UNIFORMIZATION OF SOME RIEMANN SURFACES WITH NODES

N. S. Zindinova

UDC 517.862: 513.835
The present article is devoted to studying the spaces of deformations of Kleinian groups representing Riemann surfaces with nodes and introduced by Bers in [1]. Nodes are the simplest case of degeneration of a Riemann surface when the surface is compressed along several simple closed loops.

We study these deformations on the example of Kleinian groups with a simple geometric structure, the extended Schottky groups of type (g, s, m).

In the article we construct the so-called augmented space $S T_{(g, s, m)}^{*}$ of extended Schottky groups and demonstrate that this space is a domain in $\overline{\mathbb{C}}^{n}$ such that to each point in this domain there corresponds some Riemann surface with nodes.

The augmented spaces for extended Schottky groups of types $(g, 0,0)$ and $(g, 0, m)$ were considered in the articles (1-3].

§1. Definitions and Preliminaries

We let \mathbb{M} stand for the group of all conformal automorphisms of the extended complex plane $\overline{\mathbb{C}}$.
A group $G \subset \mathbb{M}$ is called an extended Schottky group of type $(g, s, m$) with standard generators $T_{1}, \ldots, T_{g}, W_{1}, \ldots, W_{s}, U_{1}, V_{1}, \ldots, U_{m}, V_{m}$ and defining curves $C_{1}, C_{1}^{\prime}, \ldots, C_{g}, C_{g}^{\prime}, B_{1}, B_{1}^{\prime}, \ldots, B_{s}, B_{s}^{\prime}$, L_{1}, \ldots, L_{m}, where L_{k} is a topological quadrilateral with sides $K_{k}^{\prime}, K_{k}^{\prime}, P_{k}$, and $P_{k}^{\prime}, k=1, \ldots, m$, if the following conditions are satisfied:
(a) all defining curves are simple closed curves in $\overline{\mathbb{C}}$; the curves B_{j} and B_{j}^{\prime} have one common point $p_{j}, j=1, \ldots, s$; all other curves are pairwise disjoint; and all curves jointly bound a $(2 g+s+m)$ connected domain D such that

$$
T_{i}(D) \cap D=W_{j}(D) \cap D=U_{k}(D) \cap D=V_{k}(D) \cap D=\varnothing ;
$$

(b) $T_{i}\left(C_{i}\right)=C_{i}^{\prime}, i=1, \ldots, g ; W_{j}\left(B_{j}\right)=B_{j}^{\prime}, j=1, \ldots, s ; U_{k}\left(K_{k}\right)=K_{k}^{\prime}, V_{k}\left(P_{k}\right)=P_{k}^{\prime}, k=$ $1, \ldots, m$;
(c) U_{k} and V_{k} are commuting parabolic elements generating the Kleinian group $\left\langle U_{k}, V_{k}\right\rangle, k=$ $1, \ldots, m$;
(d) W_{j} is a parabolic mapping with the fixed point $p_{j}, j=1, \ldots, s$.

An extended Schottky group G of type (g, s, m) with some ordered system of standard generators is referred to as a marked extended Schottky group of type (g, s, m).

We say that two marked extended Schottky groups of type (g, s, m)

$$
\begin{aligned}
& G=\left\langle T_{1}, \ldots, T_{g}, W_{1}, \ldots, W_{s}, U_{1}, V_{1}, \ldots, U_{m}, V_{m}\right\rangle, \\
& \widetilde{G}=\left\langle\widetilde{T}_{1}, \ldots, \widetilde{T}_{g}, \widetilde{W}_{1}, \ldots, \widetilde{W}_{s}, \widetilde{U}_{1}, \widetilde{V}_{1}, \ldots, \widetilde{U}_{m}, \widetilde{V}_{m}\right\rangle
\end{aligned}
$$

are equivalent if there is a Möbius transformation B such that

$$
\begin{gathered}
B T_{i} B^{-1}=\widetilde{T}_{i}, \quad B W_{j} B^{-1}=\widetilde{W}_{j}, \quad B U_{k} B^{-i}=\widetilde{U}_{k}, \quad B V_{k} B^{-1}=\widetilde{V}_{k}, \\
i=1, \ldots, g, \quad j=1, \ldots, s, \quad k=1, \ldots, m .
\end{gathered}
$$

Omsk. Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 37, No. 5, pp. 1057-1064, September-October, 1996. Original article submitted March 22, 1995.

