorial 
method (see Sect. 5, for example). The calculation of z(L,~) is local and com- 
paratively easy. What is ~ Q? 

s ( M -  L) 
In Sects. 3 and 4, we study this integral. M - 7  is N with deformed hyper- 

bolic structure, M - L = N - m  and ~ Q =  ~ Q. We show that the link m 
s(M-- L) s ( N -  ra) 

in N can be chosen independently of M (Proposition 3.1, Sect. 3). Let U be the 
deformation space of the hyperbolic structure on N. For  u~U, we denote the 
corresponding hyperbolic manifold by N,. If we choose a framing ~ on N,,-m, 
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the integral ~ Q is defined, where s: Nu-m~F(Nu)  is the section defined 
s (Nu-  m) 

by ~ .  We choose a family of framings {o~},~ v such that o~ varies in a good 
manner on a neighborhood of the end of N when u varies through U, each o~ 
has a special singularity at m and j Q defines a real-valued smooth func- 

s(Nu--m) 

tion on U. Here 'a good manner '  means the following: if Nu can be completed 
to a closed hyperbolic 3-manifold M~ by adjoining h geodesic loops 7 to the 
end of N~, then the framing ~ on N , , - m = M ~ - ( T u m )  has a special singularity 
at L = y u m .  

The deformation space U has a natural complex structure (Sect. 2 for a brief 
summary). We express the function ~ Q on u as the imaginary part of 

s(Nu--m) 

some analytic function f(u) on U. There is a bi-invariant closed analytic differ- 
ential form C of degree 3 on the complex Lie group PSL2(~ ) such that the 
imaginary part of C is the Chern-Simons form Q (regarding PSL2(ff~ ) as the 
SO(3) frame bundle of hyperbolic 3-space H 3) and the real part of C is the 
volume form plus an exact form up to scalar multiplication (Def. 3.1., Sect. 3). 
Using a developing map of N u into H 3, C can be pulled back to F(Nu), and the 
integral ~ C is defined and its imaginary part is ~ Q. For a technical 

s(Nu--m) s(Nu--m) 

reason, to define f(u), we must subtract from the integral of C a term arising 
from the extra link m, and we obtain a complex-valued function f(u) on U 
whose imaginary part contains ~ Q (Def. 3.2, Sect. 3). The analyticity of 

s(Nu--m) 
f(u) is stated in Theorem 3.1 in Sect. 3 and proved in Sect. 4. 

Taking the exponential of 2 nf(u), F(u)= exp(2nf(u)), and calculating it, we 
prove the following in Sect. 3, 

Theorem 2. Let N be an oriented complete hyperbolic 3-manifold of finite volume 
with h cusps. Let U be the deformation space of the hyperbolic structure on N. 
Let u ~ be the point of U representing the original complete hyperbolic structure 
on N. Then there is a complex analytic function F(u) on a neighborhood V of u ~ 
in U such that if uE V represents the hyperbolic manifold N, which can be com- 
pleted to a closed hyperbolic manifold M.  by adjoining h geodesic loops y= UYi 
to the h ends of Nu, then 

IF(u)l=exp (2vol(Mu)+ Si length(Ti)), 

arg F(u) = (4 n CS(Mu) + S, i torsion (7/)) mod 2 n 77, 

where vol(M,) is the volume of Mu, CS(Mw) is the Chern-Simons invariant of M u 
and torsion (yi) is the torsion of the geodesic loop 7i (Def. 1.2, Sect. 1). 

The above theorem was conjectured in [13]. 
In Sect. 5, using the results in the preceeding sections, we calculate the r/- 

invariant of the hyperbolic manifold Mp, q obtained by performing Dehn sur- 
gery of type (p,q) along the figure-eight knot K in S 3. By [14], N = S  3 - K  has 
a complete hyperbolic structure of finite volume with one cusp, and the points 
of the deformation space of the hyperbolic structure on N are parametrized by 
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pairs (z,w) of complex numbers in the upper half plane satisfying the equation 

log z + log(1 - z) + log w + log (1 - w) = 0, (I) 

where log is taken with - n  < arg < n. 
In addition, if u = (z, w) satisfies the following equation for a coprime pair of 

integers (p, q), 
p log w(1 - z ) +  q log z2(1 - - Z )  2 = 2n i, (II) 

then the corresponding hyperbolic manifold N, can be completed to a closed 
hyperbolic manifold Mp, q, and for each coprime pair of integers (p,q) such that 
Ipl>5 if [ql=l,  there is such a pair (z,w) ([14], w 

We prove the following in Sect. 5. 

Theorem3. Let Mp, q be the hyperbolic manifold obtained by performing Dehn 
surgery of type (p,q) along the figure-eight knot in S 3, where (p,q) is a coprime 
pair of integers such that [P] => 5 if [ql = 1. Let (z, w) be the pair of complex num- 
bers in the upper half plane satisfying (I) and (II) in the above. Then, 

1 ( ~ t l  t/(Mp.q)= - ~  Re R(z )+R(w) -  +~p-p ~arg z(1 - z )  

+-1 def(p; q, 1 ) + q  
p 3p 

where 

(i) R(x) is the function on the upper half plane defined by 

x 

R(x) =�89 log x log(1 - x )  - S log(1 - t) d log t 
0 

and 

p-I k k 
(ii) def(p; q, 1 ) = -  ~ co t -Tzco t -qn  is the Hirzebruch defect [7]. 

k = l  P P 

If ]Pl or Iql increases to + oo, then (z,w) converges t o  (e ~i/3, e ~rl/3) and the 
terms except the last two terms of the right-hand side of the above equation 
converge to zero. Hence, i fp is fixed and Iq] is sufficiently large, then q(Mp, q) is 

nearly equal to a(p,q)=-def(p;q, 1)+ . By definition, def(p;q, 1) depends 
P 

only on q m o d p  and ldef(p;q,  1)=-~--(q+r)mod�89 where q r = l m o d p .  
P ~p 

r >__1 If Hence a (p, q) = -~pp rood �89 Z. If q 4: q' rood p, it follows l a(p, q) - a(p, q')] = 3 p" 

q=q 'modp  and q4:q', then def(p;q, 1)=def(p;q',l) and we have la(p,q) 
-a(p, q')l >�89 

Corollaryl.  I f  p is fixed, then ll(Mp, q) 4:ll(Mp, q, ) for q4:q' and ]q], ]q'[>>O. In 
particular, for q 4: q' ~ O, ~l(Mp, q) is not isomorphic to 7tl ( M p, q, ). 

The last statement of the above corollary follows from the rigidity theorem of 
Mostow [12]. 
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If a closed hyperbol ic  manifold admits  a se l f -homotopy equivalence of de- 
gree - 1 ,  then it admits  an orientat ion-reversing isometry [-12]. This implies 
that  its q-invariant  vanishes [1]. 

Corollary 2. I f  p is f ixed,  then for  all sufficiently large q, Mp, q admits no self- 
homotopy equivalence of  degree - 1 .  

1. A splitting of the t/-invariant of 3-dimensional Riemannian manifolds 

In this section, we consider a general 3-dimensional  compact  oriented Rieman-  
nian manifold  M with Riemannian  metr ic  g. Let  F(M) be its SO(3) oriented 
frame bundle. Let  (01) and (0 0 be the fundamenta l  form and the connect ion 
form respectively of the Riemannian  connect ion on F(M), that  is, (0~j) is a 
matr ix  of  1-forms on F(M)  such that  0 i j = - 0 ~  and d O ~ = - X O i j ^ O  i (i,j 
= 1,2, 3). I f  e is an o r thonormal  framing defined on a subset A in M, it defines 
the section s: B ~ F(M) for each subset B c A. Let  L be a link in M, that  is, L 
= L  1 w . . .  w L k is a finite union of smooth ly  embedded  disjoint circles L~ . . . . .  L k 
in M. 

Definition 1.1. Let e=(71,~2,~3) be an o r thonorma l  framing defined on a subset 
of M containing L. Assume that  7I(Y) is tangent to L at each y~L.  Then the 
torsion number  of ~ along L, z(L,~), is defined by 

z ( L , ~ ) = -  ~ 023 , 
s(L) 

where s: L ~ F(M) is the section defined by ~ and the or ientat ion of L is given 
by ex. Clearly k 

z (L, c 0 = ~ z (Li, o O. 
i ~ l  

Lemma 1.1. Let c~=(~1,72,73) and a ' = ( ~ ' l , ~ , ~ )  be two orthonormal framings on 
a subset o f  M containing L such that -On(y ) and -O'l(y ) are tangent to L at each 
yeL .  Then, 

z(L, cO - z(L, a')e2 ~ Z,  

where Z denotes the ring of  rational integers. 

Proof. It  suffices to show the l emma  in the case tha t  L is a simple closed curve 
in M. By assumption,  for each y e L ,  

~t 1 (y) = V e l  (Y)' 

~ (y) = v (cos v (y)) ~2 (Y) + v (sin v (y)) ~ 3 (Y), 

~; (y) = - (sin v (y)) e2 (Y) + (cos v (y)) ea (Y), 

where v = + 1 and v: L - o  ~ / 2  n Z is a smoo th  map.  Let s and s' be the sections 
L ~ F ( M )  defined by e and a' respectively. Then s'* 023=s* 0 2 3 - v d v  and 

S s'* 02~= I s* O ~ - v  I dr. 
L L L 
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In the right hand side L is oriented by e'x. Hence, 

z(L, ~x')= z(L, a) + v ~ dv. 
L 

Since ~dv is an integral multiple of 2n, the lemma follows, q.e.d. 
L 

Definition 1.2. The torsion of a link L in M, torsion (L), is defined by 

torsion (L) = z(L, ~) mod 2 ~ Z, 

where ~ is an orthonormal framing defined on a subset of M containing L 
satisfying the condition of Definition 1.1. 

Let d: M • M ~ ]R be the distance function on M induced by the Rieman- 
nian metric. For a link L in M, set N~(L)={x~Mid(x,L)<e},  where e > 0  and 
d(x,L)=inf{d(x,y)ly~L}.  For a sufficiently small e>0 ,  N~(L) is diffeomorphic 
t o  L • D 2, where D 2 is the 2-disc, and each x~N~(L) can be joined to a unique 
point y~L by a unique geodesic 7(x,y) in N~(L) such that d(x,y)=d(x,L)= 
length (7(x, y)). Moreover for each y6L, Sa(y) = {x~N~(L)[d(x, L) = d(x, y) = b < ~} 
is a smooth circle in N~(L). 

The following notion is due to Meyerhoff [10]. 

Definition1.3. Let L be a link in M. Let ~-=(e l , e2 ,e3)  be an orthonormal 
framing defined on M - L .  Assume that f f  satisfies the following properties in 
N~(L) for a sufficiently small e > 0 :  For each x~N~(L)-L,  taking y~L as above, 

(i) e3(x ) is tangent to 7(x,y) and it has the direction opposite to y, and 
(ii) ez(x ) is tangent to Sa(y), here d(x, y)=6.  Then we say that f f  has a spe- 

cial singularity at L. 
Note that e 1 has the direction along L in N,(L) -L .  f f  looks like this near 

L. 

\ J .  
Fig. 1 

Lemma 1.2. Let ~ be an orthonormal framing on M - L  having a special singu- 
larity at L. Let s: M - L - ~  F(M) be the section defined by ~. Set M=the  closure 
of s ( M - L )  in F(M). Then M is a 3-dimensional compact manifold with boundary 
OM. OM is diffeomorphic to S i x  L and it is mapped onto L by the bundle pro- 
jection F(M)-~ M. Moreover ~ extends uniquely in a smooth manner to a fram- 
ing ~ on M, where we identify M - L  with s ( M - L ) .  

Proof. Let 0t=(el,eE,e3) be an orthonormal  framing defined on a subset of M 
containing L such that ~a(Y) is tangent to L at each y~L and it has the same 
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direction as e~ of ~ near y. Then S(y)=limo~os(S~(y)) is a smooth  circle in 
F(M) represented by the rotat ion of the framing ct(y)=(Ol(y),~2(y),e3(Y)) about  
el(Y)- We have O M =  U S(y) and identifying the 1-sphere S 1 with ~/2~7Z, we 

yEL 
define a map ~:  S ~ x L-*  OM by 

~9 (v, y) = (7 l(y), (cos v) ez(Y) - (sin v) e3 (Y), (sin v) ez(Y) + (cos v) e3(Y)), 

for 0 < v < 2 ~  and yeL, where the right hand side represents a framing at y, 
hence a point  of F(M). Then ~ is a diffeomorphism. Since e2(x)~O/Ov as x-*y 
for x~L and yeL, ~ extends naturally to a framing f f  which is given on ~ t  
by 

ea = the parallel lifts of the unit tangent vectors of L, 

e 2 = ~/6 ~ V, 

e 3 = i n w a r d  normal  vectors at ~M in M. q.e.d. 

In the rest of this section, we fix a link L in M and an o r thonormal  framing 
~ = ( e l , e 2 , e 3 )  on M - L  having a special singularity at L. 

Let a = ( ~ , ~ 2 , ~ 3 )  be an or thonormal  framing on M. We assume that a sat- 
isfies the following condition, (*) for each point y~L, el(Y) is tangent to L and 
it has the same direction with e~ of J~ near y. 

Any framing on M can be deformed by homotopy  so that it satisfies (,). 
We note that the latter condit ion about  the direction of ~ is technical and not 
essential. 

Let W be a 4-dimensional compact  oriented Riemannian manifold with 
boundary  M. We assume that W is isometric to a product  M x [0, 1] near M, 
where M = M x 0 .  We set W o = W - M x  [0,1). Let F(W) be the SO(4) oriented 
frame bundle of W,, and let p: F(W)--* W be the bundle projection. We calculate 
the integral of the first Pontr jagin form by using a suitable connection c on 
F(W) instead of the Riemannian connection on it. The connect ion c is defined 
as follows. Let c~ be the Riemannian connection on F(M). Let G be the con- 
nection on F(M) defined by the framing ~. Let #(t) be a smooth  mono tone  
increasing function defined on [0, 1] such that # ( t ) = 0  (0~t__< l/3) and # ( t )=  1 
(2/3 =< t ~1).  For  t e l0 ,1 ] ,  let c, be the connect ion on F(M) defined by c , = ( l  
-f~(t))cg+ft(t)G, where + is taken in the convex linear space of all the 
smooth  connections on F(M). Then c0=cg  and c~ = G .  Let c be the connection 
on F(M x [0, 1]) such that c=c t on F(M x t) and c is trivial in the direction of 
t. Extend c to a smooth  connect ion on F(W) in an arbitrary way on F(Wo) and 
we get a smooth  connect ion c on F(W). 

Let P~ be the first Pontrjagin form of the connection c. Then, 

= S Pl+ P,. 
W Mx[0 ,1 ]  Wo 

At first we consider ~ /]1. The framing ~ induces a map  h: W-~BSO(4) such 
Wo 

that  h ( M ) =  a point and h classifies the tangent bundle of W. Let 
[P~]eH4(BSO(4),TZ) be the universal first Pontrjagin class. Then the relative 
Pontr jagin number  with respect to a is defined as the evaluation <h,[P~], 
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[W]>, where [W] denotes the orientation class of H4(W,,M,Z ) and h*: 
H4(BSO(4),7I)-*H'*(W,M,T/.) is the map induced by h. We denote this number 
by P1 [-W]. The following lemma is a standard fact from the theory of charac- 
teristic classes. 

