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1 Hyperbolic, spherical and Euclidean spaces

According to Y. Wolf [1], a simply-connected Riemannian manifold X is of constant curvature
if and only if its isometry group acts transitively on X and the isometry group coinsides with
the group of all orthogonal transformation of the tangent space.

A manifold X is hyperbolic, spherical or Euclidean if it has negative, positive or zero
curvature, respectively. By Hadamard theorem, a complete simply-connected manifold X
of a given curvature κ is unique up to isometry. We denote the respective manifolds with
curvature κ = −1, 0, +1 by Hn,En, and Sn. Here, n = dim X

We note that Hn is also known as Lobachevski, Bolyai, and Gaussian space.
Following to Y.W. Cannon, W.Y. Floyd, R.Kenyon, and W.R. Parry [2], we introduce

the following five models for hyperbolic space:

H the half-space model

I the interior of the disk model

Y the Yemisphere model (Y is as in Spanish)

K the Klein model

L the ’Loid model (short for hyperboloid)

Each model is defined on a different subsets of Rn+1, called its domain; for n = 1, these
sets are schematically indicated in Fig. 1, which can also be regarded as a cross section of
the picture in higher dimensions.

Here are the definitions of the five domains:

H = {(1, x2, . . . , xn+1) : xn+1 > 0}
I = {(x1, . . . , xn, 0) : x2

1 + . . . + x2
n < 1}

Y = {(x1, . . . , xn+1) : x2
1 + . . . + x2

n+1 = 1, xn+1 > 0}
K = {(x1, . . . , xn, 1) : x2

1 + . . . + x2
n < 1}

L = {(x1, . . . , xn, xn+1) : x2
1 + . . . + x2

n − x2
n+1 = −1}.

1



The associated Riemannian metrics ds2 that complete the analytic description of the five
models are :

ds2
H =

dx2
2 + . . . + dx2

n+1

x2
n+1

ds2
I = 4

dx2
1 + . . . + dx2

n

(1− x2
1 − . . .− x2

n)2

ds2
Y =

dx2
1 + . . . + dx2

n+1

x2
n+1

ds2
K =

dx2
1 + . . . + dx2

n+1

1− x2
1 − . . .− x2

n

+
(x1dx1 + . . . + xndxn)2

(1− x2
1 − . . .− x2

n)2

ds2
L = dx2

1 + . . . + dx2
n − dx2

n+1.

To see that these five models are isometrically equivalent, we need to describe isometries
among them. We use Y as the cetral and describe for each of the others as simple map to
or from Y.

The map α : Y −→ H is central projection from the point (−1, 0, . . . , 0):

α : Y −→ H, (x1, . . . , xn+1) 7→
(

1,
2x2

x1 + 1
, . . . ,

2xn+1

x1 + 1

)

The map β : Y −→ I is central projection from the point (0, . . . , 0,−1):

β : Y −→ I, (x1, . . . , xn+1) 7→
(

1,
x1

xn+1 + 1
, . . . ,

xn

xn+1 + 1
, 0

)

The map γ : K −→ Y is vertical projection:

γ : K −→ Y, (x1, . . . , xn, 1) 7→
(

x1, . . . , xn,
√

1− x2
1 − . . .− x2

n

)

The map δ : L −→ Y is central projection from the point (0, . . . , 0,−1):

δ : L −→ Y, (x1, . . . , xn+1) 7→
(

x1

xn+1

, . . . ,
xn

xn+1

,
1

xn+1

)

The standard model for Sn comes from its natural embedding into Rn+1 as a set

{(x1, . . . , xn+1) : x2
1 + . . . + xn + 12 = 1}

with induced metric
ds2
Sn = dx2

1 + . . . + dx2
n+1.

The Euclidean space En can be realized as a set Rn with metric ds2 = dx2
1 + . . . + dx2

n.
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2 Schläfli variation formula

2.1 Schläfli formula for polyhedra

In 1866 Schläfli discovered a remarkable formula for the volume of n-dimensional spherical
cone-manifold. It was done before the notion of manifold became known and wide under-
standable. Later, H. Kneser[1936] recognized that the same formulas remain to be true
also for hyperbolic geometry. Essential influence for finding of correct relationship between
Lobachevsky and Schläfli results on volumes of hyperbolic and spherical tetrahedras are done
by H.S.M. Coxeter[1935].