We denote the set of all equivalence classes of marked extended Schottky groups of type (g, s, m) by $S_{(g, s, m)}$. We endow $S_{(g, s, m)}$ with a topology as follows: a sequence $\left[G_{n}\right] \in S_{(g, s, m)}$ converges to $[G] \in S_{(g, s, m)}$ if and only if there are marked extended Schottky groups of type (g, s, m)

$$
\left\langle T_{1}^{(n)}, \ldots, T_{g}^{(n)}, W_{1}^{(n)}, \ldots, W_{s}^{(n)}, U_{1}^{(n)}, V_{1}^{(n)}, \ldots, U_{m}^{(n)}, V_{m}^{(n)}\right\rangle \in\left[G_{n}\right]
$$

and a marked extended Schottky group of type (g, s, m)

$$
\left\langle T_{1}, \ldots, T_{g}, W_{1}, \ldots, W_{s}, U_{1}, V_{1}, \ldots, U_{m}, V_{m}\right\rangle \in[G]
$$

such that

$$
\begin{aligned}
& T_{i}^{(n)} \rightarrow T_{i}, \quad W_{j}^{(n)} \rightarrow W_{j}, \quad U_{k}^{(n)} \rightarrow U_{k}, \quad V_{k}^{(n)} \rightarrow V_{k}, \\
& i=1, \ldots, g, \quad j=1, \ldots, s, \quad k=1 \ldots, m, \text { as } n \rightarrow \infty
\end{aligned}
$$

in the topology of uniform convergence of mappings on the Riemann sphere $\overline{\mathbb{C}}$ ($[G]$ is the equivalence class of a group G).

We call the so-defined topological space $S_{(g, s, m)}$ the space of extended Schottky groups of type (g, s, m) or simply the Schottky space of type (g, s, m).

It was shown in [4] that we can endow the space $S_{(g, s, m)}$ with the structure of a complex manifold by embedding $S_{(g, s, m)}$ into $\overline{\mathbb{C}}^{3 g+3 m+2 s-3}$. We denote the image of $S_{(g, s, m)}$ under this embedding by $S T_{(g, s, m)}$.

For definiteness, we shall assume that $\tau \in S T_{(g, s, m)}$ looks as follows (in the case when $g \geq 2$, $s \geq 0$, and $m \geq 0$):

$$
\tau=\left(a_{3}, \ldots, a_{g}, b_{2}, \ldots, b_{g}, \lambda_{1}, \ldots, \lambda_{g}, c_{1}, \ldots, c_{s}, w_{1}, \ldots, w_{s}, d_{1}, \ldots, d_{m}, u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{m}\right)
$$

where a_{i} and b_{i} are the fixed points and λ_{i}^{-1} is the factor of the loxodromic mapping $T_{i}\left(0<\left|\lambda_{i}\right|<1\right)$; c_{j} and w_{j} are the fixed point and the radius of the isometric circle of the parabolic mapping W_{j}; and d_{k} and u_{k}, v_{k} are the fixed point and the radii of isometric circles of the parabolic mappings U_{k} and V_{k}.

We denote by $\partial S T_{(g, s, m)}$ the boundary of $S T_{(g, s, m)}$ in $\overline{\mathbb{C}}^{3 g+3 m+2 s-3}$ and denote by $\delta S T_{(g, s, m)}$ the set of $\tau \in \partial S T_{(g, s, m)}$ satisfying at least one of the following conditions:
(1) one of the parameters w_{j} or u_{k} equals zero or infinity, $j \in\{1, \ldots, s\}, k \in\{1, \ldots, m\}$;
(2) one of the factors λ_{i} equals zero, $i \in\{1, \ldots, g\}$;
(3) one of the parameters v_{k} is real or equals infinity, $k \in\{1, \ldots, m\}$;
(4) two fixed points in the set $\left\{a_{1}, \ldots, a_{g}, b_{1}, \ldots, b_{g}, c_{1}, \ldots, c_{s}, d_{1}, \ldots, d_{m}\right\}$ coincide.

Observe that $\delta S T_{(g, s, m)}$ is the intersection of $\partial S T_{(g, s, m)}$ with finitely many analytic hypersurfaces and therefore has positive real codimension in $\partial S T_{(g, s, m)}$.

The group $G(\tau)$ is soundly defined for every point $\tau \in \partial S T_{(g, s, m)} \backslash \delta S T_{(g, s, m)}$. As it was demonstrated in [4], such a group is discrete and isomorphic to an extended Schottky group of type (g, s, m), and either is not Kleinian or contains random parabolic elements.

§ 2. Construction of the Augmented Schottky Space

In this section we construct the so-called augmented space of extended Schottky groups of type (g, s, m). We obtain this space by adjoining some points of $\overline{\mathbb{C}}^{3 g+3 m+2 s-3}$ to $S T_{(g, s, m)}$. For definiteness, we suppose that $g \geq 2, s \geq 0$, and $m \geq 0$. We denote the coordinates of a point τ and the generators of the group $G(\tau)$ by $a_{i}(\tau), b_{i}(\tau), \lambda_{i}(\tau), c_{j}(\tau), w_{j}(\tau), d_{k}(\tau), u_{k}(\tau), v_{k}(\tau)$ and $T_{i}\left(\tau,{ }^{\circ}\right), W_{j}\left(\tau,{ }^{\circ}\right), U_{k}\left(\tau,{ }^{\circ}\right)$, $V_{k}\left(\tau,{ }^{\circ}\right)$ respectively.