Lemma 1.3. ~ Px =Pl rW]. 
Wo 

Next we consider ~ Pa. The framing ~=(el,ez,e3) on M - L  and the 
M x [ 0 , 1 ]  

unit tangent vector ~/Ot of [0, l] define the orthonormal framing 
(el,ez,e3,O/~t) on ( M - L )  x[0 ,1] ,  and it defines the section s: (M-L)  
• 1]~F((M-L)• 1]). Let X be the closure of the image s((M-L) 
x [0, 1]) in F((M-L) x [0, 1]). As in Lemma 1.2, X is a 4-manifold with bound- 

ary and is diffeomorphic to M x [0, 1], where M is the 3-manifold defined in 
the lemma. The pull back of the first Pontrjagin form/]1, p*/]1, is an exact form 
and by the Chern-Simons theory [5], there is a differential form of degree 3, 
QC, on F(W) such that p*P~=dQ ~ and QC is defined canonically by the con- 
nection c. The explicit form of QC on F(M • [0, 1]) is as follows. Let (0~) and 
( ~ )  be the connection form and the curvature form respectively of the con- 

4 
c __ c c c nection c (i,j=1,2,3,4). Then d O i j -  - 20ik/kOkj-~-ff~ij" Since {O/~t} is a paral- 

k = l  I I 
lel vector field on M •  with respect to c, OC4(O/~t)=O on X = M  
x [0,1](t  < i<4) .  Hence on X, we have 

Q c =  Oc12AOC13AOC23- l "OC12A~-212- l -O13A~c~3+O23A~ '~23)e  

(see [-5], w 
By Stokes's theorem, 

I  =Sp*e =IdQ I 
M x[0 ,1 ]  X X OX 

The boundary of X, 0 X = 0 ( M x  [0,1]), consists of three parts, M x 0 ,  M x l  
I 

and OM x [0, 1]. We consider the integral of QC on the three parts separately. 

(i) ~ QC. 
~ / •  

Let (0u) and (/2//) be the connection form and the curvature form respec- 
tively of the Riemannian connection on F(M) as before. The Chern-Simons 
form Q on F(M) is defined by 

Q = ~ ( 0 1 2  A 0 1 3  A 0 2 3  -~- 0 1 2  A ~r~12 -~- 013  A • 1 3  .qt_ 0 2 3  A ~c~23 ). 

The connection c is the product connection of the Riemannian connection Cg 
on F(M) with the trivial connection in the direction of [0, 1] near M x0. It 
follows that 

I e c =  S e, 
~1 x 0 s(M - L) 

where s: M - L ~ F ( M )  is the section defined by 
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(ii) ~ QC. 
Mxl  

The restriction of e to M - L  extends uniquely in a smooth manner to a 
framing ~ on M, where we identify M - L  with s ( M - L )  (s is the section de- 
fined by ~-), such that ~laM is the parallel lift of elL. On M, there are two 
orthonormal framings ~=(-01,-02,-03) and ~,~=(el,eg,e3) which is defined in 
Lemma 1.2. Since c~ satisfies the condition (*), ~ = e  1 on aM. Define the differ- 
ence map f :  M -+ S0(3) by 

(e 1 (x), e 2 (x), e 3 (x)) = (-01 (x),-0 2 (x), -03 (x) ) f (x) 

for xeM.  Then f(aM)eSO(2). Hence f induces the homomorphism f ,"  
H3(M, aM, Z)-+H3(SO(3 ), SO(2),Z). Let [-M] be the orientation class in 
H3(M, aM, Z)=7Z. Let [SO(3)] be the orientation class in H3(SO(3),Z ) 
=H3(S0(3), SO(2), Z ) = Z ,  where SO(3) is canonically oriented. 

Definition 1.4. The difference degree, d(~,c0, is defined by f , [ M ]  
= a (~,, ~) [ s o ( 3 ) ] .  

Lemmal .4 .  ~ Q~=2d(#~,c0. 
~ x l  

Proof On a neighborhood of M x 1, the connection c is the product of the 
connection c~ with the trivial connection in the direction of [0, 1]. Since c~ is 
flat, its curvature forms vanish, and the connection form of c, is given by the 
skew symmetric matrix of l-forms ( f ( x ) - ld f ( x ) )  for xeM,  where d f  is the dif- 
ferential of f and ( f (x ) -  1 df(x)) is considered as an element of the Lie algebra 

- -  ~ c c of S0(3). It follows that, on M x 1, Q~= 012/x 013/x 023 is equal to f* ( -2~o) ,  

where co is the normalized invariant measure on S0(3). Since M x 1 is M with 
opposite orientation, it follows 

Q~= ~ f * ( - 2 ~ 0 ) = d ( ~ , c  0 ~ 2~o=2d(~,,c 0. q.e.d. 
M-x1 --M S013) 

(iii) ~ Q~ 
~ x [ O ,  1l 

1 
L e m m a  1.5. ~ QC = _ _ _  r (L, c 0. 

Proof Define a diffeomorphism O: S i x  L x [0, 1] ~ a_M x [0, 1] by 

tp (v, y, t) = (-01 (Y), (cos v) e2 (Y) - (sin v) e3 (Y), (sin v) -02 (Y) + (cos v) -03 (Y), t) 

where veSX=N,/2~TZ, yeL,  t e [0 ,1]  and c~(y)=(-~l(y),-~2(y),-~3(y)). The orien- 
tation of M x [ 0 , 1 ]  is given by (el,ez,e3,O/at), where Y=(e l , e2 ,e3) .  Since 
e3(x ) is an inward normal vector at each x e a M x  [0,1], the orientation of S 1 
x L x  [0,1] is given by (a/av, el ,a/at ), where e 1 is the unit tangent vector of L. 
{0,  a/av} is a vertical vector field and tp, e 1 is parallel along the integral curves 
of that vector field. Hence (0" ~ j ) ( a / a v , . ) = o  (i,j= 1,2,3) and (~* o]2)(a/av ) 
=(tp*o]3)(a/#v)=o. Moreover by definition, (O*O~23)(a/av)=l. Let q: S 1 x L 
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x [0,1]--*Lx [0,1] be the projection onto the last two factors. Then q=p~k, 
where ~: S 1 x L x  [ 0 , 1 ] ~ ? M x  [ 0 , 1 ] c F ( M x  [0, 1]) and p: F ( M x  [0 ,1] ) -*M 
x [0, 1] is the bundle projection. Let s: L x [0, 1] ~ F ( M  x [0, 1]) be the section 

defined by the framing (~,72,73,0/0t), where ~=(~1,72,~3). Then from the 
above facts, we have 

and 

4'*Q ~ =  0 (012/ ,  c c 0~3 A 023 ~- 023  A ~r~3) 

1 
--4~z2 0"(0~3 A d0~a) 

~* 0~23 =dr+q* s* 0~23. 

qJ*QC=a~dvAd(q*s*O~23 ). From the above orientation con- It follows that 

vention, by partial integration along S 1 and Stokes's theorem, we have 

t~i~Zt x [0,1 ] S 1 xL•  

1 * c -- ~ dv A d(q* s 023  ) 
4~z2 s ~ xLx[0,1] 

1 
= - -  d ( s *  0~3) 

2 n  L x [~0, 11 

1 
=2~-(  S s*0C23 - ~ s*0C23) . 

L x 0  L x l  

Since the connection c is Cg on F(M x0) and c, on F(M x 1), we have s* 0~3 
~ S * 0 2 3  o n  LM0 and s*0~3=0 on L x l .  Hence the last expression of the 

1 
!s* 023=--2~z(L'cQ by definition, q.e.d. above integral equals to ~-n 

The calculations in the above proof will be frequently used in the sub- 
sequent sections, and we will omit the details of such calculations. 

From (i), (ii) and (iii) in the above, we have 

Theorem 1.1. Let M be a 3-dimensional compact oriented Riemannian manifold. 
Let L be a link in M. Let ~ be an orthonormal framing on M - L  having a 
special singularity at L. Let ~ be an orthonormal framing on M satisfying (*). Let 
W be a 4-dimensional compact oriented Riemannian manifold with boundary M, 
and assume that it is isometric to a product near M. Then 

SPx = ~ Q-2~:(L,~)+2d(o~,~)+P~[W],  
W s(M--L) 

where s: M - L ~ F ( M )  is the section defined by 

Since d(~,, c~) and /]1 [WI are integers and ~ P1 mod 7l is an invariant of M, 
W 

we obtain from Lemma 1.1 and Definition 1.2: 
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Corollary 1.1. In the situation in Theorem 1.1, 

1 
S Q - ~  torsion (L) m o d Z  

s( M-- L) 

is an invariant of M. 

This corollary is proved in [-10] by a different method. 
From Theorem 1.1, we obtain immediately Theorem 1 in the Introduction. 

2. The deformation space of hyperbolic structure 

We give a very brief account: see [,13] and [,14]. 
We use the upper half space model of hyperbolic 3-space, H 3 = { ( c , t ) l c e C  

and t>0}  with metric ds2=t-Z(ldc[Z+dtZ),  which is bounded by the extended 
complex plane tl;• oo. If we write the points of H 3 in quaternion form q = c  
+t  j, the orientation-preserving isometries of H s are complex M6bius transfor- 
mations q - ,  (~ q +/3) (7 q + 6)- 1, where ~ 6 - fl 7 = 1 and the computation is car- 
ried out within the algebra of quaternions. The group of orientation-preserving 
isometrics may be identified with PSL2(II2)=SL2(C)/{+_id }. The action of 
PSL2(C ) o n  H 3 is transitive and the isotropy subgroup of the point (0, 1)eH 3 is 
SO(3), its maximal compact subgroup. The correspondence g ~ g ( 0 , 1 )  for 
g~PSL2(tI~ ) induces a diffeomorphism PSLz(II2)/SO(3)--+H s, and the natural 
projection, PSL2(II2 )---,H s is considered as the SO(3) oriented frame bundle of 
H 3. Thus PSL2(IE ) = F(H3). 

Let N be a complete hyperbolic 3-manifold of finite volume with h cusps 
(h >__ 1). There is a holonomy representation, p: F = 7z 1 (N, x ~ ---, PSL  2 (•) (x ~ e N), 
which is unique up to equivalence, and N is identified with the quotient space 
p ( F ) \ H  3. Corresponding to the h cusps, N has h ends {~i}i=1 ..... h each of which 
is diffeomorphic to T 2 x (0, oo), where T 2 denotes the 2-torus. 

An ideal tetrahedron A in H 3 is a geodesic tetrahedron with all vertices at 
infinity=t?H 3. An ideal tetrahedron is described (up to isometry) by a single 
complex number z in the upper half plane such that the euclidean triangle cut 
out of any vertex of A by a horosphere section is similar to the triangle with 
vertices 0, 1 and z. We write A=A(z). The numbers z, 1 - 1 / z  and 1 / 1 - z  give 
the same tetrahedron: to specify z uniquely, we must pick an edge of A (the 
dihedral angle at this edge will be arg(z)). 

We assume that N is decomposed into a finite union of ideal tetrahedra 
A 1 u . . .  w A , ,  where the vertices of each A i are deleted. For each A i ( i= 1 . . . .  ,n), 
we make a choice of an edge of A i and write Ai=Ai(z~ Then to each edge of 
A i is associated one of the three numbers z ~ 1 - 1 / z  ~ 1/1 - z  ~ the modulus of 
the edge. We write 

N = ~ ( z ~  . . .  uA(z~ 

Any hyperbolic 3-manifold is obtainable from an ideally triangulated one by 
Dehn surgeries on some cusps. Hence by the above assumption on N, we do 
not lose any generality in subsequent arguments. 
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If we replace u = (z ~ . . . . .  z ~ by u = (z 1 . . . .  , z,) (im z i > 0, i = 1 . . . .  , n), we obtain 
a complex N u = A ( z l ) u . . .  •A(z,)  with the same gluing pattern as N. The neces- 
sary and sufficient condit ion that N u gives a smooth  (not necessarily complete) 
hyperbolic  manifold is that  at each edge e of N u the tetrahedra A i abutt ing e 
close up as one goes a round e, and thus the product  of the corresponding 
moduli  of A i at e is exp(2n i) (the product  is taken in the universal cover ~* of 
II~*). The consistency condit ion at e is written as 

]~[ z[' (1 -- z,)r~ = + 1 
i=1 

for some integers %, r[ depending on e [14]. Once we have chosen the numbers  
z i (satisfying the consistency conditions), N acquires a smooth  hyperbolic struc- 
ture, in general incomplete. The deformation space U of the hyperbolic struc- 
ture on N is the variety of  ~ / = ( Z  1 . . . . .  Zn)~.[~ n which satisfies the consistency 
relations. For  ue  U, we denote the corresponding hyperbolic  manifold by Nu. 

Choose  a pair of simple closed curves (mi, li) on each torus section T~ of e i (i 
= 1 . . . .  ,h) which forms a basis of  Hi(T/). For  each ueU,  let p,:  F ~ P S L 2 ( ~  ) be 
a ho lonomy representation. After suitable choice of a base point, we consider 
(m i,li) as elements of F. If p.(mi) and p,(ll) are not parabolic, they have two 
fixed points in I~ u oe which we can put at 0 and oe, so as M/Sbius transfor- 
mations on C woe,  

pu(m~): c--*alc, pu(li): c--*bic 

for some a l , b i ~ * .  Set u~=loga~ and v i= logb  i. If p,(ml) and p,(l~) are para- 
bolic, we set u~=v~=0. 

Theorem (Thurston [14], Neumann-Zagie r  [13]). The deformation space U of  
the hyperbolic structure on N has complex dimension h and can be holomorphi- 
cally parametrized by points (u 1 . . . .  ,Uh)e~ h in a neighborhood o f  u~ U. 

We will need the following fact in the proof  of Theorem 3.1 in Sect. 4. Let  P 
be the subset of U defined by P = { u e U I N ,  has at least one cusp}. 

Proposition 2.1. In a neighborhood V of  u ~ in U, P is a proper algebraic subset. 

Proof  In a ne ighborhood  V of  u ~ in U, the points of  V are parametrized by 
(u 1 . . . . .  Uh) as in the above theorem, and P c~ V is precisely the set {ue Vlsome u i 
=0}.  q.e.d. 

If  u = ( u  I . . . . .  U n ) e V - P ,  for each i = 1  . . . .  ,h, there is a unique pair 
(Pi, ql) e r a  w o% such that  Pi ui + qi vi = 2 n i. This collection of pairs is called the 
generalized Dehn surgery invariant, and if each (Pi,qi) is a pair of coprime 
integers, N u can be completed to a closed hyperbolic manifold denoted by 
Mtpl,ql) . . . . .  ( p h , q . )  by adjoining a closed geodisc 7i to each end e i. Topological ly 
this manifold is obtained from N by performing Dehn surgeries which kill the 
h o m o t o p y  classes represented by pimi+qi l l ,  i=  1 . . . . .  h ([14], w 

3. An analytic function on the deformation space and the q-invariant of mani- 
folds obtained by hyperbolic Dehn surgery 

The Lie algebra of PSL2(C ), g, is the complex Lie algebra consisting of all 2 
x 2-complex matrices of trace zero. We regard g as the tangent space of 
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PSL2(ff2 ) at the identity. Let 

01 =2h*, 

023 = -2(ih)*,  

From these, we have 

Then {h,e,f} form a base of g over ~. Let {he, ee,f~ } be its dual base of 
Home(g , II~). 