We represent the result of Schläfli in the form given by Y. Milnor in [3].

Theorem 2.1 (Schläfli variation formula for polyhedra) Let Xn be a space of con-
stant curvature κ. Consider a family of (convex) polyhedra P depending on one or more
parameters in a differential manner and keeping the same topological type. Then the deriva-
tive of volume of P satisfies

(n− 1)κdP =
∑

F

Vn−1(F )dθ(F )

where the sum is taken over all (n− 1)-faces (facets) of P . Vn−1(F ) is (n− 1)-dimensional
volume of F , and θ(F ) is the interior angle along F .

We note that condition for polyhedra P to be convex is not necessary, but correct def-
inition of nonconvex polyhedron is very delicated problem. See books and papers by F.
Grünbaum on this subject. Everytime P is supposed to be compact polyhedron with finite
number of faces.

2.2 Schläfli formula for cone-manifolds

Cone-manifold is a metric space locally isometric to polyhedron with partially identified faces.
The geometry of cone-manifold is defined by geometry of polyhedron.

Example

1. The Poincare homology sphere
Can be obtained from a regular spherical 2π

3
-dodecahedron by identification of its op-

posite faces.

2. Hyperbolic Seifert-Weber Space
Can be obtained from a regular hyperbolic 2π

5
-dodecahedron by identification of its

opposite faces.

3. Borromean Ring orbifold
Euclidean geometry
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4. Coxeter polyhedron and Coxeter orbifold are uniquely defined by Coxeter scheme.

5. All three geometries appear. [4] (On some generalized triangular groups and three-
dimensional orbifolds)

6. Pleated surface [5]
Genus three surface is obtained as a union of 12 hexagonal faces of two regular truncated
tetrahedra.

The following theorem was proved by C.D. Hodgson [6].

Theorem 2.2 (Schläfli variation formula for cone-manifolds) Suppose that Ct is a smooth
1-parameter family of (curvature κ) cone-manifold structures on a n-manifold with locus Σ
of a fixed topological type. Then the derivative of volume of Ct satisfies

(n− 1)κdV (Ct) =
∑

σ

Vn−2(σ)dθ(σ)

where the sum is taken over all components σ of the singular locus Σ and θ(σ) is the cone
angle along σ.

Remark 1 To be sure that Vn−2(σ) < ∞, all (n − 2)-dimensional component σ of Σ are
supposed to be compact.

2.3 Schläfli formula for cusped cone-manifolds

The following very convenient for application version of variation formula was suggested by
I. Rivin and C. Hodgson

Theorem 2.3 (Schläfli variation formula for cusped cone-manifolds) Let C be a cusped
hyperbolic cone-manifold of finite volume. Suppose that C has cusps 1, 2, . . . , K and O1, O2, . . . , OK

is a set of non-overlapping horoballs in these cusps, respectively. Then the volume vol(C) is

given by the Schläfli formula applied to truncated cone-manifold C̃ = C\⋃K
j=1 Oj. The result

does not depend of particular choice of horoballs O1, O2, . . . , OK.

Sketch of proof. First of all, we show that the result of applying Schläfli formula is
independent from a choice of horoball. We realize a horoball neighborhood O1 as a subset of
the upper half space model of H3 with a cusp on infinity.

Let l1, l2, . . . , lS be the lengths of edges of the singular locus of C\O1 terminated at the
cusp on infinity and α1, α2, . . . , αS are respective cone-angles. Then ∂O1 ∩ C is a Euclidean
S-gon (or two copies of it if ∂O1∩S is two-dimensional sphere.) We have α1 +α2 + . . .+αS =
(S − 2)π (or α1 + α2 + . . . + αS = 2(S − 2)π in the second case.) In both cases

dα1 + dα2 + . . . + dαS = 0

during small deformations of cone-manifold C.
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The input of cups 1 in the Schläfli formula is given by
S∑

i=1

li dαi if O1 is deleted, and

S∑
i=1

(li + ∆l)dαi if Õ1 is deleted. Since

S∑
i=1

∆l dαi = ∆l · d
(

S∑
i=1

αi

)

the input does not depend on the choice of horoball O1.
Let Õ1, Õ1 ⊂ O1 be another horoball at the cusp on infinity. Then horosphere ∂Õ1 and

∂O1 are equidistance surfaces. We assume that ∂Õ1 is obtained from ∂O1 by a vertical shift
∆l, ∆l > 0. See Fig.

