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1 The Lobachevsky functon

The Lobachevsky function Λ(θ) is defined by the formula

Λ(θ) = −
∫ θ

0

log |2 sin t|dt.

This function has a lot of names and definitions. For example, the well-known Clausen
function Cl2(θ) is defined by the similar formula

Cl2(θ) = −
∫ θ

0

log
∣∣∣2 sin

s

2

∣∣∣ ds,

and it is easy to show Cl2(2θ) = 2Λ(θ).

Theorem 1.1 The function Λ(θ) is well defined, continuous for all θ, π-periodic, and odd.
Moreover, for each positive integer n, Λ(θ) satisfies the identity

Λ(nθ) = n

n−1∑
j=0

Λ(θ + jπ/n).

Proof. See §10.4 of [1].
As an application of Theorem 1.1, we obtain the useful formula

1

2
Λ(2θ) = Λ(θ) + Λ(θ +

π

2
) = Λ(θ)− Λ(

π

2
− θ). (1)

Substituting θ = π
6

in (1), we have

Λ(
π

3
) =

2

3
Λ(

π

6
) = 0.3383138...

Now we will find the maximum and minimum value of Λ(θ). By the fundamental theorem
of calculus, we have

dΛ(θ)

dθ
= − log |2 sin θ|

d2Λ(θ)

dθ2
= − cot θ.
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Consequently, Λ(θ) attains its maximum value Λ(π
6
) = 0.5074708... at θ = π

6
and its minimum

value Λ(5π
6

) = −Λ(π
6
) = −0.5074708... at θ = 5π

6
.

The following is a fundamental theorem of the hyperbolic volume theory.

Theorem 1.2 Let Tα,β,γ be an ideal tetrahedron in H3 with the three dihedral angles α, β, γ
of edges incident to a vertex. Then the volume of Tα,β,γ is given by

V ol(Tα,β,γ) = Λ(α) + Λ(β) + Λ(γ).

Moreover, a tetrahedron of maximum volume in H3 is a regular ideal tetrahedron with the
volume 3Λ(π

3
).

Proof. See §10.4 of [1].

2 The dilogarithm function

Traditionally the dilogarithm function Li2(z)is defined by the Taylor series espansion

Li2(z) =
∞∑

k=1

zk

k2
(2)

for a complex number z with |z| ≤ 1. The domain of Li2 can be extended analytically to the
whole complex plane by the following way :

Definition 2.1 For a complex number z, let log z have the principal branch cut, i.e. | arg z| <
π. It defines the following function

Li2(z) = −
∫ z

0

log(1− t)

t
dt

in a unique way with 0 < arg(z − 1) < 2π. (We assume the integrand path from 0 to t is a
straight line.) This well-defined function is called the (Euler) dilogarithm function.

Note that Definition 2.1 is an analytic continuation of (2).
The following identities can be obtained easily by the definition and differentials of each

terms. (see [2])

Li2(z) + Li2(−z) =
1

2
Li2(z

2) (3)

Li2(−z) + Li2(−1

z
) = 2Li2(−1)− 1

2
log2 z (4)

Li2(z) + Li2(1− z) = Li2(1)− log z log(1− z) (5)

From these equations, one obtains

Li2(1) =
π2

6
, Li2(−1) = −π2

12
.

One can find more formulas in pages 2808-2809 of [3].
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Remark 2.2 Roger’s dilogarithm function L(z), which in general has better properties than
Li2(z), is defined by the formula

L(z) = Li2(z) +
1

2
log z log(1− z) = −1

2

∫ z

0

(
log(1− t)

t
+

log t

1− t

)
dt.

3 The Lobachevsky function and the dilogarithm func-

tion

The Lobachevsky function and the imaginary part of the dilogarithm function play an impor-
tant role in hyperbolic volume theory. In fact, the Lobachevsky function can be considered
as an imaginary part of the dilogarithm function.

Theorem 3.1 For 0 < θ < π, we have

Li2(e
2iθ) = Li2(1) + θ(θ − π) + 2iΛ(θ).

Proof. See §10.4 of [1].
The following theorem (due to E. Kummer(1840)) shows more general relation between

these two functions.