Definition 3.1. The complex differential form of degree 3 on PSL2(II2), C, is de- 
fined as the left-invariant differential form on PSL2(C ) whose value at the 

i 
identity is given by ~ h~/x e~:/x f~.  

We can easily check that C is a complex analytic form on PSL2(II2 ) which 
is closed and bi-invariant. Now {h,e,f, ih, ie, if} form a base of g over F,. Let 
{h*,e*,f*,(ih)*, (ie)*, (if)*} be the dual base of Hom~(g, lR). Let (0~) and (0ij) 
be the fundamental form and the connection form respectively on PSL2(~ ) 
= F ( H  3) of the Riemannian connection of H 3. Then 01 and 01j are the left- 
invariant smooth forms on PSL2(tU ) whose value at the identity are given by 

0 2 =e* + f * ,  03 = (ie)* -( i f)* 

013=(ie)* +(if) *, 012=e*- f  *. 

* 2  he-2(O 1 - i  023), 

e~: = �89 + 012)+ i(03 + 0,3)), 

J~  =1((02 --022 ) --i(O 3 --013)). 

We have 

Lemma 3.1. C is written as 

C = ~ 2  (401/x 02 A 03 -d(O 1/x 023 +02 A 031 + 03/x 012)) 

i 
- t " ~ ( 0 2 2  A 023 A 023 --012 A 01 A 02 --023 A 01 A 03 --023 A 02 A 03). 

Since H 3 has the constant sectional curvature - 1 ,  t?O=--0iA0 ~ (i,j 
= 1,2, 3). Thus C is a complex analytic form on PSL2(II2 ) whose real part is the 
volume form plus an exact form (up to scalar multiplication) and whose imag- 
inary part is the Chern-Simons form Q. 

Let M be an oriented smooth hyperbolic manifold (complete or incomplete) 
of dimension 3. Let F(M) be its S0(3) oriented frame bundle. Choose a base 
point xoEM and set F=~2(M, xo). Let .~/ be the universal cover of M. Let d: 
2~7/-~H3 be a developing map. Let p: F---~PSL2(I~ ) be the holonomy represen- 
tation defined by d(g 2)= p(g)d(2), where g eF  and 2elf/. Taking the differential 
of d, we obtain the SO(3)-bundle map d: F(19I)~PSL2(II; ). Since the form C is 
left invariant, d* C projects to a closed form on F(M)= F\F(I(/I) which we de- 
note also by C. Let ~ be an orthonormal framing on M and let s: M ~  F(M) 
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be the section defined by ~ .  Then s* C is a complex 3-form on M and S s* C 
M 

= S C is defined. 
s(M) 

We define the not ion of a simple framing. As before, Ha={(c,t)lc~llS and 
t>0} .  Let 7 be an oriented geodesic in H 3 and let 7 ( - o o )  and 7 (+oo )  be its 
initial and terminal  endpoints  in cnH 3 respectively. There  is an element 
g e P S L 2 ( ~  ) such that  g 7 =  t-axis and g ( 7 ( - o 0 ) ) = 0  and g (7 (+  o0))= o0. 

Let (r, fl, qS) be the polar  coordinate  of H 3 defined by 

c = r(sin fl)(cos ~b + i sin q~), t = r cos fl, where r > 0, 0 < fi < ~r/2 and 0 < q5 < 2 ~. 
Let g ( t - a x i s ) = ( e  1, e2, e3) be the framing defined on H 3 -{ t -ax i s}  by 

e 1 = r(cos fl) O/Or, e 2 = - ( c o t  fl) ~/~b, e 3 = (cos fl) c3/~fi 

for a point  (r, fl, ~b). We define the framing i f (y)  on H a - -7  by i f ( 7 ) =  (g -1 ) ,  i f ( t -  
axis). Then  i f (y)  does not  depend on the choice of g. It  can be seen that  F ( y )  
is invariant  under  the act ion of the subgroup  of PSL2(ff2 ) which leaves y in- 
variant.  Next  let w be a point  of t?H 3. There  is an element  g ~ P S L 2 ( ~  ) such 
that  g w =  oo. Let ~ . ~ ( o o ) = ( e l , e E , e 3 )  be the f raming o n  H a defined by 

el = t(O/~x), e 2 = - t(t~/t?y), e 3 = - t(t?/t?t), 

for a point  ( c , t ) = ( x + i y ,  t ) eH 3. We define the framing i f (w)  on H 3 by i f (w)  
= ( g - 1 ) , f f ( o o ) .  In this case, the definition of i f (w)  includes an ambigui ty  of 
rotat ions about  the ea-vectors. However  {el} and {e2} form two parallel  vector  
fields on each horosphere  with center w with respect to the euclidean structure 
on it. It can be seen that  o~(w) is invar iant  up to rotat ions about  its e3-vectors 
under  the action of the subgroup  of PSL2(ff2 ) which leaves w fixed. We call 
each of the framings ~ ( y )  and o~(w) a simple framing. 

L e m m a  3.2. For a simple framing Y(7)  (resp. ~-(w)), let s: H3--7 (resp. 
H 3 ) ~ P S L 2 ( C )  be the section defined by it. Then s* C = 0  (pointwise). 

Proof  Since C is left invariant,  it suffices to show the l e m m a  for i f ( t -axis)  and 
~ ( ~ ) .  Fo r  ~( t -axis ) ,  using the above polar  coordinate  (r, fl, ~b), 

S*Ol=(1/cos f l )d logr ,  s*O2=(- tan f l )d4 ) ,  s*O3=(1/cosfl)dfl ,  

s*012=0 ,  s*O13=(tan#)d logr ,  s*O23=(-1/cos#)dq5.  

For  ~ (co ) ,  using the coordinate  ( x + i y ,  t), 

s*  01 = ( l / t )  dx, 

S*012=0, 

s * O 2 = ( - 1 / t ) d y ,  s * O 3 = ( - 1 / t ) d t ,  

s*O13=(1/t)dx,  s * O 2 3 = ( - 1 / t ) d y .  

In bo th  cases, we obtain  s* C = 0 .  q.e.d. 

L e m m a 3 . 3 .  Let Y(7)=(ex , e2 , e3 )  be a simple framing on H 3 - y .  Let  v: H 3 
- y - ~ R / 2 n T Z  be a smooth map. Define a new framing, on H 3 - y ,  ~-'(7) 
= (e' 1 , e~ ,  e ; ) ,  by 
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e' 1 (x) = (cos v(x)) e,  (x) + (sin v(x)) e 2 (x) 

e~ (x) = - (sin v (x)) e 1 (x) + (cos v(x)) e2 (x) 

e'3(x)=e3(x) 

for x e H 3 - y .  Let s': H3-y~PSL2(II2) be the section defined by Y'(7). Then 
s'* C=O. 

The same result holds for a simple framing ~-(w). 

Proof Let s: H3-7~PSL2(II2) be the section defined by o~-(7). Then the fol- 
lowing relations hold, 

s'* 01 = (cos v) s* 01 + (sin v) s* 02 , 

s'* 02 = - ( s i n  v) s* 01 + (cos v) s* 0 z, 

s'*O 3=S.03, 

S'*012=S*012--dv, 
s'* 013 =(cos  v) s* 013 +(sin v) s* 023, 

s'* 023 = - ( s i n  v) s* 013 + (cos v) s* 023. 

We have 

s'* C = s* C -dr /x  d(s* 03) - i  dv /x d(s* 012). 

By L e m m a 3 . 2  and its proof,  s*C=d(s*O3)=s*Ol2=O, q.e.d. 

Let N be an oriented complete  hyperbol ic  3-manifold of finite volume with 
h cusps (h> l ) .  We assume that  N has an ideal t r iangulat ion,  N 
=A(Zl)U...uA(z,). N has h ends ~1 . . . . .  ~'h and we set e = e l w . . . ~  h. Take  a 
base point  x o in N and a point  x~ in a torus section of el ( i=  1 . . . . .  h). Let  qi(t) 
( 0 < t <  1) be a pa th  in N with qi(O)=xo and qi(1)=xi. Set F=~l(N,  Xo) and F i 
=(qi)~l(T2,xi),  where (ql)e is the h o m o m o r p h i s m :  ~l(T2,xi)--.ztl(N, xo) in- 
duced by q~. 

Let U be the deformat ion  space of the hyperbol ic  structure on N. Let P be 
the subset of U defined by P = { u ~ U ]  N, has at least one cusp}. For  ueU, let 
Pu: F--*PSL2(II?) be a ho lonomy  representation.  If u e U - P ,  then for each i 
= 1 . . . . .  h, p,(F~) is an abel ian subgroup  of PSL2(II; ) consisting of loxodromic  
elements and it leaves a unique geodesic in H s invariant.  We orient this geo- 
desic (arbitrarily) and denote it by 71. For  6 > 0 ,  we set E~(Ti) 
={xeH310<d(x,7i)<=6} and To(yl)={xeH3jd(x, Ti)=6}, where d denotes the 

hyperbolic distance. Let E~(71) and T~(},~) be the universal  cover of Eo(Ti) and 
T~(7~ ) respectively. Then the action of p,(F/) on E~(},~) (resp. To(7~)) is covered by a 

free act ion of F~ on E~(~ (resp. T~(?,~)~). The induced metric  on ~ f rom the 

hyperbol ic  metric  on H a lifts to a metric on ~ and it gives To()'i"-'~ the struc- 
ture of the euclidean plane. The free action of F~ on To(7~) is generated by 
parallel t ranslat ions by two independent  vectors of this euclidean plane [14]. 
We set 

E6(f:i)= ffi\E6(?'i) 
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and 

r~(~,)= ~ \ ~ .  

For  any sufficiently small 6 > 0 ,  Eo(ei) gives a ne ighborhood  of the end e i of N u 
which is diffeomorphic to T 2 x  [0, oe) and To(ei) gives a torus section of ~. 
Since the simple f raming W(7~) is invariant  under the act ion of p,(F~), it defines 
a f raming on Eo(e~) which we denote by ~(ei).  We call E~(ei) the 6-neigh- 
bo rhood  of e i, T0(ei) the 3-torus section of e i and ~-(ei) a simple framing on 
E~(gi). 

If u~P, then some of the ends of N u are cusps. If the i-th end is a cusp, 
pu(F/) is a free abelian subgroup  of rank 2 of PSL2(C  ) consisting of parabol ic  
elements. It  fixes a unique point  w~OH 3. p,,(Fii) acts freely on each horobal l  
ne ighborhood  of w, and for a sufficiently small horobal l  ne ighborhood  E(w) of 
w, the orbi t  space pu(Fii)\E(w ) gives a ne ighborhood  of the cusp el. We denote 
pu(Fi)\E(w) by E(ei). Then E(~i) is a flat torus section of e i. Since p~(F/) acts on 
each horosphere  with center w by parallel t ranslat ions with respect to the eu- 
clidean structure on it, any simple framing ~,~(w) is invar iant  under  the act ion of 
pu(F/) and it defines a f raming ~(~i) on E(~i). We call this f raming on E(ei) a 
simple framing. 

Proposition 3.1. There are a link m in N (possibly empty)  and an orthonormal 
framing ~ defined on N - m  such that ~ is a simple framing on a neighborhood 
o f  the ends ( = c u s p s )  e o f  N and ~ has a special singularity at m. The link m 
can be taken so that m is contained in an arbitrarily small neighborhood of  the 
cusps and each cusp contains at most one connected component o f  m. 

Proof  Let E = E  1 u ... u E  h be a ne ighborhood  of the cusps e =  ~e~ such that  E~ 
= E(ei) is an orbit  space of a horobal l  by the act ion of Fi, and E i c~ Ej = q~ if i + j  
for i,j = 1 . . . . .  h. Set T = ~E. Then T consists of h disjoint 2-tori, T = T 1 w . . .  ~ Th, 
where TI=OE i. We choose arbi trar i ly a family of s imple ffamings if(e)  
= {if(el) } on E ( i=  1 . . . .  ,h). We consider the obstruct ion to extending ~-(e) to 
an o r thonorma l  f raming on N. This is a purely topological  problem. By defini- 
tion, any two simple ffamings on E are homotop ic  by rotat ions abou t  e 3- 
vectors. Hence  the obstruct ion is independent  of the choice of simple framings 
~-(~). Set N o = N - E .  Then N O is a 3-manifold with boundary  ~?No= T. The  only 
obstruct ion to extending i f(e)  over N is character ized by an element o of 
HZ(N, E, n~(SO(3))=HE(No, T, Z2). Consider  the following commuta t ive  dia- 
gram, 

HI(T, Zz)  6. ~ HZ(No,Z2 ) , H2 (No, T, Z2 ) k* 

: 1 o 
Ha(T, Z2) J* , HI (No ,Z2)  'H I (No ,  T, Z2), 

where the upper  (resp. lower) row is the cohomology  (resp. homology)  exact 
sequence of the pair  (N o, T) with Zz-coefficients, D denotes the Poincar6 dual- 
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ity i somorphisms and j and k are the inclusions. The class k*o represents the 
obstruct ion to putt ing a f raming on No, whence k*o = 0. By exactness o = k* o' 

h 
for some o 'EHI(T,  7Z.2). Put O=Do'~HI(T, Z2)= @ Ha(T~,Z2). o is written as 0 

i=1 

=ZOi, Oi~HI(T,.,Z2). If 0i4:0, O i is represented by a simple closed curve m' i on 
7]i. Set m'=Um'  i if some 0i4:0 and m'=q~ if 0---0. We identify E with T •  [0, ~ ) ,  
where T x 0 = T. Then m' lies on T • 0. For  each i such that  m' i#: qb, let m i be a 
simple closed curve on T~ • 1 cE i  which is isotopic to m'~ in E i. Set m =  Um i. It 
can be seen that there is a framing ~ on E - m  such that  ~ = ~ - ( e )  on T 
• [2, oo) c E and ~ has a special singularity at m. We compare  ~ and ~-(e) on 
T x 0 = T. The  difference between these two framings on T defines a map  from 
T to SO(3), and its h o m o t o p y  class is represented by an element f 
=Zfi~HI(T,  Z2)=@HI(Ti,7Z2). If Oi=0, we may  assume that  ~ = ~ ( e )  on Ei, 
whence j i = 0 .  If Oi4=O, let l' i be a simple closed curve on T~=Ti •  such that  
l'ic~m'i=one point. The pair  (m' i, l'i) forms a base of HI(T/,Z2) and f/ is charac-  
terized by its values on them. The curve m'~ is isotopic to  a curve in T i • 2 c E i 
by an isotopy in E i - m .  On T/•  ~ a = ~ ( e )  and it follows that  fi([m'i])=O, 
where [m'~] is the homology  class in HI(T/,TZ2) represented by m' i. Modulo  1- 
chains in T/• [2, ~ ) ,  the curve l' i is homologous  in E i - m  to a curve which is 
the boundary  of a small 2-disc in E~ intersecting with m~ at exactly one point. 
Since ~ = ~ - ( e )  on 7]/x [2, oo) and ~ has a special singularity at m, we have 
f~([t'~l)4:0 in ~2" Therefore  the Poincar6 dual of  fl is represented by m' i and 
that  of f =Zf~  by m ' =  ()m',.. On the other  hand, the obstruct ion to extending 
~ (e )  over N is also represented by m'. It follows that  ~ extends to a framing 
o~ on N - m ,  and ~- has the desired properties,  q.e.d. 