Let Õ1 = Õ1(n) be obtained from O1 by vertical shift ∆l = n and C̃n = C\Õ1(n). Then⋃
n C̃n = C, V ol(C) < ∞, and by standard properties of measure we have

V ol(C̃n) −→ V ol(C) , n −→∞

Now we note that C̃ is truncated but not geodesic cone-manifold. By a slight modification
of truncated boundary of C̃n we obtain a closed geodesic cone-manifold Gn with V ol(Gn) =

V ol(C̃n) + On where On → 0 as n →∞.
The volume of Gn is given by the previous version of variation theorem and we are done.

2.4 The volume of ideal tetrahedron

We illustrate the previous theorem by a short prove of Milnor formula for the volume of ideal
tetrahedron.

Theorem 2.4 (Milnor, 1982) The volume of an ideal hyperbolic tetrahedron T = T (A,B,C)
with angles A,B, C (A + B + C = π) is given by the formula

V ol(T ) = Λ(α) + Λ(β) + Λ(γ)

where Λ(x) = − ∫ x

0
log |2 sin ξ|dξ is the Lobachevsky function.

Proof. We realize the tetrahedron T is the upper space model with one vertex on the
infinity. See Fig. Then the projection of tetrahedron on the plane is an Euclidean triangle
ABC with angles α, β, γ and edges a, b, c. We suppose that α ≤ β ≤ γ, then also a ≤ b ≤ c.
Delete horoballs of diameter a at the cusps A,B, and C.

Their projection on the plane are shown on Fig. Also we cut the cusp at the infinity by
horosphere of the height h, h > a.

For any h, the input of vertical edges is Schläfli formula coincides with those for h = a
and is equal to zero.
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The edge BC of tetrahedron T after removing of horoball collapses to a point and also
has no influence to Schläfli formula. Only two edges lβ and lγ are remained. To find these
lengths we need the following elementary lemma.

Lemma 2.5 Let 0 ≤ τ ≤ R and z1, z2 are two points on the upper half plane chosen as
shown on Fig.

Then the hyperbolic distance between z1 and z2 is

ρ(z1, z2) = 2 log
R

r
.

Proof. We note that z1 = (−x, y) and z2 = (x, y), where x and y satisfy

(x−R)2 + (y − r)2 = r2 and x2 + y2 = R2.

Solving the system of equations we have

x = R
R2 − r2

R2 + r2
and y =

2R2r

R2 + r2
.

Then, by A. Beardon([]) we obtain

cosh ρ(z1, z2) = 1 +
|z1 − z2|2

2Imz1Imz2

= 1 +
(R2 − r2)2

2R2r2
=

1

2

((
R

r

)2

+
( r

R

)2
)

.

Hence,

ρ(z1, z2) = log

(
R

r

)2

= 2 log
R

r
.

Applying lemma to calculate the length lβ we have

R =
b

2
, r =

a

2
.

Hence,

lβ = 2 log
b

a
= 2 log

sin β

sin α
.

Similarly,

lγ = 2 log
c

a
= 2 log

sin γ

sin α
.

Let V = V ol(T (α, β, γ)). We note that α + β + γ = π. By Schläfli formula we have;

−dV =
1

2
lβdβ +

1

2
lγdγ = log

2 sin β

2 sin α
dβ + log

2 sin γ

2 sin α
dγ

= log(2 sin β)dβ + log(2 sin γ)dγ − log(2 sin α)(dβ + dγ)

= log(2 sin α)dα + log(2 sin β)dβ + log(2 sin γ)dγ.
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After integration we have well-known Milnor formula

V = Λ(α) + Λ(β) + Λ(γ)

where Λ(x) = − ∫ x

0
log |2 sin ξ|dξ.

Exercise 1 Applying the above arguments, show that the volume of an ideal piramid P =
P (α1, . . . , αn), n ≥ 3 with bottom dihedral angles α1, . . . , αn satisfying α1 + . . .+αn = π (See
fig) is given by the formula [Thurston, Vinberg]

V ol(P ) = Λ(α1) + . . . + Λ(αn)

2.5 Ideal symmetric octahedron

Let O be an ideal symmetric octahedron with all vertices on the infinity.
Then C = π − A, D = π − B, F = π − E and hyperbolic volume of O is given by the

following:

Theorem 2.6 (Yana Mohanty, 2002)

V ol(O) = 2

(
Λ

(
π + A + B + E

2

)
+ Λ

(
π − A−B + E

2

)

+ Λ

(
π + A−B − E

2

)
+ Λ

(
π − A + B − E

2

))

Proof. Joint top and bottom vertices of O by infinite geodesic line. Then O is divided into
four ideal tetrahedra sharing a common edge. See a projection on Fig.