In particular, we shall consider those points $\tau \in \delta S T_{(g, s, m)}$ for which at least one of the parameters $w_{j}(\tau)$ and $u_{k}(\tau)$ vanishes, some of the factors $\lambda_{i}(\tau)$ are equal to zero, or two fixed points of some generator coincide.

The fulfillment of the above conditions for the elements $T_{i}\left(\tau,{ }^{\wedge}\right), W_{j}\left(\tau,{ }^{\circ}\right), U_{k}\left(\tau,{ }^{\circ}\right)$, and $V_{k}\left(\tau,{ }^{\circ}\right)$ implies that the latter turn into constants. Thus, we consider those points on the boundary of the space of extended Schottky groups for which we obtain a constant for at least one generator in the limit for a sequence of marked Schottky groups of type (g, s, m).

We now proceed to constructing the augmented space. We define the set $\delta^{I, J, K} S T_{(g, s, m)}$, where $I \subset\{1, \ldots, g\}, J \subset\{1, \ldots, s\}$, and $K \subset\{1, \ldots, m\}$.

For $I=J=K=\varnothing$ we put $\delta^{I, J, K} S T_{(g, s, m)}=S T_{g, s, m}$.
For $I \cup J \cup K \neq \varnothing$ we denote by $\delta^{I, J, K} S T_{(g, s, m)}$ the set of the points $\tau \in \overline{\mathbb{C}}^{3 g+3 m+2 s-3}$ satisfying the following conditions:
(la) the elements $T_{i}\left(\tau,{ }^{\wedge}\right), W_{j}\left(\tau,{ }^{\wedge}\right), U_{k}\left(\tau,{ }^{\wedge}\right)$, and $V_{k}\left(\tau,{ }^{\wedge}\right), i \notin I, j \notin J, k \notin K$, are well defined and generate an extended Schottky group, say, $G_{0}(\tau)$;
(2a) $\lambda_{i}(\tau)\left(a_{i}(\tau)-b_{i}(\tau)\right)=0,0 \leq\left|\lambda_{i}(\tau)\right|<1$ for $i \in I ;$
(3a) $w_{j}(\tau)=0$ for $j \in J$ and $u_{k}(\tau)=0$ for $k \in K$;
(4a) all points of the set $\left\{a_{1}(\tau), \ldots, a_{g}(\tau), b_{1}(\tau), \ldots, b_{g}(\tau), c_{1}(\tau), \ldots, c_{s}(\tau), d_{1}(\tau), \ldots, d_{m}(\tau)\right\}$ are different but possibly $a_{i}(\tau)=b_{i}(\tau), i \in I$.

To introduce the last condition in the definition of $\delta^{I, J, K} S T_{g, s, m}$, given a point τ, we associate with it some collection of groups to be listed below.

Let $I_{1}=\left\{i \in I \mid \lambda_{i}(\tau)=0, a_{i}(\tau) \neq b_{i}(\tau)\right\}, I_{2}=\left\{i \in I \mid \lambda_{i}(\tau) \neq 0, a_{i}(\tau)=b_{i}(\tau)\right\}$, and $I_{3}=\left\{i \in I \mid \lambda_{i}(\tau)=0, a_{i}(\tau)=b_{i}(\tau)\right\}$.

For $i \in[\{1, \ldots, g\} \backslash I] \cup I_{1}$, put $G_{i}(\tau)=A_{i} G_{0}(\tau) A_{i}^{-1}$, where A_{i} is a Möbius transformation defined by the conditions: $A_{i}\left(a_{i}(\tau)\right)=\infty, A_{i}\left(b_{i}(\tau)\right)=0$, and $A_{i}(\alpha)=1$, where $\alpha=a_{i+1}(\tau)$ if $i<g$ and $\alpha=c_{1}(\tau)$ if $i=g$.

We agree that

$$
G_{i}(\tau)=\left\langle z \rightarrow \frac{z}{\lambda_{i}(\tau)}\right\rangle \text { for } i \in I_{2}, \quad G_{i}(\tau)=\langle\mathrm{id}\rangle \text { for } i \in I_{3} .
$$

If $j \in[\{1, \ldots, s\} \backslash J]$ then we put $G_{j+g}(\tau)=R_{j} G_{0}(\tau) R_{j}^{-1}$, where R_{j} is a Möbius transformation such that $R_{j}\left(c_{j}(\tau)\right)=\infty, R_{j} W_{j}\left(\tau,{ }^{\wedge}\right) R_{j}^{-1}=z+1$, and $R_{j}(\alpha)=0$, with $\alpha=c_{j+1}(\tau)$ if $j<s$ and $\alpha=d_{1}(\tau)$ if $j=s$.