Proposit ion3.2.  Let m be a link in N given in Proposition 3.1. Then there is a 
family of orthonormal framings {~,},~v such that, for each ueU, (i) ~ is defined 
on N , - m  and it has a special singularity at m, (ii) ~ is a simple framing ~(e) on 
a neighborhood of the end of N, and (iii) {o~,},~v_p depends on u ~ U - P  in a 
smooth manner and the integral ~ C defines a smooth function on U, where 

s( Nu-- rn) 

s: N , -m- - ,F (N , )  is the section defined by ~.. 

Proof. Let  ~ be an o r thonorma l  f raming on N - m  which is a s imple f raming 
on a ne ighborhood  of the cusps e and has a special singularity at m. For  ue  U, 
N. has a different hyperbol ic  s tructure from N. By Schmidt 's  o r thonormal i -  
zation, or thonormal iz ing  ~ with respect to this new hyperbol ic  structure, we 
obtain an o r thonorma l  f raming ~, '  on N , - m .  Near  m, ~ , '  is homotop ic  to a 
framing having a special singularity at m. By deforming in a ne ighborhood  of 
m if necessary, we may  assume that  -~-" has a special singularity at m and the 
family of framings {Y,'},~v depends on u in a smooth  manner .  Let  s': N. 
- m - } F ( N , )  be the section defined by  g, ' .  Then  the integral ~ C defines a 

s ' ( N ~ - m )  

complex-valued smooth  function on U. Let u 6 U - P .  Each flat torus section of 
a cusp of N gives a 6-torus section of the corresponding end of N, for some 
/i >0 .  Hence  the e3-vectors of ~ '  coincide with the e3-vectors of a simple fram- 
ing o~(e) on a ne ighborhood of that  end. Therefore  deforming o~" by rotat ions 
about  its e3-vectors in a small  ne ighborhood of the end of N,, we obtain an 
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orthonormal  framing W, such that W u is a simple framing Y(e) on a neigh- 
borhood of the end of N, and it has a special singularity at m. These defor- 
mations can be carried out in a smooth manner with respect to u ~ U - P .  By 
Lemma 3.3, these deformations have no affect on the integrals of C. Thus 

S C =  S C, where s: N, , -m~F(N~)  is the section defined by ~ .  The 
s ' ( N u - - m )  s ( N u - - m )  

family of framings { ~ } ~ v  gives the desired one. q.e.d. 

Let {o~}u~ v be a family of framings given in Proposition 3.2. Let 
=(J'1,f2,f3) be an orthonormal framing defined on a subset of N containing m 
such that f l  (Y) is tangent to m at each y~m and it has the same direction as the 
el-vectors of o ~ near y. For  u~U, we orthonormalize ~c with respect to the 
hyperbolic metric of N~, and the resulting orthonormal framing is denoted by 
~c,. Clearly the first vectors of tc~ are tangent to m at any points of m. 

Now we define the function f(u). 

Defnition 3.2. Let {~,,},~v and {~c,},,~v be as above. We define the complex va- 
lued function on U by 

1 
f(U;Yu, Ku)= ~ C - ~  ~ (0~-i023), 

s ( N u  - m) s (m)  

where s: Nu-m--+F(N,) and s: m ~ F ( N , )  are the sections defined by ~ and t% 
respectively. If ~ and ~, are prescribed, we write f (u;  ~,,~ K,) simply as f(u). 

The following theorem will be proved in the next section. 

Theorem3.1. For each prescribed family {5~u, Ku}, f (u)  is a complex analytic 
function on a neighborhood V of u ~ in U, where u ~ represents the original com- 
plete hyperbolic structure on N. 

Let u~U be a point such that N, can be completed to a closed hyperbolic 
manifold M,, by adjoining h closed geodesics {7i} to the ends {ei} of N,,. Set ), 
=071  and L=7tJm.  Then L is a link in M, and M , - L = N , - m .  The section 
s: N,-m--*F(N,)  defined by ~ is considered as the section s: M , - L - ~ F ( M , ) .  
Note that ~ is an orthonormal framing on M u - L  having a special singularity 
at L by conditions (i) and (ii) of Proposition 3.2. Let M, be the closure of s(M, 
- L )  in F(M,). Then M, is a 3-manifold with boundary ~ M , = S w R ,  where S 
and R are mapped onto 7 and m respectively by the bundle projection 
F ( M , ) ~ M , .  Let ~ = ( e l , e 2 , e 3 )  be an orthonormal framing on a subset of M,  
containing ? such that ea(y ) is tangent to ? at each Y~7 and it has the same 
direction as the first vectors of ~ near y. Then z and ~c, define the diffeomor- 
phisms, ~, :  S i x T h S  and r S ~ •  by 

r  (v, y) = (~ 1 (Y), (cos v) e2 (Y) - (sin v) ~3 (Y), (sin v) ~2 (Y) + (cos v) ~3 (Y)) 

and 

~ (v, y) = (f l  (Y), (cos v) f  2 (y) - (sin v)J 3 (y), (sin v)J 2 (y) + (cos v) f  3 (y)) 

for v ~ S I = R / 2 ~ Z  and y~?wm.  Set ~ = ~ w ~ :  S l x L ~ S w R .  Let q: S 1 
•  be the projection onto the second factor. Let s: L ~ F ( M u )  be the 
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section defined by c~ and K,. Then as in the proof of Lemma 1.5, we have 
O*O~(Ofi?v)=O*O~((?/Ov)=O (i=1,2,3) and O*Oz3(O/Ov)=l. It follows that 
I//*(02 A 0 3 1 ) =  ~/*(03 A 012) ~--~-0 and ~ * ( 0 1 A O z 3 ) = q * s * O 1 A ( d v + q * s * 0 2 3  ) 
=q*s*O 1 Adv. The orientations of S 1 x7  and S ~ xm are given by (ea,-~/Ov) 
and (f~,-O/Ov) respectively. By calculations similar to those in the proof of 
Lemma 1.5, we have 

Ref(u) = ~ 01 A 0 2 A 03 1 ~ 0"(0,  A 0 2 3 ) - - ~  ~ 0, 
~,, 4rc2 s 1 xL AT"I" s(m) 

1 1 1 + 1  1 

1 1 

s(?) 

1 1 
= ~5 vol(M,) + ~ ~. length (7,). 

Next we consider Imf(u). Following [10], the Chern-Simons invariant 
CS(M.) of M, is defined by 

1 a 
CS(M,)= ~ I Q -4~(z (? ,  c0 + z(m, x,)) mod ~Z, 

s(Mu-- L) 

where s: Mu-L--*F(M,) is the section defined by ~ .  The fact that this is 
actually an invariant of M, follows from Corollary 1.1 in Sect. 1. Using this 
invariant we have 

1 
Imf(u)  = ~ Q - ~ -  z(m, ~c,) 

s(M~-- L) 

1 
=2 CS(M,)+~r(7,cO m o d Z  

=2  CS(M,)+~ 1~ ~ torsion (Ti)modZ. 
ZT~ i 

We set F(u)=exp(2~f(u)). Then F(u) is a complex analytic function on a 
neighborhood V of u ~ in U by Theorem 3.1. For  u6U such that N, can be 
completed to a closed hyperbolic manifold M, by adjoining h simple closed 
geodesics {yi} to the h ends of N,, 

F(u) = exp vol (Mu) + i 4 ~ CS(Mu) exp(length (7~) + i torsion (7i)). 
i= 

This proves Theorem 2 in Introduction. 

Remark. These computations show that F(u) is independent of the choices of 
{~}, {x,} and m; in particular, f(u) differs only by an integral multiple o f /  
when different choices of them are made. However this can be proved directly 
using the closedness of C. 
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The t/-invariant of M,. 
We consider tt(M,), where ueV on which f(u) is analytic and N, is com- 

pleted to the closed hyperbolic manifold M,.  Set L = T w m  as above. Let % 
=(~ ,~2 ,~3)  be an orthonormal framing on M, such that O~(y) is tangent to L 
at each y s L  and it has the same direction as the first vectors of ~ near y. As 
noted before, J~ is an orthonormal framing on M u - L  having a special singu- 
larity at L. Applying Theorem 1 to this case, we obtain 

Theorem 3.2. 

~(M,) =-~ Imf(u)  - - 6 ~  z(y, %)+  ~ d ( ~ ,  %) + ,5 (M,, a,) 

1 
+ ~ (z (m, ~c,) - ~ (m, e,)), 

where f(u) is the analytic function on a neighborhood V of u ~ in U defined in 
Definition 3.2 using the framings {~} and {K~}, and ueV. 

4. Proof of  Theorem 3.1 

Let N = A(z ~ ~ . . .  u A(z ~ be the ideal triangulation of the complete hyperbolic 
manifold N. For each point u=(z 1 . . . . .  z,) of the deformation space U of the 
hyperbolic structure on N, let N,,=A(zOw. . .wA(z , )  be the ideal triangulation 
of N,. For each ueU, starting at the ideal tetrahedron in H 3 with vertices 
{0, 1, z 1, 00}, by analytic continuation, we obtain a developing map d,,: Nu--,H 3, 
where Nu is the universal cover of N,. Thus we obtain a family of the develop- 
ing maps {du}u~ v which depends smoothly on u. 

Let p~: F= zcl(N, xo)---, PSLz(tE) be the holonomy representation defined by 
d,(g2)=p.(g)du(2), where 2eN,  and geF. 

~r has the ideal triangulation consisting of the infinite ideal tetrahedra each 
of which is a lift of some A(z~), i= 1 . . . . .  n. Let 0 be the set of all the vertices of 
those infinite ideal tetrahedra. Then we can define the image set d,(0) in 3H 3 
= IE woe. d,(0) is a subset of ~H 3 consisting of all the points each of which is a 
fixed point of the subgroup p,(gFig-1) for some g e F  and Fi=ga(~i) ( i= 1 . . . . .  h). 
For  each oe0, the coordinate of d,(o) in IE woe can be written as a meromor-  
phic function of (z 1 . . . . .  z,). Hence it gives an analytic map from U to the Rie- 
mann sphere 112 woe. 

Lemma4.1.  Let {o~,o2,o3} be a set of three distinct points in O. Let a~U and 
let U, be a neighborhood of a in U. Assume that d~(o~)4=d~(oj) ( i~j ,  i , j=1 ,2 ,3)  
for each ueU,. Then for each u s U  a, there is a unique element g(u)ePSLz(IE) 
such that g(u) d, (oi) = d,(oi) (i --- 1, 2, 3) and the map U, ~u ~ g (u)e PSL2 (~) is an 
analytic map. 

Proof If we represent g(u) by a matrix in SL2(IE), the components of the matrix 
are given by the solutions of linear equations whose coefficients are poly- 
nomials of the coordinates of d,(o~) and d,(o~) in tEw oe ( i= 1,2,3). F rom this, 
the lemma follows, q.e.d. 
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For  each subset A of N,,, we denote by .,~ the inverse image of A of the 
covering map At,--* N,. Let m be a link in N given in Proposition 3.1 and let 
{o~},,~v be a family of flamings given in Proposition 3.2. Then the lift of o~ to 
~ r - r ~  defines the map g: N , - r ~ P S L 2 ( I I 2  ) such that the following diagram 
commutes 

N. --m -------~ PSL2(~ ) 

H a 

where d, is the restriction of the developing map and the right vertical map is 
the bundle projection of PSL2(C)=F(H 3) as in Sect. 2. 

Choose lifts in N. of the n ideal tetrahedra of N,, A(zl) . . . . .  /i(z.), so that 

D u = z ] ( z 1 )  L.) . , .  U A(Zn)  

is a connected fundamental domain in N. with respect to the covering transfor- 
mation group. Then D .n rh  consists of finite arcs. Set D',=D~-Dumfi~. By defi- 
nition, ~ C =  ~ g* C, where s: N u - m ~ F ( N , )  is the section defined by ~ .  

s(Nu--m) D' 
As in Sect. 2, let P be the subset of U defined by P={u~UINu has at least 

one cusp}. By Proposition 2.1, there is a neighborhood V of u~ ~ .. . . .  z ~ in 
U such that P n V is a proper algebraic subset in V. We prove the analyticity of 

f (u)  on V. 
Since f (u)  is a smooth function on V and VmP is represented as the zero 

set of some non-trivial analytic functions, by a fundamental theorem of the 
complex function theory of several variables, it suffices to show that f(u) is 
analytic on V - P  (e.g. [3]). Let us fix an (arbitrary) point a ~ V - P .  Take an 
open neighborhood of a in V - P ,  V~, such that Va is analytically equivalent to 
the unit ball in C h (see Sect. 2) and-Vo~ V - P .  On Vo, we will express f (u)  by a 
path-integral of an analytic closed 1-form. 

Let {ak}k= 1 ...... be all the vertices of the ideal polyhedron D~, where r =  
{the vertices of D~}. For each u~V~, each vertex o k is one of the two fixed 

points of p~(gk~g; 1) in 0H 3, which are the end points of the geodesic 7k in H a 
left invariant by pu(gkliigkl), for some gk and f f / = T z l ( ~ i ) ( i = l  . . . . .  h). Set for 
6>0 ,  

D o(Yk ) = {xE H 3 Id(x, 7k) ~ (~}, 

where d denotes the hyperbolic distance. Since the flaming ~ on N u - m  is a 
simple framing on a neighborhood of the end of N u and V, is compact, we may 
choose 6 > 0  to be so small that rh c~ U Da(Tk) = ~b and g(D,~Da(Vk)) (~PSL2(C)  

k 

=F(H3)) is a part of the simple framing ~(7k) for each u~V a and k = l  . . . . .  r. 
o ! 

Set D'~'=Du--r~--UD6(Tk)=D,--UDa(Tk). By Lemma3.2,  g* C = 0  on U D6(Tk) 
k k k 

and we have S g* C =  Sg* C. The map g: D ~ P S L 2 ( ~  ) is an immersion, and 
D '  D "  

by taking the c~osure of~the image g(D~') in PSL2(~), we can compactify D~' and 
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we denote the resulting compact polyhedron by X.. Since ,~ has a special 
singularity at m, by the same argument as in the proof of Lemma 1.2 (using the 
lift of the framing ~c. on m to rh), we see that X.  is obtained by attaching a 
finite union of cylinders diffeomorphic to S ~ x(D.c~rh) after deleting D,,c~rh 
from D. - Y ba(vk). 

k 

Fig. 2 

The immersion 5 extends naturally to an immersion 5: Xu~PSL2(~ ) and 
5" C = ~ 5" C. The boundary (IX. consists of three parts, ?,X u = Y. w Z.  w W u, 

D" Xu 
v~here 

Y.=OX.-D~ (the set of the compactifying points) 

z. =D" ~(U D~(~)) 
k 

w.=~x.-(Y.wZ.). 