The common edge is shown by point O, while the edges with dihedral angles A,B, C, D
by points A,B, C,D respectively. Since the opposite angle of ideal tetrahedron are equal, we
know all dihedral angle E,F,E, F along edge O.

Let we introduce notation by remained dihedral angles as shown on Figure.
By the sine rule we have

sin x

sin t′
=
OD
OA ,

sin y

sin x′
=
OA
OB ,

sin z

sin y′
=
OB
OC ,

sin t

sin z′
=
OC
OD

Multiplying the equation we obtain

sin x

sin t′
· sin y

sin x′
· sin z

sin y′
· sin t

sin z′
= 1 (1)

From each of four triangles we have

x + t′ + F = π, y + x′ + E = π, z + y′ + F = π, t + z′ + E = π, and

x + x′ = A, y + y′ = B, z + z′ = B, z + z′ = C.

7



We suppose that x is given and find all other unknown angles through x and angles of O.
We have

x = x, x′ = A− x, y = π + x− A− E, y′ = −x + A + B + E

z = π + x− A−B, z′ = −x + B, t = π + x−B − E, t′ = −x + E

From the main equation (1) for x = −u, we obtain

sin u sin(A + B + u) sin(A + E + u) sin(B + E + u)

sin(A + u) sin(B + u) sin(E + u) sin(A + B + E + u)
= 1

The equation is equivalent

(cos(A + B)− cos(A + B + 2u))(cos(A−B)− cos(A + B + 2E + 2u))

(cos(A−B)− cos(A + B + 2u))(cos(A + B)− cos(A + B + 2E + 2u))
= 1

which gives
cos(A + B + 2u)− cos(A + B + 2E + 2u) = 0

simply
sin(A + B + E + 2u) = 0.

Returning to x, we have
sin(A + B + E − 2x) = 0.

Hence
2x = A + B + E + πk

for some integer k. Note that for A = B = E = π
2

we have x = π
4
. Hence k = −1 and

x =
A + B + E − π

2
.

Symmetric octahedron is the union of two congruent tetrahedra with angles

x =
A + B + E − π

2
, t′ =

−A−B + E − π

2
, f = π − E,

and two congruent tetrahedra with angles

x′ =
A−B − E + π

2
, y =

−A + B − E + π

2
and E.

The result follows from the Milnor formula.
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2.6 General ideal octahedron

Let O be a general ideal octahedron with all vertices on the infinity. A general ideal octahe-
dron (Fig.) satisfies the following conditions;

A′ + A + E + H = 2π, B′ + B + E + F = 2π, C ′ + C + F + G = 2π,

D′ + D + G + H = 2π, A + B + C + D = 2π, A′ + B′ + C ′ + D′ = 2π.

Excluding A′, B′, C ′, D′ we have the following relations

A + B + C + D = 2π, E + F + G + H = 2π.

Hence, O depends on 6 real parameters, say A,B,C, E, F, G.
For two remained, we obtain

D = 2π − A−B − C, H = 2π − E − F −G.

Consider tesselation of O into four ideal tetrahedra. (Fig.)
Similary to the case of symnmetric octahedron, we have

sin x sin y sin z sin t

sin x′ sin y′ sin z′ sin t′
= 1,

where
x = x, x′ = A− x, y = π + x− A− E, y′ = −x + A + B + E − π,

z = 2π + x− A−B − E − F, z′ = −x + A + B + C + E + F − 2π,

t = 3π + x− A−B − C − E − F −G, t′ = −x−H + π. (2)

Putting x = −u, we obtain

sin u sin(A + E + u) sin(A + B + E + F + u) sin(A + B + C + E + F + G + u)

sin(A + u) sin(A + B + E + u) sin(A + B + C + E + F + u) sin(E + F + G + u)
= 1 (3)

An explicit solution of the above equation is rather complicated. However, the following
observation is helpful.