For $j \in J$, we set $G_{j+g}(\tau)=\langle z+1\rangle$.
Given $k \in[\{1, \ldots, m\} \backslash K]$, we put $G_{k+g+s}(\tau)=Q_{k} G_{0}(\tau) Q_{k}^{-1}$. Here Q_{k} is a Möbius transformation such that $Q_{k}\left(d_{k}(\tau)\right)=\infty, Q_{k} U_{k}\left(\tau,{ }^{\wedge}\right) Q_{k}^{-1}=z+1$, and $Q_{k}(\alpha)=0$, with $\alpha=d_{k+1}(\tau)$ if $k<m$ and $\alpha=a_{1}(\tau)$ if $k=m$.

If $k \in K$ then we set $G_{k+g+s}(\tau)=\left\langle z+1, z+v_{k}\right\rangle$.
Thus, a point τ is associated with the collection of groups

$$
\left\{G_{0}(\tau), G_{i}(\tau), G_{j+g}(\tau), G_{k+g+s}(\tau), i=1, \ldots, g, j=1, \ldots, s, k=1, \ldots, m\right\}
$$

Now, we introduce the last condition in the definition of $\delta^{I, J, K} S T_{(g, s, m)}$:
(5a) the set $P_{0}=\left\{a_{i}(\tau), b_{i}(\tau), c_{j}(\tau), d_{k}(\tau), i \in I, j \in J, k \in K\right\}$ lies in a suitable fundamental domain of $G_{0}(\tau)$ (we call this set the set of distinguished points for the group).

For $i \in I_{2}$, we choose a fundamental domain of the group $G_{i}(\tau)$ which contains the point 1 . We call 1 the distinguished point for $G_{i}(\tau)$.

If $i \in I_{3}$ then we consider the set $P_{i}=\{0,1, \infty\}$ to be distinguished for the group $G_{i}(\tau)=\langle\mathrm{id}\rangle$.
For $G_{j+g}(\tau)$ and $G_{k+g+s}(\tau), j \in J, k \in K$, we can choose appropriate fundamental domains that contain the point 0 . This point is said to be distinguished for $G_{j+g}(\tau)$ and $G_{k+g+s}(\tau)$.

It is the set $S T_{(g, s, m)}^{*}=\cup \delta^{I, J, K} S T_{(g, s, m)}$, with the union taken over all subsets $I \subset\{1, \ldots, g\}$, $J \subset\{1, \ldots, s\}$, and $K \subset\{1, \ldots, m\}$, that we call the augmented space of extended Schottky groups of type (g, s, m), or simply the augmented Schottky space of type (g, s, m).

Theorem 1. The augmented space $S T_{(g, s, m)}^{*}$ of extended Schottky groups is a subset of $S T_{(g, s, m)}$ $\cup \partial S T_{(g, s, m)}$ and forms a domain in $\overline{\mathbb{C}}^{3 g+3 m+2 s-3}$.

Proof. Let us demonstrate that the space $S T_{(g, s, m)}^{*}$ is a subset of $S T_{(g, s, m)} \cup \partial S T_{(g, s, m)}$.
Assume $\tau \in S T_{(g, s, m)}^{*}$, with $\tau \in \delta^{I, J, K} S T_{(g, s, m)}$ for some sets I, J, and K.
Case 1: $I \neq \varnothing, J=\varnothing, K=\varnothing$.
Since $I=I_{1} \cup I_{2} \cup I_{3}$, we separately consider three subcases.
(la) $I_{1} \neq \varnothing, I_{2}=I_{3}=\varnothing$. The coordinates of the point τ satisfy the conditions $\lambda_{i}(\tau)=0$, $i \in I_{1}$. Consider a sequence of numbers $\lambda_{i n} \rightarrow 0, \lambda_{i n} \in \mathbb{R}, 0<\left|\lambda_{i n}\right|<1$. Let $T_{i n}$ be a hyperbolic mapping with fixed points $a_{i}(\tau)$ and $b_{i}(\tau)$ and factor $\lambda_{i n}^{-1}$. Denote by $I_{i n}$ the isometric circle of $T_{i n}$. Put $I_{i n}^{\prime}=T_{i n}\left(I_{i n}\right)$. Since $a_{i}(\tau)$ and $b_{i}(\tau)$ lie in the fundamental domain of the group, for n sufficiently large the curves $I_{i n}$ and $I_{i n}^{i}$ also lie in the fundamental domain. By Maskit's combination theorem, the groups $G_{n}=\left\langle G_{0}(\tau), T_{i n}, i \in I_{1}\right\rangle$ are extended Schottky groups for n sufficiently large. Order the generators of the groups G_{n} so that the mapping $T_{i n}, i \in I_{1}$, stand on the i th position. As in [4], associate the sequence $\left[G_{n}\right]$ with the sequence of the points $\tau_{n} \in S T_{(g, s, m)}$. As $n \rightarrow \infty$ we have $\tau_{n} \rightarrow \tau$. Thus, $\tau \in \partial S T_{(g, s, m)}$.
(lb) $I_{2} \neq \varnothing, I_{1}=I_{3}=\varnothing$. The coordinates of the point τ satisfy the conditions $a_{i}(\tau)=b_{i}(\tau)$, $i \in I_{2}$. The point τ is associated with $\left|I_{2}\right|$ groups $G_{i}(\tau)=\left\langle z \rightarrow \lambda_{i}^{-1}(\tau) z\right\rangle\left(\left|I_{2}\right|\right.$ is the cardinality of the set I_{2}). Denote by C_{i} and C_{i}^{\prime} the defining curves of the group $G_{i}(\tau)$. The point 1 is distinguished for $G_{i}(\tau)$ and lies in the fundamental domain of the group.