For each 2-face S. of W., there is another 2-face S'. of W. such that S'. = g S .  
for some g e F  uniquely determined by S., and W. consists of finite pairs of 
such 2-faces (S.,gS.). Now we fix a~V. as before, and set X = X  a, Y=Yo, Z 
=Z., W=W. and w=u(SwgS).  We note that the ideal triangulation of N 
gives a combinatorial triangulation of N and the link m is a combinatorial 
submanifold of N. If the hyperbolic structure on N varies, the combinatorial 
properties of N and m remain unchanged. Thus the combinatorial shape of X. 
remains unchanged when u varies. Each X.  has the boundary pattern indicated 
in Fig. 2 and we have a family of diffeomorphisms 

preserving this boundary pattern and sattisfying h.(gx)=gh.(x) for xeScW. 
Define 

H: Vax X-'~ PSL2(II2) 

by H(u,x)=5(h.(x)) for ueV. and xEX. 
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We define smooth 1-forms of three kinds on V. as follows. 
(i) co~(g). 
Let  gsF .  We set 

1 

c%(g)=(p.(g))* ~-~- (0 x --i 023 ) 

where we regard u--.p.(g) as a map V.---,PSL2(~ ). Col(g ) is an analytic 1-form 
o n  V a. 

(ii) o)2(g ). 
Let G: PSL2((I;)xPSLz((12)~PSL2(~ ) be the multiplication of PSL2(I12), 

G(gl,gz)=gag2(gl,gz~PSL2(ll2)). Since C is a bi-invariant form on PSL2(II2 ), 
G* C is written as 

G* C=pT C-l-- (D 2' 1 -t- (D 1'2 "~p~C 

where p~: PSLz(ff2) xPSLz(tl2)--*PSLe(C) is the projection onto the j-th factor 
i j 

( j=  1, 2) and co i'J is an analytic form belonging to /~ PSL2(II2)| PSL2((12 ) (i,j 

=1,2). 
Let (S, g S) be a pair of  2-faces of W. Let 

p x H: V. x S--*PSL2(II2 ) x PSL2(II~ ) 

be the map defined by (p x H)(u,x)=(p.(g), H(u,x)) for ueV. and xeS. Then (p 
x H)*oo 1"2 is a smooth 3-form on V. xS. By partial integration along S, we 

define the smooth 1-form on V., 

% ( g )  = S(P x H)* co 1' 2. 
S 

Let (u 1 . . . . .  Uh) be a complex coordinate on V.. Since the map 
V.~u-+ p.(g)6PSL2(tU) is analytic, each term in (p x H)* ~o 1' z which involves the 
factor d~ i ( i=  1 . . . . .  h) in its expression in the coordinate  vanishes under  the 
above partial integration. Hence Co2(g ) is a smooth 1-form on V~ which does 
not involve dfi i, that  is, it is of type (1,0). 

(iii) co3(A ). 
Fo r  ue V., let A,, be one of the ideal te trahedra {A(z~)} ( i=  1 . . . . .  n), where N. 

= A ( z 0 u . . .  uA(z.). Let J. be one of the four connected components  of Z.mA. .  
Then J,, is a triangle with 3 vertices {Vo(U),Vl(U),Vg(U)} each of which is an 
intersection of J. with an edge geodesic of the tr iangulation of X..  There is a 
unique geodesic 7(u) in H 3 such that d.(J.)cT~(7(u))={xeH3ld(x, 7(u))=6}. 
Moreover  for each j = 0 ,  1,2, there is a unique geodesic 7j(u) in H 3 such that 
d.(vj(u))=Vj(u)c~Ta(7(u)). By assumption, g(J.)cPSL2(I12)=F(H 3) is a part  of 
the simple framing ~(7(u)).  We regard ~(vj(u)) as a framing at d.(vj(u)). There is 
a unique element gi(u)ePSL2(tl?) such that ~(vj(u))=gj(u)~(vj(a)) ( j=0 ,  l, 2). 

Lemma4.2 .  The map gj: u--*gj(u) is an analytic map from V. to PSLa(C) (j 
=0,1,2) .  

Proof. The geodesics 7(u) and 7j(u) have a unique common  end point  o(u)e~H a. 
Let {o(u), o'(u)} be the end points of 7(u) and let {o(u), o"(u)} be those of y~(u). 
Then {o(u), o'(u), o"(u)} are three distinct points in ~?H 3. Hence there is a unique 



496 T. Yoshida 

element g ~ P S L 2 ( G  ) such that g maps the ordered triple {o(a),o'(a),o"(a)} to the 
ordered triple {o(u),o'(u),o"(u)}.  Then g maps 7(a) to ?(u), 7j(a) to 7j(U) and 
ff(y(a)) to ff(~(u)). Since 6 is a constant, it follows that g=gj(u). By Lem- 
ma4.1, the lemma follows, q.e.d. 

There are two elements of PSLz(G) ,  w I and w 2, such that both of them 
leave ?(a) invariant and ~(v l (a ) )=w I ~(Vo(a)) and ~(Vz(a))=w 2 ~(Vo(a)). Set aj(u) 
= gj(u) wj go (u)- 1 (j = 1,2). Then aj(u) (~(v o (u)) = ~(vj(u)), and aj(u) leaves ?(u) in- 
variant ( j=  1,2). The subgroup of P S L z ( G  ) consisting of those elements which 
leave 7(u) invariant is isomorphic to G*. The restriction of the simple framing 
~-(y(u)) to T~(7(u)), B,=~(7(u) ) [To(7(u) ) ,  is an orbit of the G* action on 
P S L z ( G  ) by the left multiplication of this subgroup. The universal cover /~, of 
B u has the G-action which is the lift of the G*-action on B,, and this G-action 
gives an identification of /1 ,  with G. The map g immerses the triangle J, into 
B,, and the immersed image ~(J,,) lifts to an embedded triangle J, in /~,. With 
respect to the identification of/~,  with G, J, is considered as an affine triangle 
with vertices {U0(U),UI(b/),Uz(U)} where O;(u) is the lift of ~(vj(u)) in B, to /~, (j 
=0, 1,2). Let ( to, t~, t2)  be the barycentric coordinate of J, with respect to the 
affine structure o n / ~ , = G ,  and we write the points of av, as ~t/~j(u). Identifying 
J, with J, by the embedding, we write the points of J, as ~ t j v j ( u ) .  The ele- 
ments al(u  ) and a z ( u ) ~ P S L 2 ( G )  are contained in the subgroup which leaves 
7(u) invariant, hence they are considered as two elements in G*. Hence we may 
write as 

~(~ tj vj (u)) = a 1 (u) t' a 2 (u) t2 ~(vo (u)), 

where aj(u) z is defined by analytic continuation. Since g(Vo(U))=go(U)~(Vo(a)), 
we have 

~( Z t j v j(u)) --- a i (u) '~ a2 (u) 'z go (U) s(v 0 (a)). 

Let J be the euclidean triangle in the real plane ]R 2 with vertices 
{(0,0),(1,0),(0,1)} and let (to,tDt2) be its barycentric coordinate. Define the 
map 

by 

A: V a x J - - * P S L 2 ( G  ) 

A(u,  (to, t l ,  t 2 ) )=a l  (u) '1 a2 (u) t2 go(U). 

Then A is a smooth map and, for each (to,tl,t2), the restriction of A to V a 
x (to, tl, t2) gives an analytic map from Fa to P S L 2 ( G  ) by Lemma 4.2. 

We define 

r fA* C, 
J 

where ~ means the partial integration along J. Then m3(A) defines an analytic 
./ 

1-form on V,. 
Using the above smooth 1-forms on V, of three kinds, we proceed to prove 

that f ( u )  is written as a path integral of an analytic closed 1-form on V,. 
Let u(t) ( 0 < t < l )  be a smooth path in V, with u(0)=a and u(1)=u. Set 
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H(t,x)=H(u(t),x) for te[0,  1] and xeX,  where H(u,x): V~ • X-~PSL2(~  ) is de- 
fined as before. H=H(t ,x )  is a map from [0,1] x X  to PSL2(~ ). Since C is a 
closed form, by Stokes's theorem, we have 

0 = ~ dH* C 
[O, 1 l x X  

= S H ' C -  ~ H ' C +  ~ H*C. 
I x X  O x X  [0, 1] xSX 

Since, for j = 0 ,  1, H(j,x)=H(u(j) ,x)=gh.o)(x ), we have 

I H * C = ~ g * C  and f H*C=~g*C.  
1 x X  Xu 0 x X  X 

It follows that 

S g* C-~g*  C= - ~ H* C. (1) 
X. X [0, 11 x OX 

Since ~ X =  Y u Z u W  as before, we have 

H ' C =  f n ' C +  I U ' C +  S U*C. (2) 
[0, 11 x OX [0, 1] x g [0, 11 x Z 10, 11 x W 

At first we consider the integral on [0,1] x Y of H* C. The framing K, 
=(f~,f2,f3) on m in N, lifts to the framing ;c.=(f~,fe,f3 ) on r~ in N,. As in the 
proof of Lemma 1.2, we have the diffeomorphism 

defined by 

~: [O, 1 ]xS l  x(D~c~fiO--+[O, 1]x Y 

0(t, v, y) = {t} x h.},] (fl(Y), (cos v)f2(y ) - ( s in  v)f3(y ), 
(sin v)f z (y) + (cos v)f  3 (y)) 

for te[0, l] ,  veSl=F.~/2n7Z and y e D . c ~ ,  where we identify D.c~r~ with 
D.u)c~r~ (0=<t__<l), h.u): Y--* Y.u)is the diffeomorphism defined as before and 
Y.u) is considered as an (immersed) submanifold of PSL2(C ). As in the proof of 
Lemmal.5,  we have (O* H* Oi)(#/#v)=(O* H* Oil)(8/#v)=O ( i=1,2,3)  and 
(0" H* 023)(0/~v ) = 1. It follows that 

1 
~* H*(d(O 1/x 023)) + ~ 0* H*(023/x d023 ). 0* H* C =  - 4 n  ~ 

The orientation of [0,1] x S 1 x (DaC~rh) is given by (~3/~t,-~/Ov,f O. By calcu- 
lations similar to the ones in the proof of Lemma 1.5, using the partial integra- 
tion along S 1 and Stokes's theorem, we have 

i H ' C =  S ~ * H * C  
[0, 1] x Y [0, 1] xS  1 x (D~ c~r~) 

1 1 
-- ~ s * ( 0 , - - i 0 2 3 ) + ~ 0  ~ s*(01-i023) 

2 %  1 x(D.  nr~) x ( D . c ~ )  

1 
+ - -  ~ s*(01--i023 ), 

2re to, 1] • O(D~ 
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where s: [O, 1]• is defined by s(t,y)=gc,m(y ) for tc [0 ,1]  
and y~D,~rh. It can be easily shown that 

s*(01--i023) = ~ (0~-i023), 
1 x (Da c~ rh) s(m) 

where s: m--* F(N.) is the section defined by ~c,, and 

S * ( 0 1 - - i 0 2 3 )  = ~ ( 0 1 - - i 0 2 3 ) ,  
0 x (Da c~ rh) s(m) 

where s: m--* F(N~) is the section defined by K~. 
By definition of f(u) and (1) and (2) above, we obtain 

, 1 
f ( u ) - f ( a ) = -  ~ s ~(01- - i023  ) 

[0, 1] x c~(D~ c~rh) 

- ~ H ' C -  ~ H * C .  (3) 
[O, 1 ] x W  [0,11 x Z  

(i)' 

We consider the three integrals of the right hand side of (3) separately. 

s* 2~ (01 --i023 ) 
[0, 1] x O(Da r~ rfi) 

DaC~Vh consists of finite arcs and 8(D~c~rh) is a finite union of points. As m 

Hence 

where (p x s)(t)=(p,(t)(g ), s(t,y)). Since ~ is a bi-invariant 1-form on PSL2(II2), 
we obtain G* 45=pT 45+p~ q~. It follows that on [0, 1] x gy, 

s* ,p = (p. ,)(g))* ~ + s(t, y)* r 

S s*rb-  ~ s 'q,  
[0, 11 xgy  [0, 11 xy 

= ~" (p. , , (g))* ~. 
[o, 11 

[0, 1] p• , PSL2(C ) x PSL2(I~ ) G , PSL2(I~) ' 

is a finite union of disjoint simple closed curves, g(D,c~rh) consists of finite 
pairs of two points (y, gy), where g e e  is uniquely determined by y. For sim- 

1 
plicity, we set ~=~nn(01- i023  ). Since y and gy have mutually opposite orien- 

tations in 8(D, nrh), we have 

s * ~ = X e y (  ~ s * ~ -  ~ s*~), (~y=_l ) ,  
[0, 1] x ~(Da r  [0, 1] x gy [0, 1] • y 

where [0,1] x gy  and [0,1] x y are both oriented as [0, 1] with natural orien- 
tation. Since s(t,y)=~.(t)(y ) ( O ~ t ~ l )  and ~u,) is the lift of Ku(t) to r~, we have 

s(t, g y) = pu~,)(g) s(t, y). 

Hence the map t~s( t ,  gy) is the composition of the maps 
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Therefore ~ s* q~ is a sum of path integrals along u(t) of 1-forms of 
[0, 1] x ~(Da c~ fro 

type (i). 

(ii)' ~ H* C. 
[ 0 , 1 ] x W  

W is a finite union of the pairs of the 2-faces (S, gS). Choose the orien- 
tations of S and gS such that g: S ~ g S  is orientation-preserving. Then the 
orientation of S induced from X is opposite to that of g S. Hence 

H* C = E e s (  ~ H ' C -  ~ H* C), (es= _1). 
[0, 1] • W [0, 1] • gS [0, 1] x S 

For each (t, gx)6[O, 1] x gS, H(t, gx)=gh.(r)(gx)=3g(h.it)(x))=p..)(g)gh.(t)(x ) 
=pu.)(g)H(t,x).  Hence H: [0,1] •  ) is considered as the compo- 
sition of the maps 

[O, 1 ] x S  P •  ) ~ PSL2(~), 

where (p x H) (t, x) = (P,(t)(g), H(t, x)). As before, G* C = PT C + 0,) 2, 1 + col, 2 + p~ C. 
For dimensional reasons, (p x H)*p* C = 0  and (p x H)* co2,1=0 . Therefore 

It follows that 

This shows that 
type (ii). 

(iii)' 

(G(p x H))* C = (p x H)* co x, 2 4_ H* C. 