Lemma 2.7 (Derevnin-Mednykh, 2003) The equation

sin(a + u) sin(b + u) sin(c + u) sin(d + u)

sin(a′ + u) sin(b′ + u) sin(c′ + u) sin(d′ + u)
= 1

where a + b + c + d = a′ + b′ + c′ + d′ is quadratic with respect to tan u.

In our case,

a + b + c + d = 3A + 2B + 3E + 2F + G = a′ + b′ + c′ + d′.

We summerize the results in the following:

Proposition 2.8 The volume of a general ideal octahedron O is given by the formula

V ol(O) = Λ(E) + Λ(F ) + Λ(G) + Λ(H) + Λ(x) + Λ(x′)

+ Λ(y) + Λ(y′) + Λ(z) + Λ(z′) + Λ(t) + Λ(t′)

where x = −u, 0 < x < π is given by (3) and other variables are defined by (2).
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3 Volumes of compact polyhedra

3.1 Lambert cube

One of the simplest compact polyhedra in the hyperbolic space H3 is the Lambert cube
Q(α, β, γ). See Fig. By Andreev’s theorem, it is hyperbolic for all 0 < α, β, γ < π

2
.

The name of the cube comes from the well-known Lambert quadrilateral which, in turn,
is a half of Sacceri- quadrilateral.

Both have been used to disprove the fifth Postulate of Euclid.
Before to deal with the cube, we describe basic analytic ideas on an example of Lambert

quadrilateral Q(α).
Let A,B > 0. Consider two Lorenzian metrics

ds2 = dx2 + dy2 − dt2 and dσ2 =
dx2

A2
+

dy2

B2
− dt2.

Then the map
(x, y, t) 7→ (Ax,By, t)

is an isometry of the Lorenzian spaces

(R2,1, ds2) 7→ (R2,1, dσ2).

Consider a realization of Q(α) in the space (R2,1, dσ2) for t = 1. (See fig.)
The lines l and m are given in R3 by the following projective equations

l = {(x, y, t) : (1− a)x + y − t = 0},
m = {(x, y, t) : x− t = 0}.

We introduce in R2,1 the Lorenzian inner product

〈(x, y, t), (x′, y′, t′)〉 =
xx′

A2
+

yy′

B2
− tt′.

The normal vectors of l and m are defined as

Nl = ((1− a)A2, B2, 1) and Nm = (A2, 0, 1).

Since l⊥m, we have
〈Nl, Nm〉 = (1− a)A2 − 1 = 0.

Hence 1− a = 1
A2 and a = 1− 1

A2 .
Let l⊥ be a line symmetric to l with respect to y-axis. Then

Nl = (1, B2, 1) and Nl⊥ = (−1, B2, 1).

By the definition of Q(α), we have

cos 2α = − 〈Nl, Nl⊥〉
〈Nl, Nl〉 1

2 〈Nl⊥ , Nl⊥〉 1
2

=
1

A2 −B2 + 1
1

A2 + B2 − 1
.
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Hence

tan2 α =
1− cos 2α

1 + cos 2α
= A2(B2 − 1).

Denote by δa and δb the sides of Q(α) lying on x- and y-axis and by δc and δd the sides
opposite to δa and δb, respectively.

For any v = (x, y, t) ∈ R2,1, denote by ‖v‖ = 〈v, v〉 1
2 the Lorenzian norm of v. We note

that if v ∈ H3, then 〈v, v〉 < 0 and the norm ‖v‖ = i w, w > 0 is a positive pure imaginary
number.

Since δa is the hyperbolic distance between points (0,0,1) and (0,1,1), we have

cosh δa =
〈(0, 0, 1), (1, 0, 1)〉

‖(0, 0, 1)‖ · ‖(1, 0, 1)‖ =
A√

A2 − 1
.

In a similar way,

cosh δb =
B√

B2 − 1
.

Hence A = coth δa and B = coth δb. We also have

a =
A2 − 1

A2
=

1

cosh2 δa

.

For the list of trigonometric identities for Q(α), see books of A. Beardon and E. Vinberg.
In a similar way, we realize a Lambert cube Q(α, β, γ) as a subset of hyperplane t = 1 in

the Lorenzian space (R3,1, dσ2) with metric

ds2 =
dx2

A2
+

dy2

B2
+

dz2

C2
− dt2, where A,B, C > 0.