Consider the sequence of the points $a_{i n}=a_{i}(\tau)+\varepsilon_{n}^{2} e^{i \varphi}$, where $\varepsilon_{n} \in \mathbb{R}, \varepsilon_{n} \rightarrow 0, n \rightarrow \infty$.
Construct some mapping $A_{i n}$ for $i \in I_{2}$ and $n \in \mathbb{N}$ as follows: $A_{i n}(0)=a_{i}(\tau), A_{i n}(\infty)=a_{i n}$, and $A_{\text {in }}(1)=\infty$.

Let $T_{i n}=A_{i n} \frac{z}{\lambda_{i}(\tau)} A_{i n}^{-1}$. The mapping $T_{i n}$ has fixed points $a_{i n}$ and $a_{i}(\tau)$ and factor $\lambda_{i}^{-1}(\tau)$. The curves $\Gamma_{i n}=A_{i n}\left(C_{i}\right)$ and $\Gamma_{i n}^{\prime}=A_{i n}\left(C_{i}^{\prime}\right)$ are defining for $T_{i n}$; i.e., $T_{i n}\left(\Gamma_{i n}\right)=\Gamma_{i n}^{\prime}, i \in I_{2}$.

In the fundamental domain for $G_{i}(\tau)$, consider a circle c with center 1 and radius ε_{n} for n sufficiently large. Under the mapping $A_{i n}^{-1}$, the circle c transforms into the circle $\tilde{c}:\left|w-a_{i n}\right|=\varepsilon_{n}$. Moreover, the defining curves $\Gamma_{i n}$ and $\Gamma_{i n}^{\prime}$ will lie inside \tilde{c}, whereas the defining curves for $G_{0}(\tau)$, outside \tilde{c}. By Maskit's combination theorem, the groups $G_{n}=\left\langle G_{0}(\tau), T_{i n}, i \in I_{2}\right\rangle$ are extended Schottky groups for n sufficiently large. Order the generators of the group G_{n} so that the mapping $T_{i n}, i \in I_{2}$, stand on the i th position. Associate the canonical representatives of the classes $\left[G_{n}\right]$ with the sequence of the points τ_{n} in $S T_{(g, s, m)}$. As $n \rightarrow \infty$ we have $\tau_{n} \rightarrow \tau$. Therefore, $\tau \in \partial S T_{(g, s, m)}$.
(1c) $I_{3} \neq \varnothing, I_{1}=I_{2}=\varnothing$. The proof is conducted by combining the methods of cases (la) and (lb).

Case 2: $I=\varnothing, J \neq \varnothing, K=\varnothing$.
A point $\tau \in \delta^{\varnothing, J, \varnothing} S T_{(g, s, m)}$ has coordinates $w_{j}(\tau)=0$ for $j \in J$. Consider a sequence of points $w_{j n} \rightarrow 0, w_{j n} \neq 0, j \in J$. Let $W_{j n}$ be a parabolic mapping with fixed point $c_{j}(\tau)$ and parameter $w_{j n}$. Since $c_{j}(\tau)$ lies in the fundamental domain for $G_{0}(\tau)$, the isometric circle $I_{j n}$ of $W_{j n}$ of radius $\left|w_{j n}\right|$ lies in the fundamental domain of the group $G_{0}(\tau)$ for a sufficiently large n. Let $I_{j n}^{\prime}=W_{j n}\left(I_{j n}\right)$. The curves $I_{j n}$ and $I_{j n}^{\prime}$ are defining for $W_{j n}$ and lie in the fundamental domain of the group $G_{0}(\tau)$. By the combination theorem, $G_{n}=\left\langle G_{0}(\tau), W_{j n}, j \in J\right\rangle$ is a Schottky group of type (g, s, m) for a sufficiently large n. As above, the corresponding sequence of the points $\tau_{n} \in S T_{(g, s, m)}$ converges to τ. Whence, $\tau \in \partial S T_{(g, s, m)}$.