H* C -  ~ H* C 
[0, I I  •  [0 ,1]  xS  

= ~ ( p x H ) * o )  1'2 
[O, 1 ] x S  

= S (~(P• *co''2) 
[0, 1] S 

= ~ co2(g). 
[o, 1] 

H* C is a sum of path integrals along u(t) of 1-forms of 
[O, 1 ] •  

H* C 
[O, 1 ] x Z  

Z = Z~ is a finite union of the triangles {J.} described in (iii) and 

S H*C=E I H * C  
[0, 1] x Z  [0, 1] xJa 

Each Ja has the barycentric coordinate as in (iii) and identifying Ja with the 
triangle J in the real plane ~2 with vertices {(0,0), (1,0), (0, 1)}, H is considered 
as the composition of the maps 

u(t) • 1: [O, 1]xJ - -*Va•  

and 

A" V a x J ~ PSL2(~), 
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where A is the map defined in (iii). It follows that ~ H* C is equal to a 
[0, 11 x Jo 

sum of path integrals along u(t) of 1-forms of type (iii). 
By (i)', (ii)' and (iii)' above, we see from (3) that ( f  (u)-  f (a)) can be written 

as a path integral along u(t) of a smooth 1-form co on V a which is a finite sum 
of 1-forms defined in (i), (ii) and (iii). Let (u 1 . . . . .  Uh) be a complex coordinate  on 
V a. Then each 1-form defined in (i), (ii) and (iii) does not involve d~i ( i=  1 . . . . .  h) 
in its expression, that is, it is of type (1,0). Therefore co is written as 

co = 2 coi(/A 1 . . . . .  Uh) dul 

where co~(u~ .... ,uh) is a smooth function of (ul . . . . .  uh) for each i= 1 . . . . .  h. Thus 

f ( u ) - f ( a ) =  ~ ~ coi(ul . . . . .  Uh)dU i. 
u(t) 

The  path u(t) may be arbitrarily chosen in V a and the left-hand side of the 
above equat ion depends only on the end point  u=u(1). This implies that co is a 
closed form. However  dco=O implies that each co~ satisfies the Cauchy-Rie-  
mann equations at each point  of Va. Hence co is an analytic 1-form and f(u) is 
an analytic function on V,. Since a is an arbitrary point in V - P ,  this proves 
Theorem 3.1. 

5. An example Figure eight knot complement 

Let S 3 be the unit sphere in (F 2, sa={(za,z2)EC2llZll2+lz2[2= 1}. We orient S 3 
as the boundary  of the unit disc in t/~ 2. Let  K be the figure-eight knot  in S 3. 
Then  N = S  3 - K  has a complete hyperbolic structure of finite volume with one 
cusp [14]. N is decomposed into two ideal terahedra N = A(e ~/a) w A(e~V3). The 
deformation space U of the hyperbolic  structure on N has complex dimension 
1 and the points of U are parametr ized by pairs of complex numbers (z, w) in 
the upper half  plane satisfying the equation (I) in Introduction.  Fo r  u 
=(z,w)~U, the corresponding hyperbolic  manifold N, is given by N~ 
=A(z)~A(w) with same gluing pat tern as N, and the equat ion (I) is the con- 
sistency condit ion in Sect. 2 ([14], w 

For  u=(z,w)4:u~ "i/3, e~i/3), let T~(e) be the 6-torus section of the end 
of N u (6 is sufficiently small). Let  (ml,10 be a meridean-longitude pair on T~(e): 
in S 3, m I bounds a 2-disc in a tubular ne ighborhood of K and 11 is homo-  
logous to zero in Q3-K .  Taking a suitable ho lonomy representat ion p,: 
nl(Nu)~PSL2(ffJ), p.(m 0 and pu(l~) are given as isometries of H 3 by 

p,(ml)(c , t)=(w(1 -z)c ,  Iw(1 -z) ]  t) 
(III) 

p,(lO(c, t)=(zZ(1 - z ) :  c, ]z/(1 - z )  2l t), 

for (c,t)~H 3 ([14], w 
For  each coprime pair  of integers (p,q) such that [p]_>5 if [ql = l, there is a 

point  u(p,q)=(z,w) of  U satisfying the equation (II) in Introduction.  N, can be 
completed to the closed hyperbolic manifold Mp, q by adjoining a simple closed 
geodesic ? to the end of  N, ([14], w 
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We prove Theorem 3 in Introduction by applying Theorem 3.2 to tl(Mp, q). 
Our method is as follows. At first we determine the analytic function f (u)  
= f ( z , w )  for a suitable family of framings {~} and {~,}. Next we compare 
tl(Mp, q) with tl(L(p,q) ) which is known [2], where L(p,q) is the Lens space with 
the standard metric. Note that Mp, q is topologically obtained by performing 
Dehn surgery of type (p, q) along K. If we perform Dehn surgery of type (p, q) 
along the trivial knot K 0 in S 3, we obtain the Lens space L(p,q). From this we 
obtain a degree 1 map H: Mp, q ~ L(p, q), and using the functorial properties of 
the third and the fourth terms of the right-hand side of the equation in Theo- 
rem 3.2, we deduce the formula in Theorem 3. 

We need some preliminaries. 
Let 1: $ 3 ~ S  3 be the involution defined by i (z l ,z2)=(-21,-z2)  for 

(z~,Zz)ES 3, where 2~ is the complex conjugate of z~. Then it is well known that 
the figure-eight knot K can be arranged so that l ( K ) = K  and the two fixed 
points of t lies on K. Let E be an 1-invariant tubular neighborhood of K. Then 
there is a 2-disc D in the interior of E, /~, such that l(D)= D and D c~ K = one 
point. Let m=(?D and L = K u m .  Let S~={(zi,O)llz~]=l }, S2={(O, z2)[Iz21=1 } 
and L o = S  1 wS  2. Then t(S1)=S 1 and l(S2)=S 2. 

LemmaS.1. There is an orientation-preserving map k: $3--.S 3 such that 

(i)  k ( K ) = S  1 and k(m)=S 2, 
(ii) k maps the neighborhood E of L = K ~ m  diffeomorphically onto a neigh- 

borhood E 0 of L o = S  1 wS2, and k(S 3 - E ) C S  3 - E o ,  
(iii) k l = t k .  

Proof. Let So={(1/V~, z /V~)[ I z [=l}~S  3. Then l(So)=S o. Let R 0 be a small 
closed tubular neighborhood of S o such that z(Ro)=R 0 and RoC~Lo=q~. Let E 0 
= $ 3 - / ~ 0  . Then L o ~ E  o. Let 1' (resp. l~) be a simple closed curve on 0E (resp. 
~Eo) such that l(/ ')nl '=~b (resp. ~(l~))c~lo=~b ) and it is homologous to zero in 
$3 - /~  (resp. S 3-/~0). Let D 2 be the unit 2-disc in R2 and let �89 z be the 1- 
sphere of radius �89 in F,~ 2. Then the quadruples (E, K, m, l') and (Eo, $1, $2, l~) are 
both equivariantly diffeomorphic to the quadrupole (S 1 •  2, S 1 • 1 •189 z, 
S 1 • t) with involution defined by (z,y)~(2,  -y ) ,  where z6S 1 and yED 2 and we 
regard ]R z as the complex plane ~. Hence there is an orientation-preserving 
diffeomorphism k': E ~ E  0 such that k'(K)=S1, k'(m)=S2, k'(l')=l 0 and k't 
= t k'. The complements S 3 - /~  and S 3 - / ~ = R  0 have the free involutions (the 
restrictions of l), and k' is defined on their boundaries. Let k': O(S 3 
-E)/z  ~ORo/t be the quotient diffeomorphism. Since Ro/t is homotopy equiva- 
lent to S 1, the only obstruction to extending k' to map from (S 3 -/~)/~ to Ro/t 
lies in the group Hz((s 3-/~)/z, ~, 7/)=7/, and it can be measured by the differ- 
ence of the homology classes k'.[/ '] and [1~)] in HI(ORo/t,7/), where 1' and 1~ 
are identified with their images in the quotient spaces and k'(l') and 1~ are 
considered as the curves in ORoo/t. Since -' ' ' k (1)= 10, this obstruction vanishes, and 
k' extends to a map k": ( S 3 - E ) / I ~ R o / L  Let k": S a - E ~ R o  be the map which 
covers k" and coincides with k' on the boundary 0(S 3-/~). Define k: S 3--*S 3 by 
k lE=k '  and klS 3- /~=k' ' .  q.e.d. 
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Lemma5.2.  The map k in Lemma 5.1 is covered by a vector bundle map Tk: 
T S 3 ~  TS  3 of the tangent bundle of  S 3 such that Tk 1, = 1, Tk, where t ,  is the 
differential of  1. 

Proof Let E 0 be as in the proof of Lemma 5.1. By the construction of k in the 
proof of Lemma 5.1, kLE: E ~ E  o is an equivariant diffeomorphism. We set Tk 
= k , ,  the differential of k, on E. The restrictions of i ,  to T(S 3 - E )  and TR o are 
free involutions. The quotient spaces T(S 3- /~) /1 ,  and TR o / t ,  are the tangent 
bundles of (S 3 -/~)/t  and Ro/toreSpectively; The quotient of k , ,  k , ,  is defined on 
their boundaries, k ,  : T(S 3 - E)/1, l0 (S 3 - E)/t ~ TRo/1 , I ORo/t. The only obstruc- 
tion to extending this bundle map to a bundle map from T ( S 3 - E ) / 1 ,  to 
TRoll  , lies in the cohomology group H2(S 3 -E l i ,  •, ~zl(GL3(]R))=7Z 2. It can 
be seen that the obstruction lies in the subgroup 6"H1(c3(S 3-E)/1,7Z2) , where 
6" is the coboundary homomorphism,  and it can be measured by the restric- 
tion of k , ,  k , :  T ( S 3 - E ) / z , [ l ' ~ T R o / z , l l ' o ,  where l' and l o are the curves de- 
fined in the proof of Lemma 5.1. Since k maps l' to l'o, t3E to ~R o diffeomorphi- 
cally and T k = k ,  on E, it can be seen that this obstruction vanishes. Hence 
there is a bundle map extending f~, from T(S 3 -/~)/1, to TRo/ t , ,  and taking 
the bundle map from T(S 3 - E )  to TR o which covers it, we obtain the desired 
bundle map  Tk. q.e.d. 

Lemma5.3.  Let k and Tk be the map and the bundle map in Lemmas 5.1 and 5.2 
respectively. Then 

( i )  the map k: $3----~S 3 extends to a map k: D4 ~ D  4, and 
(i i)  the bundle map T k O  1: TS 3 ~8----~ TS30)8 extends to a bundle map TF:: 

T D 4 ~ T D  4 which covers k, where I: e ~ e  is the identity map of  the trivial line 
bundle and TD41S 3 = TS 3 Oe. 

Proof. (i) Since D '~ is contractible, (i) follows by obstruction theory. 
(ii) The only obstruction to extending T k |  1 to a bundle map over TD 4 

which covers k lies in the group H4(D4,0,~za(GL4(~)). Since T k O 1  preserves 
the subbundle e, this obstruction is contained in the image of the composition 
of the maps 

H3(S 3,/13 (GL3 ( ~ ) ) ~  H3(S 3, ~13 (GL4(~;~))~ H4(D 4, S 3, 713 (GL4(Fx))), 

where i: GL3(]R)--~ GL4(~t. ) is the canonical inclusion and 6" is the coboundary 
homomorphism. Let F be a framing on S 3 and set F(x)=(el(x) ,e2(x) ,e3(x))  for 
x ~S  3, where ei(x)eTxS 3. Then (Tk)(F(x))=(Tk(el(x)) ,  Tk(e2(x)), Tk(e3(x))) 
=(el(k(x)) , ez(k(x)), e3(k(x)))A(x ) for some A(x)eGL+3(N), where GL+3(N) de- 
notes the connected component  of GL3(N) containing the identity element. 
Thus we obtain a continuous map A: S3~GL+3(IR) and the above obstruction 
can be measured by the homotopy  class of A, [A]eTt3(GL+(I~))=Z, which does 
not depend on the choice of the framing F. By Lemmas 5.1 and 5.2, k t=  l k 
and Tk t ,  = t,  Tk. If we replace F by 1, F, A(x) is replaced by A(t x) for x s S  3. 
Since 1 is orientation reversing, we have [A] = - [ A ] .  It follows that [A] =0,  
and the obstruction vanishes, q.e.d. 
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Let N = S  3 - K  be the complete hyperbolic manifold of finite volume with 
one cusp. Then the involution t can be considered as an isometric involution lu 
on N. Let m be a meridean curve of K which lies on a flat torus section of  the 
cusp of N. We choose m so that 1N(m)=m and m is a simple closed geodesic 
with respect to the euclidean structure on the flat torus section. The map  k in 
Lemma 5.1 gives an equivariant map k: N ~ ( S 3 - S 1 )  such that k (m)=S  2. 

For  a point (zI,Z2)ES3-Lo=S3--Slk.)S2, w e  set  (zl,zz)=(]//texpiO, 

] / / 1 - - t exp i0 ) ,  where 0 < t < l ,  0 < 0 < 2 ~ z  and 0 < 0 < 2 ~ z .  In this parametri-  
zation, t is represented by l(0, ~0, t) = ( - 0, 0 + ~c, t). 

Each torus section T of the cusp of N has a meridean-longitude pair  of 
closed geodesic curves on it with respect to its euclidean structure. By con- 
struction of k in the proof  of Lemma 5.1, we can make the following assump- 
tion on k, 

(**) In a small ne ighborhood of the end of N, k maps each flat torus sec- 
tion T to a torus T =  {(O,O,t)lt=c}, and k maps each euclidean closed geodesic 
curve on T parallel to the meridean (resp. the longitude) on it to a curve {0 
=cons t}  (resp. {0=cons t} )  on T c. 

For  each ueU, if we deform the hyperbolic structure on N to N,, each flat 
torus section of the cusp of N becomes a 6-torus section of the end of N u for 
some 6 >0.  Hence k has the same property (**) in a ne ighborhood of  the end 
of N,. 

Let /~(t) be a smooth  monotone  increasing function defined on [-0, 1] such 
that p( t )=O (O =< t __< l/3) and /~(t)=l (2/3_<_t_-<1). Let W o be the framing on S 3 
- L  o defined by, for x =(0,  ~, t), 

01 si: 3 
\ s i n  g#(t)  0 cos ~#(t) / 

Then 

L e m m a  5.4. There is an orthonormal framing ~ =(e  1, e2, e3) on N - m  such that 

( i)  ~ is a simple framing ~ (Q  on a neighborhood of the cusp and F has a 
special singularity at m, 

(ii) ~ Q = 0 ,  where s: N - m ~ F ( N )  is the section defined by o~, and 
stN--m) 

(iii) the bundle map Tk in Lemma 5.2 can be deformed by fibre homotopy so 
that it may satisfy T k ( ~ ) = ~ o  . 
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Proof Let Tk: T N ~  T(S 3 -$1 )  be the restriction of the bundle map  in Lem- 
ma5.2 .  There is a f raming o ~ ' = ( e ] , e ~ , e ; )  on N - m  such that  Tk(Z'(x)) 
=O~o(k(x)) for x e N - m .  For  each x e N - m ,  applying the Schmidt  o r t hono rma-  
l ization to Z ' (x ) ,  we obtain  an o r thonorma l  f raming Z ( x ) = ( e l ( x ) ,  e z(x), e3(x) ). 
By (**) and the construct ion of k, we may  assume that, near  the cusp, the e 3- 
vectors are t ransversal  to each torus section of the cusp and ~- is t N- 
equivariantly homotop ic  to a s imple framing. Near  m, the el-vectors  are direct- 
ed along m and Z is tN-equivariantly homotop ic  to a f raming which has a 
special singularity at m. Hence  we may deform ~ ~N-equivariantly near  m, so 
that  it may  satisfy (i). Since t. Tk = Tk tN. and l .  maps  the vector  fields {0/0~b}, 
{0/~30} and {~/Ot} to {0/~b}, { - 0 / ~ 0 }  and {O/~t} respectively, ~N* maps  the 
f rame field (e ' l ,ez,e;)  to (e' 1, - e ~ , e ; )  and hence (e l ,ez ,e3)  to (el, - e2 ,e3) .  F r o m  
this, it follows tha t  t's* Q =s*  Q by definition of the Chern-Simons  form Q. As 
z N reverses the or ientat ion of N, 5 s 'Q= ~ t * s * Q = -  ~ s*Q and it must  

N - - m  N - - m  N - - m  

be zero. This proves  (ii). By construction,  we m a y  deform Tk by fibrewise ho- 
m o t o p y  so that  it may  satisfy (iii). q.e.d. 