See Fig. and Hilden, Lozano and Montesinos’ paper in Topology’90 for detail.
The planes a,b, c are given by the following projective equations

a = {(x, y, z, t) : x + (1− c)z − t = 0},
b = {(x, y, z, t) : (1− a)x + y − t = 0},
c = {(x, y, z, t) : (1− b)y + z − t = 0}.

The respective normal vectors are

Na = (A2, 0, (1− c)C2, 1),

Nb = ((1− a)A2, B2, 0, 1),

Nc = (0, (1− b)B2, C2, 1).

Since Na, Nb, and Nc are mutually orthogonal, we obtain

a = 1− 1

A2
, b = 1− 1

B2
, c = 1− 1

C2
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We endow R3,1 with a Lorenzian inner product

〈(x, y, z, t), (x′, y′, z′, t′)〉 =
xx′

A2
+

yy′

B2
+

zz′

C2
− tt′.

By making use of direct calculations, we obtain the following sine-cosine theorem.

Theorem 3.1 (Derevnin, Mednykh, 2000) Let Q(α, β, γ) be a hyperbolic Lambert cube
with essential angles α, β, γ and edges lα, lβ, lγ. Then

sin α

sinh lα
· sin β

sinh lβ
· cos γ

cosh lγ
= 1,

sin α

sinh lα
· cos β

cosh lβ
· sin γ

sinh lγ
= 1,

cos α

cosh lα
· sin β

sinh lβ
· sin γ

sinh lγ
= 1.

As a consequence, we obtain the following tangent rule established by A. Mednykh [].
Partially this result was contained in the paper by R. Kellerhals (1989).

Theorem 3.2 (Mednykh, 2003) Let Q(α, β, γ) be a hyperbolic Lambert cube with essential
angles α, β, γ and edges lα, lβ, lγ. Then

tan α

tanh lα
=

tan β

tanh lβ
=

tan γ

tanh lγ
= T,

where T is a positive root of equation

T 4 − (A2 + B2 + C2 + 1)T 2 − A2B2C2 = 0,

with
A = tan α, B = tan β, and C = tan γ.

Proof. Dividing the first equation in sine-cosine theorem by the second, we obtain

tan β

tanh lβ
=

tan γ

tanh lγ
.

In the same time, dividing the second equation by the third one, we have

tan α

tanh lα
=

tan β

tanh lβ
.

Hence,
tan α

tanh lα
=

tan β

tanh lβ
=

tan γ

tanh lγ
= T

for some unknown T .
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Putting A = tan α, B = tan β, and C = tan γ, we obtain

tanh lα =
A

T
, tanh lβ =

B

T
, tanh lγ =

C

T
.

Squaring the first equation in sine-cosine theorem and using elementary trigonometric
identities, we get

T 2 − A2

1 + A2
· T 2 −B2

1 + B2
· T 2 − C2

1 + C2
· 1

T 2
= 1.

(Compare with the equation in HLM, Topology ’90. The later equation is equivalent to

(T 2 + 1)(T 4 − (A2 + B2 + C2 + 1)T 2 − A2B2C2) = 0.)

Since T is positive, we are done.

3.2 Volume of Lambert cube

The volume of Lambert cube is given by the following theorem :

Theorem 3.3 (Derevnin, Mednykh, 2002) Let Q(α, β, γ) be a hyperbolic Lambert cube
with essential angles α, β, and γ. Then the volume of Q(α, β, γ) is given by the formula

V ol(Q(α, β, γ)) =
1

4

∫ ∞

T

log

(
t2 − A2

1 + A2
· t2 −B2

1 + B2
· t2 − C2

1 + C2
· 1

t2

)
dt

1 + t2
,

where A = tan α, B = tan β, C = tan γ, and T is a positive root of the equation

T 4 − (A2 + B2 + C2 + 1)T 2 − A2B2C2 = 0.

Proof. We note that each face of Q(α, β, γ) is a Lambert quadrilateral. If α = β = γ → π
2
,

then face as well as cube itself are collapsing to a point. Hence the volume V (α, β, γ) =
V ol(Q(α, β, γ)) satisfies the following initial condition

V (
π

2
,
π

2
,
π

2
) = 0.