Case 3: $I=\varnothing, J=\varnothing, K \neq \varnothing$.
For such points τ, the coordinates $u_{k}(\tau)$ are equal to zero, $k \in K$. Let $u_{k n}$ be a sequence of points vanishing as $n \rightarrow \infty$. Consider parabolic mappings $U_{k n}$ and $V_{k n}$ having the common fixed point $d_{k}(\tau)$ and parameters $u_{k n}$ and $v_{k}(\tau)$. Let $\alpha_{k n}$ be the isometric circle of $U_{k n}$ and let $\beta_{k n}$ be the isometric circle of $V_{k n}$. Put $\alpha_{k n}^{\prime}=U_{k n}\left(\alpha_{k n}\right)$ and $\beta_{k n}^{\prime}=V_{k n}\left(\beta_{k n}\right)$. Then $\alpha_{k n}, \alpha_{k n}^{\prime}$ and $\beta_{k n}, \beta_{k n}^{\prime}$ are defining curves for $U_{k n}$ and $V_{k n}$ respectively. By the combination theorem, $G_{n}=\left\langle G_{0}(\tau), U_{k n}, V_{k n}, k \in K\right\rangle$ are
extended Schottky groups for n sufficiently large. Associate the sequence $\left[G_{n}\right]$ with the sequence of the points $\tau_{n} \in S T_{(g, s, m)}$. As $n \rightarrow \infty$ we have $\tau_{n} \rightarrow \tau$. Therefore, $\tau \in \partial S T_{(g, s, m)}$. The first part of the theorem is proven.

Demonstrate that $S T_{(g, s, m)}^{*}$ is open.
Assume $\tau \in \delta^{I, J, K} S T_{(g, s, m)}$. If $I=J=K=\varnothing$ then $\delta^{I, J, K} S T_{(g, s, m)}=S T_{(g, s, m)}$ and $S T_{(g, s, m)}$ is open by a theorem proven in [4].

Suppose that $I \cup J \cup K \neq \varnothing$. Denote by $\left\{C_{i}, C_{i}^{\prime}, B_{j}, B_{j}^{\prime}, L_{k}, i \notin I, j \notin J, k \notin K\right\}$ the set of defining curves bounding the fundamental domain of the group $G_{0}(\tau)$. For $i \in I$, let C_{i} be a circle of a sufficiently small radius centered at $b_{i}(\tau)$. If $\hat{\tau} \in \mathbb{C}^{3 g+3 m+2 s-3}$ is sufficiently close to τ then the set $L \subset\{1, \ldots, g\}$ of the indices l such that $\lambda_{l}(\hat{\tau})=0$ or $a_{l}(\hat{\tau})=b_{l}(\hat{\tau})$ satisfies the condition $L \subset I$. Analogously, the sets $Q \subset\left\{q \in\{1, \ldots, s\} \mid w_{q}(\hat{\tau})=0\right\}$ and $P=\left\{p \in\{1, \ldots, m\} \mid u_{p}(\hat{\tau})=0\right\}$ are subsets of J and K respectively; i.e., $Q \subset J$ and $P \subset K$.

Given $i \in[\{1, \ldots, g\} \backslash L]$, put $C_{i}^{\prime}=T_{i}\left(\hat{\tau}, C_{i}\right)$. For $j \in[\{1, \ldots, s\} \backslash Q]$, denote by \widetilde{B}_{j} the isometric circle of the mapping $W_{j}\left(\hat{\tau}_{,},\right)$. Put $\widetilde{B}_{j}^{\prime}=W_{j}\left(\hat{\tau}, \widetilde{B}_{j}\right)$. For $k \in[\{1, \ldots, m\} \backslash P]$, denote by $\tilde{\alpha}_{k}$ the isometric circle of the mapping $U_{k}\left(\hat{\tau},{ }^{\wedge}\right)$ and denote by $\tilde{\beta}_{k}$ the isometric circle of the mapping $V_{k}\left(\tilde{\tau},{ }^{\prime}\right)$. Let $\tilde{\alpha}_{k}^{\prime}=U_{k}\left(\hat{\tau}, \tilde{\alpha}_{k}\right), \tilde{\beta}_{k}^{\prime}=V_{k}\left(\hat{\tau}, \tilde{\beta}_{k}\right)$, and let \widetilde{L}_{k} be the topological quadrilateral formed by the curves $\tilde{\alpha}_{k}, \tilde{\alpha}_{k}^{\prime}, \tilde{\beta}_{k}$, and $\tilde{\beta}_{k}^{\prime}$. Then