Theorem 3.2 For 0 < θ < 2π, we have

ImLi2(re
iθ) = ω log r + Λ(θ) + Λ(ω)− Λ(θ + ω),

where ω is defined by the following identities :

tan ω =
r sin θ

1− r cos θ
or r =

sin ω

sin(ω + θ)
.

Proof. See page 15 of [2].
From the proof of the theorem, we can easily find the following relation

ReLi2(re
iθ) = −1

2

∫ r

0

log(1− 2y cos θ + y2)

y
dy

for 0 < θ < 2π. (See Proposition A of [4])

4 The general form of the dilogarithm function

We have thus far considered only the principal branch of the dilogarithm. But if we permit
any branch, the dilogarithm function has the following general form

Li2(z) = Li∗2(z) + 2mπi log z + 4kπ2

where Li∗2(z) is the dilogarithm function with the principal branch and m, k are integers.
(See page 2810 of [3]) The integers m and k depend on the integrand path, specifically the
number of encircling the branch points 1 and 0.

Note that the imaginary part of the general dilogarithm function does not depend on the
branch point 0, but only on the branch point 1.
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5 Bloch-Wigner function and the hyperbolic volume of

an ideal tetrahedron

The following function plays an important role in hyperbolic volume and K-theory.

Definition 5.1 We define the Bloch-Wigner function D(z) by the formula

D(z) = ImLi2(z) + arg(1− z) log |z|

for z ∈ C\R, and D(z) = 0 for z ∈ R ∪ {∞}.

Note that, for θ ∈ R,

D(eiθ) = ImLi2(e
iθ) = 2Λ(

θ

2
). (6)

The usefulness of this equation will be shown later.

Definition 5.2 A sequence (a,b,c,d,e) of five complex numbers is called a 5-cycle if

a = 1− cd, b = 1− de, c = 1− ea, d = 1− ab, e = 1− bc.

We say that a 5-cycle is nontrivial if it consists of nonzero elements.

Remark 5.3 1. The dihedral group D5 acts on the set of all 5-cycles.

2. If d 6= 0, then (a, b, c, d, e) is 5-cycle if and only if

(a, b, c, d, e) =

(
a, b,

1− a

1− ab
, 1− ab,

1− b

1− ab

)
.

Lemma 5.4 For z ∈ C ∪ {∞}, we have

1. D(z) + D(1− z) = 0,

2. D(z) + D(1
z
) = 0,

3. D(z) + D(z) = 0,

4. If (a, b, c, d, e) is a 5-cycle, then

D(a) + D(b) + D(c) + D(d) + D(e) = 0.

Proof. 1-3 are easy. From these properties, we know

D(1− ab) = −D(ab), D(
1− a

1− ab
) = D(1− 1

1−a
1−ab

) = D(−a
1− b

1− a
),
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D(
1− b

1− ab
) = D(1− 1

1−b
1−ab

) = D(−b
1− a

1− b
).

Using the well-known equality (see [2])

Li2(x) + Li2(y) + Li2(−x
1− y

1− x
) + Li2(−y

1− x

1− y
)− Li2(xy) = −1

2
log2

[
1− x

1− y

]

and the Remark 5.3, we have

D(a) + D(b) + D(c) + D(d) + D(e) = D(a) + D(b) + D(
1− a

1− ab
)−D(ab) + D(

1− b

1− ab
)

= ImLi2

[
−1

2
log2

(
1− a

1− b

)]
+ arg(1− a) log |a|+ arg(1− b) log |b|

+ arg
1− ab

1− a
log

∣∣∣∣a
1− b

1− a

∣∣∣∣ + arg
1− ab

1− b
log

∣∣∣∣b
1− a

1− b

∣∣∣∣− arg(1− ab) log |ab| = 0.

Theorem 5.5 For z ∈ C\R, we have

D(z) = Λ(θ1) + Λ(θ2)− Λ(θ1 + θ2)

where θ1 = arg z, θ2 = arg(1− z).

Proof. See pages 245-246 of [2].
The following corollary follows directly from Theorem 1.2 and Theorem 5.5.

Corollary 5.6 For a complex number z with 0 < arg z < π,

D(z) = Λ(arg z) + Λ(arg(1− 1

z
)) + Λ(arg

1

1− z
) = V ol(Tz)

where Tz is the hyperbolic ideal tetrahedron parametrized by the complex number z.
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