By the Schläfli formula, we have

−dV =
1

2
(lαdα + lβdβ + lγdγ),

where lα, lβ, and lγ are the lengths of respective essential edges. One can define a volume
as a (unique) solution of the following system of differential equations :

{
∂V
dα

= − lα
2
, ∂V

dβ
= − lβ

2
, ∂V

dγ
= − lγ

2

V (π
2
, π

2
, π

2
) = 0
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Let

W =
1

4

∫ ∞

T

log

(
t2 − A2

1 + A2
· t2 −B2

1 + B2
· t2 − C2

1 + C2
· 1

t2

)
dt

1 + t2
.

We will show that W satisfies the above system of differential equations. Then W = V .
We have

∂W

∂α
=

∂W

∂A

∂A

∂α
= −1

2
arctanh

A

T
= − lα

2
.

The last equation follows from the tangent rule (Theorem 3.2). To find ∂W
∂A

, we apply the
Leibnitz rule followed by observation that, by Theorem 3.2, T is a root of integrand.

In a similar way, we obtain

∂W

∂β
= − lβ

2
and

∂W

∂γ
= − lγ

2
.

We note that T → ∞ as α = β = γ → π
2
. Then the condition W (π

2
, π

2
, π

2
) follows from

the convergence of integral.

Let ∆(α, θ) be defined by

∆(α, θ) = Λ(α + θ)− Λ(α− θ),

where Λ(x) is the Lobachevsky function. We rewrite the previous theorem in the following
way :

Theorem 3.4 (Kellerhals(1989), Mednykh(2003)) The volume of a hyperbolic Lambert
cube Q(α, β, γ) with essential angles α, β, γ (0 < α, β, γ < π

2
) is given by the formula

V (α, β, γ) =
1

4

(
∆(α, θ) + ∆(β, θ) + ∆(γ, θ)− 2∆(

π

2
, θ)−∆(0, θ)

)
,

where T = tan θ (0 < θ < π
2
) is a root of the equation

T 4 − (A2 + B2 + C2 + 1)T 2 − A2B2C2 = 0,

A = tan α, B = tan β, and C = tan γ.

In the spherical case, we have the following result obtained by Derevnin and Mednykh
(2002).

Theorem 3.5 The volume of a spherical Lambert cube Q(α, β, γ) with essential angles α, β, γ (π
2

<
α, β, γ < π) is given by the formula

V (α, β, γ) =
1

4

(
δ(α, θ) + δ(β, θ) + δ(γ, θ)− 2δ(

π

2
, θ)− δ(0, θ)

)
,

where

δ(α, θ) =

∫ π
2

θ

log(1− cos 2α cos 2τ)
dτ

cos 2τ
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and T = tan θ (π
2

< θ < π) is a root of the equation

T 4 − (A2 + B2 + C2 + 1)T 2 − A2B2C2 = 0,

A = tan α, B = tan β, and C = tan γ.

Remark 2 The function δ(x, θ) is considered as a spherical analogue of the function

∆(x, θ) = Λ(x + θ)− Λ(x− θ)

and satisfies the following properties :

1. δ(x, θ) is continuous for all (x, θ) ∈ R3 and differentiable for x 6= π
2

+ kπ, k ∈ Z.

2. δ(x, 0) = π2

4
−

∣∣∣π2

2
− πx

∣∣∣ , 0 ≤ x ≤ π

3. Let δ̃(x, θ) = δ(x, θ) + (2θ
π
− 1)δ(x, 0). Then

(a) δ̃ is even and π-periodic on x

(b) δ̃ is odd and π-periodic on θ

(c) |δ̃(x, θ)| ≤ π2

4
and δ̃(π

2
, 3π

4
) = π2

4
.

Remark 3 The main result of R. Kellerhals(1989) for hyperbolic volume can be obtained
from the Theorem 3.5 by replacing δ(α, θ) to ∆(α, θ).

3.3 The volume of orthoscheme and Schläfli function

Let T (α, β, γ) be a double-rectangular tetrahedron (orthoscheme) with dihedral angles π
2
−

α, β, and π
2
− γ. See Fig.

Define a Schläfli function by the formula

S(α, β, γ) =

{ ∞∑
n=1

(−X)n

n2
(cos 2nα− cos 2nβ + cos 2nγ − 1)

}
− α2 + β2 − γ2,

where

X =
sin α sin γ −D

sin α sin γ + D
, D =

√
cos2 α cos2 γ − cos2 β,

0 ≤ α ≤ π

2
, 0 ≤ β ≤ π, 0 ≤ γ ≤ π

2
.