$$
\left\{C_{i}, \widetilde{C}_{i}^{\prime}, \widetilde{B}_{j}, \widetilde{B}_{j}^{\prime}, \tilde{L}_{k}, i \in[\{1, \ldots, g\} \backslash L], j \in[\{1, \ldots, s\} \backslash Q], k \in[\{1, \ldots, m\} \backslash P]\right\}
$$

is a set of pairwise disjoint Jordan curves bounding the standard fundamental domain of the extended Schottky group

$$
G_{0}(\hat{\tau})=\left\langle T_{i}\left(\hat{\tau},{ }^{\wedge}\right), W_{j}\left(\hat{\tau}^{\wedge}\right), U_{k}\left(\hat{\tau}^{\wedge}\right), V_{k}\left(\hat{\tau}^{\wedge}\right), \quad i \notin L, j \notin Q, k \notin P\right\rangle .
$$

Moreover, all points $a_{l}(\hat{\tau}), b_{l}(\hat{\tau}), c_{q}(\hat{\tau}), d_{p}(\hat{\tau}), l \in L, q \in Q, p \in P$, lie in the fundamental domain of $G_{0}(\hat{\tau})$. We call them distinguished for $G_{0}(\hat{\tau})$. Then $\tau \in \delta^{L, Q, P} S T_{(g, s, m)}$ and consequently $S T_{(g, s, m)}^{*}$ is open.

The connectedness of $S T_{(g, s, m)}^{*}$ is immediate from the relations

$$
S T_{(g, s, m)} \subset S T_{(g, s, m)}^{*} \subset \overline{S T_{(g, s, m)}}
$$

and the connectedness of $S T_{(g, s, m)}$ is shown in [4]. The theorem is proven.

§3. The Augmented Space and Riemann Surfaces with Nodes

In this section we shall interpret each point $\tau \in S T_{(g, s, m)}^{*}$ as a complex space, namely, as some Riemann surface with nodes.

A Riemann surface with nodes is a connected complex space S such that each point $X \in S$ has a neighborhood homeomorphic either to the disk $|z|<1$ in $\mathbb{C}(X$ corresponds to $z=0)$ or to the set $\{|z|<1,|w|<1, z w=0\}$ in $\mathbb{C}^{2}(X$ corresponds to $z=w=0)$.

In the last case, X is called a node.
We consider Riemann surfaces with nodes and punctures.
Every component of the complement to the nodes is called a part of S and represents a conventional Riemann surface.

The genus g of a Riemann surface with nodes is defined by the formula

$$
g=\sum_{i=1}^{r} g_{i}+k+1-r,
$$

where g_{i} is the genus of the i th part, k is the number of nodes, and r is the number of parts.

A node X is called separating if $S \backslash\{X\}$ is disconnected and nonseparating otherwise.
Let $\tau \in S T_{(g, s, m)}^{*}$. Then $\tau \in \delta^{I, J, K_{i}} S T_{(g, s, m)}$ for some sets $I \subset\{1, \ldots, g\}, J \subset\{1, \ldots, s\}$, and $K \subset\{1, \ldots, m\}$.

The point τ is associated with the collection of the groups

$$
\left\{G_{0}(\tau), G_{i}(\tau), G_{j+g}(\tau), G_{k+g+s}(\tau), i=1, \ldots, g, j=1, \ldots, s, k=1, \ldots, m\right\}
$$

To this collection of groups there corresponds a collection of Riemann surfaces

$$
\begin{gathered}
S_{0}=R\left(G_{0}(\tau)\right) / G_{0}(\tau), \quad S_{i}=R\left(G_{i}(\tau)\right) / G_{i}(\tau), \\
S_{j+g}=R\left(G_{j+g}(\tau)\right) / G_{j+g}(\tau), \quad S_{k+g+s}=R\left(G_{k+g+s}(\tau)\right) / G_{k+g+s}(\tau),
\end{gathered}
$$

where $R(G)$ is the fundamental domain of the corresponding group, $i=1, \ldots, g, j=1, \ldots, s, k=$ $1, \ldots, m$.