Using the o r thonorma l  f raming ~" on N in L e m m a  5.4, by Proposi t ion 3.2 
and its proof,  we obtain  a family of o r thonormal  framings {~}u~v on the fami- 
ly of hyperbol ic  manifolds {N,}u~ v such that  each ~ has the propert ies  men-  
t ioned in Proposi t ion 3.2 and ~ o = ~  ~, where u ~ corresponds to the original 
comple te  hyperbol ic  structure on N. 

We have chosen the mer idean curve m in N lying on a fiat torus section of 
the cusp. We choose an o r thonorma l  f raming fc=(f 1,fz,f3) defined on m as 
follows: at each y~m, f~(y) is the unit tangent  vector  at y of m having the same 
direction as the first vectors of ~ near  y, fz(Y) is tangent  to the torus section 
on which m lies, and f3(Y) is no rmal  to it. No te  that  this f raming ~ induces a 
p roduc t  s t ructure D 2 x m on a tubular  ne ighborhood  of m such that  1 x m is 
homotop ic  to zero in S 3 - m .  

Lemma5.5. Let s: m-~F(N) be the section defined by ~:. Then ~ 023=0. 
s(m) 

Proof By definition of ~, it follows that s* 023=0. q.e.d. 

For  each u~U, let ~% be the o r thonorma l  f raming on m defined by the 
Schmidt  o r thonormal iza t ion  of K with respect to the hyperbol ic  metric  of N~. 

We define the complex function f(u) on U by, for u~U, 

1 
f (u)= ~N,~- m) C-2-~s!m)(Ol - i  023)' 

where s: N , - m ~ F ( N , )  and s: m--*F(N,) are the sections defined by ~ and K, 
respectively. 

Proposition 5.1. f (u) is a complex analytic function on U. 

Proof By the p roof  of T h e o r e m  3.1, it follows that  we may  take as V in Theo-  
rem 3.1 any ne ighborhood  of u ~ such that  Vc~P is a proper  analytic subset in 
V, where P is defined as before. In this case P = { u  ~ and we m a y  set V 
= U .  q.e.d. 
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Theorem 5.1. For u =(z, w)~ U, setting f(z, w) =f(u) ,  we have 

f (z, w)= - ~  (R(z)+ R(w)-n6 ), 

where R(x) is the function on the upper half plane defined by 

R(x) = �89 log x log(l - x) - i log(1 - t) d log t. 
0 

Proof. At first we calculate the real part off(z,w). Let u=(z,w) be a point of U 
- u  ~ Let Eo(e) be the f-neighborhood of the end e of N,, (see Sect. 3, for defini- 
tion) and let T6(e)=OEo(s) be the 6-torus section of e, where 6 > 0  is sufficiently 
small. We may assume that F,=F(~,) is a simple framing on E~(e) by (ii) of 
Proposition 3.2. Let X~ be the closure of s(Nu-E~(e)-m) in F(N,), where s: N, 
-m~F(N, )  is the section defined by ~,. Then X~ is a 3-manifold in F(N,) with 
boundary 3X=s(T~(s))uR, where R is mapped onto m by the bundle pro- 
jection F(N,)--,N,. We have 

Ref(z,w)= ~ ReC - 1~  
2n ~01 

1 
=lim I R e C - ~ -  ~ 01 . 

~ 0  Xr s(m) 

Now 

Re C=~2 0 ~ A O2 A O3--4@dO , 

where 0=01A023-t-02 A031"-~03 A012. Hence 

lim ~ ReC=l imx~ ~ 1 S 1 ~ o x ~  ~ o  ~ 01A02 A 0 3 - 1 i m  -;Z~_E d O 
~ 0  X~, 41r, 

1 _ s l o ,  = ~ v o l ( N , , ) - l i m  S ~ O  
6 ~ 0  s(T,~(e)) R ~162 

by Stokes's theorem. 
Let ~: S 1 xm-~R be the diffeomorphism defined by 

0(v, y) -- (fl (Y), (cos v)f2(y) - (s in  V)fa(y ), 

(sin v)f 2 (y) + (cos v)f 3 (y)), 

where v~SI=IR/2nZ and yem and ~u(y)=(fl(y),f2(y),fa(y)). Then ~* Oi(c~/c3v ) 
=0*  Oil(t?/cSv)=O (i= 1,2, 3) and 0* 023(c~/c3v)= 1 as in the proof of Lemma 1.5. 
The orientation of S 1 x m is given by (fl, -cS/Sv). Hence by calculations similar 
to the ones in the proof of Lemma 1.5, we have 

t ! 1 ~,. 
4g 2 O-- 4n 2 ~ 01 ^0"013.  

Sl x m  

1 
= 2 ~  f 01, 

s(m) 

where s: m ~ F(N~) is the section defined by ~u. 
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1 

We compute - ~ ~ O .  Let N, be the universal cover of N, and let 
s(T6(~)) 

E~(e) be a connected component of the inverse image of E~(c) of the covering 
projection. Let du: N . ~ H  3 be a developing map of N.. By conjugation by an 

element of PSL2(II;), if necessary, we may assume that Eo(e) is mapped by d. 
into the cylinder around the t-axis, 

where (r, ~, ~b) is the polar coordinate of H 3 defined in Sect. 3. Set T 6 = ~E 0. Let 
7"0 be the universal cover of T 0. On ~ ,  we can put the complex coordinate z 
=logr+i~b for z e ~ ,  where (r, qS) is the part of the polar coordinate of the 
image of z in T o by the covering projection�9 Then T0(e ) is identified with the 
quotient space of 7"6 by the Z x Z-action generated by the translations by two 
complex numbers 

{log w (1 - z), 2 log z(1 - z)} 

by (III) at the beginning of this section [14]�9 Let I be the parallelogram span- 
ned by these two complex numbers in the complex plane. Then I is a funda- 
mental domain of this 2g x Z-action. From the equations in the proof of Lem- 
ma3.2, we have, on ~ ,  

O = " (1 +sin 2 fl~ (d log r)/x (dqb), 
~ S ~ 

cos 2/~ ! 

where s: ~-~PSL2(C ) is defined by the simple framing .~-(t-axis). Since 
=Y(e) on E0( 0, we have 

1 1 (1 +sin2 fi~ 
- ~ T25_zO=Tu2_2 ~d logrAd4)  

~r~)) 4 ~ 4re cosZ/~ ] I  

_ 1 [ l+s in2 f i ]  

4rd \ ~ ] 

�9 2 [arg z(1 - z)log lw(1 -z)l - a r g  w(1 -z ) log  Iz(1 - z)l]. 

As 6 ~ 0 ,  B--'0 and from (1) above, we obtain 

R e f  (z, w) = ~ vol (Nu) (2) 

1 
+ ~  [arg z(1 - z) log I w(1 - z)l - arg w(1 - z) log Iz(1 - z)l]. 

Now N , = A ( z ) w A ( w )  and vol(N,,)=vol(A(z))+vol(A(w)).  There is a well- 
known formula for the volume of an ideal simplex in H 3 (see [6, 13]), and we 
have 

~ v o l ( N u ) = ~  arg(1 - z ) log  I z l - Im  ~ log(1 - t ) d l o g  t 
0 

1 a r g ( 1 - w ) l o g l w l - I m ~ l o g ( 1 - t ) d l o g t  . 
+ ~  o 
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Using the equation (I) in Introduction, the second term of the right hand side 
of (2) can be written as 

1 
2 n2 [arg z log [1 - z] - arg (1 - z) log L z [] 

1 
+ ~ - ~  [arg w log [1 - w t -  arg(1 -w) log  [w]]. 

Summing up, we have 

R e f (z, w)= ~z lm [�89 z log(1-  z) - i log(1- t )  d log t ] 

1 [ w ] 
+ ~ s I m  � 8 9  

o 

i 
= - Re (~(R(z )+  R(w))). 

Both sides of this equation are smooth functions on U, and hence the equality 
holds at u~  ~i/3, e~/3). By Proposition 5.1, f(u) is an analytic function on U. 
Since two complex analytic functions with the same real parts differ from each 
other only by an imaginary constant, it follows that 

i 
f (z, w) = - ~ ( R ( z )  + R(w)) + ic, lr- 

for some real constant c. By Lemmas 5.4 and 5.5, we have Imf (u~  We 
may calculate the value ReR(e~i/3)=g2/12, and we have c=1/6.  This proves 
the theorem, q.e.d. 

Here we insert the following subsection. 
Subsection: Lens space. 
Let (p,q) be a coprime pair of integers. Let r and s be the integers such that 

O__<r<lp[ and p s + q r = l .  The Lens space L(p,q) is the quotient space of S 3 by 
Zp action generated by ~(Z1,Z2)=(~ZI,~rZ2) for (zl,z2), where ~=exp2ni/p.  
L(p,q) is naturally oriented and has the standard metric of constant sectional 
curvature 1 as the quotient space of S 3. We denote the image of (z~, zz)eS 3 by 
the canonical projection by [z 1, z2]. Thus [~ zl, ~" z2] = [zl ,  z2]. 

Let q~l and ~b 2 be the embeddings D 2 x S l~L(p ,q )  defined by 

[ bl/V 
q~l (a, b) = [ _ - ~ ,  

a b q/p 
02 (a, b) = [ ~ ,  

a b "/p ] 

bl/P ] 

where a and b represent complex numbers such that 0__< la[ _-< 1 and [b[ = 1. Then 
L ( p , q ) = D 2 x S l ~ g D 2 x S  1, where g=q~-lq~l: ~D2xSI~c?D2xS  1 is given by 
g(a,b)=(a-q b ", aP br), for (a,b)ec?D 2 x S 1. 
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Let Sa={(zl,0)l[zl[=l}, S2={(O, z2)[Iz21=l} and Lo=SIuS 2 as before. 

The action of f on S3-Lo is written as f(0,0, t)= 0+  , O + ~ 2 ~ , t  . We de- 

note the image of the point (O,O,t) in L(p,q) by [O,O,t]. Let L o = S  1 wS 2 be the 
image of L o in L(p, q). Define the map 

h: S3-Lo--* L(p,q)-Lo 

by h(O,O,t)= O,O+-s . Then h is an orientation-preserving diffeomor- 

phism, and it extends naturally to a diffeomorphism /~: S3-SI~L(p,q)-S1. 
We identify L(p,q)-L o with S3-Lo and L(p,q)-S~ with $3-S~ by h and /~ 
respectively. With this identification, the metric on L(p, q) is written on S 3 - L  o 
a s  

dsZ=(]/~t~dO)Z_t_(1]fi~_t(dtp_t_~dO))Z+( 1 _dt) z. 
2]/t(1 - t )  

Define the framing 9o(p,q) on S3-Lo by, for x=(O, Gt), 

~ - t  - ~ t  (pS/80-r3/O~)'2]~-t)O/Ot) 

. (c~ o~(t) ~ - Sio~ ~t(t) ) 

\sinrc#(t) 0 cosn/~(t) / 

where/~: [0, 1] ~ [0, 1] is the smooth function defined before the definition of 
the framing Z o. Then ~o(P,q) is orthonormal with respect to the above Lens 
space metric. Actually Zo(p,q) is the orthonormalization of ~o with respect to 
that metric. Near S~ m L(p,q), 

1 8/c~tp,-~t(pO/c~O-rS/c~t)) , - 2 1 / ~ - t )  8/St ) 
G ( P ' q ) =  ( ]//1--t 

and near $2 c L(p, q) 

~o(P, q)= ( 1 ~ _  t 8/8~J,-~t(PS/OO-rO/St~),2]//t(1ZOt)8/St) �9 

From this we see that afo(p,q) has a special singularity at $2 but it does not at 
$1. We deform it slightly near $1 and define the framing Z(p,q)  on S 3 - L  o as 
follows: for x=(O, Cc, t), setting Z(p,q)(x)=(el(x),e2(x),e3(x)) and Zo(p,q)(x ) 

! t t = (e 1 (x), e z (x), e 3 (x)), we define 

e 1 (x) = (cos v (t)) e~ (x) + (sin v (t)) e~ (x) 

e2 (x)  = - ( s in  v(t)) e' 1 (x)  + ( cos  v(t)) e~ (x) 

e3(x)=e'3(x) 
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where v: (0, 1)--.ll/2z~TZ. is a smooth map such that v ( t )=0  for 0 < t <  1 - e ( e > 0  
is sufficiently small), v(t)=v o (constant) for l - ( e / 2 ) < t < l  and in this range 
e 1 (x) = (cos Vo) e' 1 (x) + (sin vo) e~ (x) has the direction along $1. 

L emma  5.6. The framing ~(p,q) is an orthonormal framing on S 3 - L  o =L(p,q) 
- L  o having a special singularity at L o. Moreover s ' Q = 0 ,  where Q is the 
Chern-Simons form on F(L(p, q)) (the SO(3)frame bundle of L(p, q)) and s: L(p, q) 
- L  o ~F(L(p,q)) is the section defined by ~(p,q). 

Proof By construction, Z (p ,  q) has a special singularity at L o. Since L(p, q) has 
the metric of constant sectional curvature 1, Q~j= 0~/x 0j, where O~j and 0~ are 
the curvature forms and the fundamental  forms of L(p,q) respectively (i,j 
= 1,2, 3). It is easy to prove that the Chern-Simons form vanishes for the fram- 
ing 

(13/~,~ _~t(pO/~O_rO/O~) ' 2 ] / / ~ _ t ) ~ / ~ t ) .  

From this it follows that 

--0. q.e.d. 

The tangent space at [z1,z2] of L(p,q) is identified with the tangent space 
at (zl,z2) of S 3, and each vector in ~2 which is or thogonal  to the vector 
(zl,z2)eS 3 is considered as a tangent vector at [z l ,z2]  of L(p,q). 