It was shown by Schläfli (1898) that in spherical case (cos2 α cos2 γ > cos2 β), the volume
of T (α, β, γ) and S(α, β, γ) are related by

4V ol(T (α, β, γ)) = S(α, β, γ).
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In Euclidean case (cos2 α cos2 γ = cos2 β), we have

S(α, β, γ) = 0.

In hyperbolic case (cos2 α cos2 γ < cos2 β, and α < β, γ < β), Coxeter (1935), using the
results by Lobachevsky, has shown that

i S(α, β, γ) = 4V ol(T (α, β, γ)).

See Coxeter’s paper (1935) for careful explanation of these result.
Now our aim is to prove the following theorem.

Theorem 3.6 (Derevnin, Mednykh, 2002) Let T = T (α, β, γ) be a spherical orthoscheme
with dihedral angles π

2
− α, β, and π

2
− γ (0 < α, β, γ < π

2
). Then

4V ol(T ) = −δ(α, θ) + δ(β, θ)− δ(γ, θ) + δ(0, θ),

where

δ(α, θ) =

∫ π
2

θ

log(1− cos 2α cos 2τ)
dτ

cos 2τ

and

tan θ =
sin α sin γ√

cos2 α cos2 γ − cos2 β
.

Proof. (1st step) We note that the following tangent rule takes place (Vinberg, p.125)

tan α

tan a
=

tan β

tan b
=

tan γ

tan c
= T,

where T = tan θ = sin α sin γ
D

, D =
√

cos2 α cos2 γ − cos2 β, and a, b, c are lengths of respective
edges.

(2nd step) We need also the following cosine rule

cos β

cos b
=

cos α

cos a
· cos γ

cos c
.

The proof of this relation can be done in a pure geometric way. It also follows from the
observation that T is a root of the equation

1 + A2

T 2 + A2
· T 2 + B2

1 + B2
· 1 + C2

T 2 + C2
· T 2 = 1,

where
A = tan α, B = tan β, C = tan γ,
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and a, b, c are lengths of respective edges. This rule, by virtue of tangent rule, is equivalent
to

cos2 α

cos2 a
· cos2 β

cos2 b
· cos2 c

cos2 γ
= 1.

We note that the above equation has four roots T1,2 = ±1 and T3,4 = ± sin α sin γ
D

.

(3rd step) The Schläfli formula.
Let V = V ol(T (α, β, γ)) be the volume of T (α, β, γ). Then

∂V

∂α
= −a

2
,

∂V

∂β
= − b

2
,

∂V

∂γ
= − c

2
,

and V → 0 as T →∞.

(4th step) We check that the function

W =
1

4

∫ ∞

T

log
(1 + A2)(t2 + B2)(1 + C2)t2

(t2 + A2)(1 + B2)(t2 + C2)

dt

t2 − 1

satisfies the above system of differential equations. Then W = V . We have

4V =
1

4

∫ ∞

T

log
(1 + A2)(t2 + B2)(1 + C2)t2

(t2 + A2)(1 + B2)(t2 + C2)

dt

t2 − 1

= −I(T, A) + I(T, B)− I(T, C) + I(T, 0),

where

I(T, A) =

∫ ∞

T

log
t2 + A2

1 + A2

dt

t2 − 1
.

Let T = tan θ. Under substitution t = tan τ , we obtain

I(T,A) =

∫ π
2

θ

log(1− cos 2τ cos 2α)dτ

cos 2τ
−

∫ π
2

θ

log(1 + cos 2τ)dτ

cos 2τ

= δ(α, θ)− δ(
π

2
, θ).

Hence
4V ol(T (α, β, γ)) = −δ(α, θ) + δ(β, θ)− δ(γ, θ) + δ(0, θ).

As a consequence of Theorem 3.6, we have the following form for the Schläfli function

S(α, β, γ) = −δ(α, θ) + δ(β, θ)− δ(γ, θ) + δ(0, θ).

In hyperbolic case, the following relation was obtained by Coxeter (1935)

i S(α, β, γ) = −∆(α, θ) + ∆(β, θ)−∆(γ, θ) + ∆(0, θ),

where

tan θ =
sin α sin γ√

cos2 β − cos2 α cos2 γ
.
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