Denote the corresponding natural projections by

$$
\begin{gathered}
\pi_{0}: R\left(G_{0}(\tau)\right) \rightarrow S_{0}, \quad \pi_{i}: R\left(G_{i}(\tau)\right) \rightarrow S_{i}, \\
\pi_{j+g}: R\left(G_{j+g}(\tau)\right) \rightarrow S_{j+g}, \quad \pi_{k+g+s}: R\left(G_{k+g+s}(\tau)\right) \rightarrow S_{k+g+s},
\end{gathered}
$$

where $i=1, \ldots, g, j=1, \ldots, s$, and $k=1, \ldots, m$.
The Riemann surface S_{0} represents a Riemann surface of genus $g+m-\left(\left|I_{2}\right|+\left|I_{3}\right|+K\right)$ with $2(s-|J|)$ punctures. On S_{0} distinguished are $\left|I_{1}\right|$ pairs of the points $q_{i}=\pi_{0}\left(a_{i}(\tau)\right)$ and $q_{i}^{\prime}=\pi_{0}\left(b_{i}(\tau)\right)$, $i \in I_{1}$ as well as $\left(\left|I_{2}\right|+\left|I_{3}\right|+|J|+|K|\right)$ points $r_{i}=\pi_{0}\left(a_{i}(\tau), i \in I_{2}, u_{i}=\pi_{0}\left(a_{i}(\tau)\right), i \in I_{3}\right.$, $v_{k}=\pi_{0}\left(d_{k}(\tau)\right), k \in K$, and $p_{j}=\pi_{0}\left(c_{j}(\tau)\right), j \in J$.

For $i \in[\{1, \ldots, g\} \backslash I] \cup I_{1}, j \in[\{1, \ldots, s\} \backslash J]$, and $k \in[\{1, \ldots, m\} \backslash K]$ the Riemann surfaces S_{i}, S_{j+g}, and S_{k+g+g} are conformally equivalent to S_{0} with the same distinguished points. Henceforth we identify these Riemann surfaces with S_{0}.

For $i \in I_{2}$, the surface S_{i} is a torus with distinguished point $r_{i}^{\prime}=\pi_{i}(1)$. For $i \in I_{3}$, it is a sphere with distinguished points $w_{i}=0, w_{i}^{\prime}=\infty$, and $u_{i}^{\prime}=1$.

For $j \in J$, the surface S_{j+g} is a sphere with two punctures and distinguished point $p_{j}^{\prime}=\pi_{j+g}(0)$.
For $k \in K$, the surface S_{k+g+s} is a torus with distinguished point $v_{k}^{\prime}=\pi_{k+g+s}(0)$.
Denote by $S(\tau)$ the union of the Riemann surfaces $S_{0}, S_{i}, i \in I_{2} \cup I_{3}, S_{j+g}, j \in J, S_{k+g+s}, k \in K$, with identified pairs of corresponding points q_{i} and q_{i}^{\prime}, r_{i} and r_{i}^{\prime}, w_{i} and w_{i}^{\prime}, u_{i} and u_{i}^{\prime}, p_{j} and p_{j}^{\prime}, v_{k} and v_{k}^{\prime}.

The so-obtained surface $S(\tau)$ represents a Riemann surface with nodes. More precisely, for $\tau \in$ $\delta^{I, J, K} S T_{(g, s, m)}$ the corresponding Riemann surface $S(\tau)$ has $\left(\left|I_{2}\right|+\left|I_{3}\right|+|J|+K \mid\right)$ separating nodes and $\left(\left|I_{1}\right|+\left|I_{3}\right|\right)$ nonseparating nodes. We say that $S(\tau)$ is associated with τ.

Thereby, we have proven the following
Theorem 2. For $\tau \in \delta^{I, J, K} S T_{(g, s, m)}$, there is a Riemann surface S associated with τ which is of genus $g+m$ and has $2 s$ punctures, $\left(\left|I_{2}\right|+\left|I_{3}\right|+|J|+|K|\right)$ separating nodes, and $\left(\left|I_{1}\right|+\left|I_{3}\right|\right)$ nonseparating nodes.

It is easy to show that the converse assertion is also valid; i.e., to a Riemann surface of genus $g+m$ with $2 s$ punctures and a distinguished system of loops and nodes of the considered type, there corresponds some point $\tau \in S T_{(g, s, m,)}^{*}$. Observe that such point τ is not determined by a Riemann surface uniquely but depends on the choice of fundamental domains for corresponding groups.

References

1. L. Bers, "Automorphic forms for Schottky groups," Adv. in Math. (China), 16, 332-361 (1975).
2. H. Sato, "On augmented Schottky spaces and automorphic forms. I," Nagoya Math. J., 75, 151-175 (1979).
3. R. E. Rodriques, "On Schottky-type groups with applications to Riemann surfaces with nodes. II," Complex Variables Theory Appl., 1, No. 2/3, 293-310 (1983).
4. N. A. Gusevskiĭ and N. S. Zindinova, "On the space of extended Schottky groups," Sibirsk. Mat. Zh., 2, No. 6, 65-78 (1986).

Translated by K. M. Umbetova