Lemma  5.7. There is an orthonormal framing ~(p, q) on L(p,'q) such that at each 
[Z1, O]ES 1 , 

(p, q) = ((i z 1,0), (0, z] + x P), (0, i z] + ~ P)) 

and at each [-0, z 2 ] ~ S  2 

c~(p, q) = ((0, i z2), (z~ + ~p, 0). (i z~ + vp, 0)) 

1 + ( - 1 )  ~ 1 + ( - 1 )  a 
where 2 - - -  and v= 

2 2 

Proof Let ~1 and ~2 be or thonormal  framings of L(p,q) defined on $1 and 82 
respectively. The only obstruct ion to extending ~1w~2 to an or thonormal  
framing on L(p,q) lies in the group H2(L(p,q), SawS2, ~x(SO(3))). F r o m  the 
cohomology exact sequence of the pair (L(p,q), cd~ uS2) with Zz-coefficients, we 
see that this group is isomorphic to Z 2 + Z  2. If ~ l=(( iza ,0) ,  (0,z]'), (0,iz~)) at 
[ z l , 0 ] ~ S  1 and ~2=((0,iz2),  (z~,0), (iz~,0)) at [0 ,z2]~S 2 for some integers m 
and n respectively, then the obstruct ion is equal to ((m + 1)mod 2, (n + 1)mod 2). 
This can be seen by considering the restriction of the obstruct ion to the Moore  
spaces in L(p,q), Ml={z2=real>O } and M z = { z l = r e a l > 0  }. If q or r is even, 
then p must be odd by qr= 1 modp,  and the lemma follows, q.e.d. 
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Lemma 5.8. Let e(p, q) be the framing on L(p, q) in Lemma 5.7. Then 

and 

z(S2,~(P,q))= (~+ v) 2~, 

where 2 and v are as in Lemma 5.7. 

Proof. By definition, z(cSl,~(p,q))= - S 023, where s: $1-~F(L(p,q)) is the sec- 
s(Sa) 

tion defined by e(p,q). Parametrizing as S l= [0 ,  expit]  (O<t<2~/p), we have 

s*O23=--(r+)Lp)dt. Hence z(rSl,c~(p,q))= ~ (r+)~p)dt= +2  2~z. For 
0 

z(S2,e(p,q)), the proof is similar, q.e.d. 

Using the framing ~(p,q)  on L ( p , q ) - L  o and the framing ~(p,q) on L(p,q), 
we apply Theorem 1 in Introduction to the t/-invariant of L(p, q). Then by Lem- 
mas 5.6 and 5.8, we have 

tl (L(p, q)) = - 3  

+ ~ d ( Y  (p, q), c~ (p, q)) + (5 (L(p, q), ~ (p, q)). 

In [2], the following has been proved, 

11__~ I k k 
- -  cot - ~ cot - q tl(L(p,q))= P P P 

1 
= -  def(p; q, 1). 

P 

Thus we obtain 

Proposition 5.2. Let e(p, q) and o~(p, q) be as above. Then 

d( ~ (p, q), c~(p, q)) + cS(L(p, q), c~(p, q)) 

(p ) 1 q r +1  
= 3  + p + 2 + v  pdef(p;q ' l ) '  

This finishes Subsection. 
Let (p, q) be a coprime pair of integers such that [Pl > 5 if [ql = 1. Let (r, s) be 

the pair of integers such that 0=<r<lp[ and p s + q r = l .  Let u=(z,w) be the 
point of U satisfying the equation (II). Then as before mentioned N u can be 
completed to a closed hyperbolic manifold Mp, q by adjoining a closed geodesic 
7 to the end of N u. Let E t be a small tubular neighborhood of K such that 
E 1 c E  and Elc~m=4), where E is defined in Lemma5.1. Let (ms,f1) be a me- 
ridean-longitude pair in TI=OE ~. Then Mp, q c a n  be written as Mp q=O 2 
x S 1 U(S 3 -/~1), where f: ~D 2 x S 1 ~ T 1 =~?(S 3 -/~1) is a diffeomorphism such 

f 
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that f(OD2 x 1) and f ( l  • S 1) represent the homology classes p [ml] +q  [/1] and 
r[ml]-s[ll] in Hi(T1) respectively. The geodesic loop ? corresponds to the 
core curve 0 x S ~ of the solid torus D 2 x S ~. On the other hand, we have the 
diffeomorphism ~b=~blw~b2: D2• 1 U D2• as in Subsection. Let 

g 

k" S 3 - /~1-*$3-k( /~ l )  be the restriction of the map k in Lemma 5.1. Note that, 
since E2E1, k maps E~ diffeomorphically onto a tubular neighborhood k(E~) 
of S 1 and the pair (k(ml), k(la)) forms a meridean-longitude pair of the trivial 
knot S~ c S  3. Identifying S 3 - k ( / ~ )  with D 2 •  1 so that S 2 may be identified 
with 0 x S  1 and the pair (1 x S  1, 0D2x 1) in ~D2xS 1 may form a meridean- 
longitude pair of the trivial knot S 1 c S  3, we may write the map k as a map k: 
S3-]EI-+D2xS 1 such that k(ml)=lxS 1, k(ll)=OD2xl and k(m)=OxS 1. 
Then the composition (kl0)f: 0D 2 x S 1 ~ 0D 2 • S ~ is isotopic to g = q~] 1 q51 b0, 
and we may assume that (kl~?)f=g. Define the map 

H':  Mp, q=D2xS 1U(S3-E1)--*D2xS 1UD2xS 1 
f g 

by H'l D2 x S 1 = the identity map and H'l s3 -lZ 1 =k. By composing with ~b, we 
obtain a map H: Mp.q--*L(p,q) such that H maps a neighborhood of y u m  
diffeomorphically onto a neighborhood of Sl uS2 and H(y)=Sl  and H(m)= $2. 

Similarly the bundle map Tk of Lemma5.2 gives a bundle map TH: 
TMv, q-~TL(p,q) which covers H. TMv, q and TL(p,q) have the orthogonal 
bundle structures induced from the Riemannian metric on them. We may assume 
that TH is a bundle map between these orthogonal bundles. 

Now recall the construction of the framing ~ on N~-m=Mp, q-?Um 
which has a special singularity at ?urn.  ~ was constructed as follows. At first 
we pull back by Tk the framing ~ on S 3 - L  0 to N,-m. Next we orthonor- 
malize it with respect to the metric of N~, and finally in a neighborhood of the 
end of N,, we rotate about its e3-vectors so that it may become a simple fram- 
ing there. Also recall the construction of the framing Y(p,q) on L(p,q)-L o. It 
was defined by rotating the framing ~o(P,q) about its e3-vectors in a small 
neighborhood of S1 so that it may have a special singularity at S~. As noted 
before, ~0(P,q) is the orthonormalization of the framing ~0 with respect to the 
metric of L(p,q). The map k in Lemma5.1 maps the end of N~ diffeomorphi- 
cally onto a neighborhood of S~ (S~ is deleted) in a nice way (assumption (**)) 
and the two rotations about e3-vectors in the above two constructions can be 
carried in the same way. That is, we may assume that (deforming fibre ho- 
motopically if necessary) TH maps ~ ,  to ~(p, q), TH(~(x))=Y(p, q)(H(x)) for 
each xeMp, q-?Wm. 

We define the orthonormal framing ~, on Mp, q as the pull-back of the 
orthonormal framing cr q) on L(p, q) by TH, TH(%(x))=ct(p,q)(H(x)) for each 
XEMp, q. This is possible, for TH preserves the orthogonal structures on the 
fibres. 

Using the framings %, ~ and ~c,, we apply Theorem 3.2 to the t/-invariant 
of Mp,q. We must calculate the terms in the right hand side of the equation in 
Theorem 3.2. The term Imf(u )  is given by Theorem 5.1. 

Lemma 5.9. d ( ~ ,  %) = d(~(p, q), ~(p, q)). 
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Proof. Let L(p,q) be the closure of s(L(p,q)-Lo) in F(L(p,q)), where s: L(p,q) 
- L o ~ F ( L ( p , q )  ) is the section defined by ~'(p,q). Let Mp, q be the closure of 
S ( M p q - 7 ~ m )  in F(Mpq), where s: Mp, q - T U m ~ F ( M p q )  is the section de- 
fined'by ~ .  Then H induces the map H: Mp, q--.L(p,q), if f:  L(p q)~SO(3) is 
the difference map of ~(p,  q) and ~(p, q) as in Sect. 1, then f- H gives that of 
and %. Since H is of degree 1, the lemma follows, q.e.d. 

Lemma 5.10. fi(Mp, q, au) = 6(L(p, q), a(p, q)). 

Proof. There is a decomposition 

(._Pq ; ) = ( 2 d ( ; )  ( - d ~ l l  10) . . . ( -dl l  ; )  

where {dj}j= ~ ...... are integers. For j =  1 . . . . .  n, let A i be the oriented DE-bundle 
over the oriented 2-sphere S} whose euler class is d~ times the orientation class 
of S}. Let W be the 4-manifold obtained by plumbing of A 1 . . . . .  A, according 
to the following weighted tree (see I-8], w 8), 

where each ~ r e p r e s e n t s  A Let D 2 (resp. D 2) be a smooth 2-disc in S 2 (resp. 
S 2) which does not intersect with A 2 (resp. A,_ 1) in the above plumbing. Let 
D 2 •  2 (resp. D 2 • 2) be the sub D2-bundle of A~ (resp. A,) over D 2 (resp. 
D2). Then the boundary of W, 0W, is diffeomorphic to the manifold D21 
x S I ~ D 2 ~ x S  ~, where g: O D ~ x S ~ D ~ x S  ~ is the map defined by g(a,b) 

g 

=(a-qb~,aPb ~) for (a,b)e#D 2 x S 1 [8], here we consider the 2-discs as the unit 
2 ~ 2 2-disc in the complex plane. We identify the curve ~?D, x0  6(D, • 3 

with the curve S a ={(Zl,0)11z~l--= 1} in S 3. Then the map k in Lemma 5.1 gives 
a diffeomorphism kl: E I ~ O D  ~ x D z, where E 1 is the tubular neighborhood of 
the figure eight knot K in S 3 and k~ maps a longitude curve in 0E 1 to ~?D, 2 x 1. 
Let W' be the 4-manifold obtained from the disjoint union (W-192~ x D2)uD 4 
by identifying each point x e E l ~ D  4 with kl(x)eOD2~xD2~O(W-l)2~xD2). 
Then ~W'=Mp, q. Using the maps/~ and T/~ of Lemma 5.3, we obtain a map G: 
W ~  W' and a bundle map TG: T W'--* T W which covers G such that G ID4= ~, 
G[ W -/3~ • D 2 -- the identity map, TGI TD '~ = T[~ and TG[ T(W -/}~ • D e) -- the 
identity map. Then GIOW'=H and TGITOW'=TH.  Now, 

(L(p, q), c~ (p, q)) = ~ P1 [ W] - Sign (W) 

and 

6(Mp, q,~,,)= �89 P ~ [ W ' ] -  Sign (W'). 

Clearly Sign(W)=Sign(W'). Since the Pontrjagin class is functorial with re- 
spect to the bundle map,/]1 [W] =/]1 [W']. q.e.d. 

Proposition 5.3 

(i) z(7,%)= +2 2 r c - - a r g z ( 1 - z )  
P 

( ii) "c(m, ~c~) - z(m, o~) = - v 2 re. 
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Proof. (i) We use the coordinate  (x,y,t) of D 2 x S 1 defined by a = x + i y  and b 
= e x p  it, where (x , y )e~  z with xZ+y2=<l ,  0 < t < 2 n ,  aeD 2 and bsS 1. Let c~ be 
the framing o n  O 2 x S 1 defined by C(o=(O/~t,~?/Ox, Ofi?y). In the representat ion 
Mp, q=D 2 x S 1 ~ ( $ 3 - / ~ 0 ,  0 x S  1 represents 7 and we may  consider r(7, c%), 

f 
where c~ o is the o r thonormal iza t ion  of e~ with respect to the metric of My, q. 
Since the curve f (1  x S1)cdE1 represents the curve r m l - s l  1, it follows f rom 
(III) at the beginning of this section that  

r(7, %) = r arg w(1 - z) - s  arg z 2 (1 - z) 2. 

Since p a r g w ( 1 - z ) + q a r g z 2 ( 1 - - z ) Z = 2 7 r  and p s + q r =  1, we have 

~(7, c%)=r-2n - -2  arg z(1 - z ) .  
P P 

Let q~=~b I wq52: D 2 x S 1 U D 2 • S 1 "-~ L (p ,q )  be the d i f feomorphism defined in 
g 

Subsection. Consider  the framing (~b- 1). c~(p, q). On ~b- 1($1) = 0 x S 1, we may  
write as (((~-l).c~(p,q))(O=C(o(t)v(t) for teqS-l(S1), where v: ~b - l (S )~SO(2)  
(~SO(3))  is the difference map  as in the proof  of L e m m a  1.1 in Sect. 1. Then 
f rom the definitions of q51 and e(p,q), it follows that  the mapp ing  degree 
of v is 2. The m a p  H ' :  Mp, q = D 2 x S I ~ ( S 3 - E 1 ) ~ D Z x S I ~ D z x S 1  is the 

f g 
identity m a p  o n  D 2 • S 1. Since c~, is defined as the pull back of c~(p,q) by the 
bundle m a p  TH, it follows that, on 7 = 0 x S  a, we may  write as e,(t)=%(t)v(t) 
for te?,  where v is the above map. By the calculation in the proof  of Lem- 
m a  1.1, we have 

z(7 ,~ , )=r(7 ,  c % ) + 2 2 n  

= + 2  2 n - - a r g z ( 1 - z ) .  
P 

(ii) On ~b- 1($2)=0 x S 1, ((qS- 1). ~(p, q))(t)=c~;(t) w(t) for te~b- 1($2), where 
w: 4)-1($2)~S0(2)(cS0(3))  is the difference map.  F r o m  the definitions of  q~2 
and ~(p,q), we see that  the mapping  degree of w is v. Since H'I (S 3 - E O = k  and 
T k = k .  near  m, it follows from the definition of ~c, and the construct ion of k 
that  TH'(~c~) is isotopic to c~; on H ( m ) = 0  x S 1 c D  2 x S 1. This shows that, on m, 
the mapp ing  degree of the difference m a p  of c~,, and ~c~ is v. By the calculation 
in the proof  of L e m m a  1.1, we see that  r(m, c~,) = r(m, ~c~) + v 2 n. q.e.d. 

By Theorem 5.1, Proposi t ions  
have 

1 
�89 I m f ( u )  = -~2~2 Re 

1 _1 (r 
6n r(7 ,~")= p 

5.2 and 5.3, and L e m m a s  5.9 and 5.10, we 

t 
+ 2 )  1 + 3 ~ a r g  z(1 - z ) ,  

~d(~,ctu)+f(Mp, q,~,)=�89 (q +~+ 2 + v) +~def(p;q, 1), 

1 
('c (m, t%) - r (m, c%)) = - ~ v. 
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S u m m i n g  u p  t h e s e  e q u a t i o n s ,  b y  T h e o r e m  3.2, we o b t a i n  T h e o r e m  3 in I n t r o -  

d u c t i o n .  
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